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A B S T R A C T   

Several social dimensions including social integration, status, early-life adversity, and their interactions across 
the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment 
plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing 
human social gradients on a biological continuum with other species provides a useful evolutionary context for 
aging questions, but there is still a need for a unified evolutionary framework linking health and aging within 
social contexts. Here, we summarize current challenges to understand the role of the social environment in 
human life courses. Next, we review recent advances in comparative biodemography and propose a bio-
demographic perspective to address socially driven health phenotype distributions and their evolutionary con-
sequences using a nonhuman primate population. This new comparative approach uses evolutionary 
demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history pa-
rameters. The long-term goal is to advance our understanding of the link between individual social environ-
ments, population-level outcomes, and the evolution of aging.   

1. Introduction 

The social environment generates strong associations between health 
and longevity. For example, greater social support predicts healthier 
aging (Antonucci et al., 2019; Béland et al., 2005; Holt-Lunstad et al., 
2010), higher social status predicts longer lifespan (Adler et al., 1993; 
Chetty et al., 2016; Hajat et al., 2011; Lantz et al., 2010; Sapolsky, 2004; 
Wilkinson and Marmot, 2003), and early life social adversity exposures 
predict higher mortality risk (Anda et al., 2006; Montez and Hayward, 
2011; Ferraro et al., 2016; Hughes et al., 2017). However, understand-
ing the role of the social environment in human life courses remains 
challenging due to multiple uncontrolled (e.g., incongruencies in 
self-reported health; non-random attrition) and unknown confounding 
factors (e.g., biased survey information). Comparative approaches can 
provide evidence concerning the evolutionary origins of the social de-
terminants of human health and aging and provide a model for the 
intricate interactions and potential feedback loops between social fac-
tors and aging (Carey and Judge, 2001; Lucas and Keller, 2020). This 
review argues that studies on the comparative biodemography of aging 
can advance our understanding of the link between the social environ-
ment, population-level demographic outcomes, and the evolution of 

aging in humans. Here, we introduce conceptual frameworks for the 
evolutionary demography of aging within social contexts, discuss why 
current challenges in human health and aging studies call for compar-
ative approaches, and describe a unifying methodological framework for 
the biodemography of aging that links current research in the social 
determinants of health to evolutionary demography approaches to the 
fundamental rules of life history evolution. For this, we give particular 
focus to a set of social dimensions that includes sociality (degree of as-
sociation with others such as how integrated and connected an indi-
vidual is to others in their environment), social status (position), and 
early life social adversity (exposure), and define senescence as a mean 
decline in function with age and differentiate it from health statuses 
which we define as deviations from such mean decline. 

1.1. The biodemography of human aging within social contexts 

Senescence, the process of aging, has been slowed down or post-
poned largely due to progress in public-health efforts, access to educa-
tion, socioeconomic mobility, and cultural changes in lifestyles (Achey, 
2016; Cundiff et al., 2017; Oeppen and Vaupel, 2002; Riley, 2001; Vable 
et al., 2019; Vaupel, 2010), rather than strong selection on genetic 
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factors (Christensen et al., 2006; Hjelmborg et al., 2006; McGue et al., 
1993). Yet, accumulating evidence shows that there are persistent 
health inequalities within today’s aging populations as well (National 
Academies of Sciences, Engineering, and Medicine, 2021). This high-
lights the importance of mechanistic questions regarding how and why 
variability in the aging process across individuals emerges and is 
maintained, and how individual social environments and health in-
fluences such process (Crimmins and Vasunilashorn, 2016; Gutin and 
Hummer, 2021). 

The emerging field of biodemography integrates social factors in 
moving towards a full understanding of the evolutionary roots of health 
and aging (Hooper et al., 2014). In particular, the biodemography of 
aging incorporates biological theory and methods on ecological and 
evolutionary processes with traditional demographic approaches to 
better understand the dynamics of health and mortality within pop-
ulations (Baudisch, 2015; Carnes, 2007; Christensen, 2008; Gavrilov and 
Gavrilova, 2015; Vaupel, 2004; Wachter, 2008; Yashin et al., 2016). 
Biodemography also incorporates theories of life history trade-offs, 
allowing us to quantify dynamics between survival and reproduction 
(Tuljapurkar et al., 2020). This interdisciplinarity encourages an alli-
ance between the social and the biological sciences that expands beyond 
traditional demographic structures (e.g., age, race/ethnicity, socioeco-
nomic status) as it provides novel opportunities to address how these 
structures are linked to the underlying pathways that modulate health 
(Arbeev et al., 2019; Crimmins and Vasunilashorn, 2016; Giuliani et al., 
2018; Palma-Gudiel et al., 2020). These advances occurred in concert 
with work by social scientists who incorporated a life course perspective 
into studies of health inequality (Dannefer, 2003, 1987; Ferraro et al., 
2009; Ferraro and Shippee, 2009; Gravlee, 2009; Morton and Ferraro, 
2020). In just the past few years, evidence has continued to accumulate 
concerning the role that structural inequality (e.g., discrimination, 
racism) and associated factors shaping the social environment (e.g., 
poverty, stress) have on major disparities in health (e.g., Jackson and 
Engelman, 2022; Morton and Ferraro, 2020; Noren Hooten et al., 2022; 
Sauerteig et al., 2022; Williams et al., 2019). Such evidence shapes 
paradigms in biodemography and the social sciences (e.g., “the geron-
tological imagination”, Ferraro, 2018). It is now time to parallel these 
efforts with methods for the quantification of the effect of individual 
social traits and experiences on health phenotypes, and how these as-
sociations translate into the evolutionary dynamics of human aging. 

2. Current challenges in modeling the social determinants of 
health and aging call for comparative approaches 

Socially and economically disadvantaged persons experience a 
higher accumulation of risk factors (low income: Bor et al., 2017; Hirai 
et al., 2012; migrants: Riosmena et al., 2014; racial minorities: Shah 
et al., 2020; Wallace, 2015; Williams and Chiquita, 1995) and increased 
mortality (Krieger 1999; Chetty et al., 2016; National Center for Health, 
2016). Yet, several other studies using common approaches to modeling 
health trajectories (e.g., growth curve models, latent class models) have 
also reported similar health profiles between socially disadvantaged and 
advantaged groups (Brown et al., 2012; Gueorguieva et al., 2009; 
Markides and Coreil, 1986) or favorable health trajectories in tradi-
tionally marginalized groups (i.e., Migrant Effect and the Hispanic 
Paradox; Franzini et al., 2001; Markides and Rote, 2019; Quiñones et al., 
2011). This divergence between evidence of cumulative risk and 
increased mortality on the one hand, and methodological approaches 
that model average health trajectories of disadvantaged groups on the 
other, suggests that current forecasting methods for predicting the 
progression of individual health may fail to capture critical aspects of 
the human social environment (Engelman and Jackson, 2019). Another 
issue when modeling the social determinants of human health and aging 
concerns limitations in handling missing data when these missing data 
are not random. As individuals age and their health deteriorates, lon-
gitudinal studies suffer non-random reductions in the number of 

participants due to mortality and other sources of attrition (Vaupel, 
2010). Thus, many studies of human health and aging may have biases 
in that robust individuals will remain in the study into very old age, 
whereas those who die earlier or have unknown fates will not be 
included (Jackson et al., 2019). Finally, survey responses – a common 
method in human studies – may be influenced by many other factors 
such as the personal perceptions of respondent and interviewers 
(Courtenay, 2000; Davis et al., 2010; Dowd and Zajacova, 2010; 
Gunasekara et al., 2012; Salazar, 1990; Sorlie et al., 1992; Williams and 
Chiquita, 1995) that can bias survey measurements and interpretation in 
health and aging studies. We argue that animal models for the social 
dimensions of health and aging can therefore provide a new and valu-
able opportunity to test novel biodemographic perspectives on 
analyzing individual health and improve methods to forecast health 
over the life course that can be applied to humans. 

2.1. Challenge 1: untying individual health forecasting from gradualist 
assumptions 

A typical view of senescence is that individual health deteriorates 
with increasing age. Such a process can be described by mixed-effects 
regression methods through an intercept (i.e., baseline measure of 
health) and a slope (i.e., rate of health change over time; DiPrete and 
Eirich, 2006). Although these methods allow for individual variation in 
baseline levels (i.e., random intercepts) and in the rate of change (e.g., 
random slopes, quadratic terms, exponential functions), they operate 
under the assumption that health changes smoothly and gradually as 
individuals age. In doing so, forecasts from these methods may not fully 
capture within-person variability in health (Fig. 1, survey data). In 
particular, the smoothing of health trajectories may not capture the ef-
fect of the social environment on individual health and consequent 
aging, underestimating the accumulation of poor health outcomes in 
socially disadvantaged persons (Engelman and Jackson, 2019; Fig. 1, 
mixed-effects). 

In contrast to the gradualist assumptions of many models, empirical 
evidence suggests that human health can show periods of stability, slight 
deterioration, and then recovery from health insults (Bolano et al., 2019; 
Gill et al., 2010; Guilley et al., 2008; Keown, 2003). As life progresses 
through time, individuals may remain in the same health status (i.e., 
stasis) or transition among health states before death. That is, individual 
health does not decline gradually and homogeneously with no reversals 
(Wolf et al., 2015). This highlights a crucial aspect of human health 
dynamics that accurate forecasting models must capture. In line with 
this, Engelman and Jackson (2019) proposed a new approach to health 
history forecasting by describing individual health trajectories as a 
punctuated equilibrium pattern where individuals experience periods of 
long-term stability interrupted by sudden changes in health status or 
mortality. The authors argue that while gradual approaches appeal to an 
intuitive reasoning about health change, such a modeling choice pro-
duces a mean health change that is not representative of the changes 
experienced by most of the individuals comprising the population. 

One way to capture such health dynamics are multi-state models 
(Namboodiri and Suchindran, 2013; Schoen, 2006) and sequence anal-
ysis (Abbott and Tsay, 2000). These models describe discrete health 
states and transition probabilities among these states, and more accu-
rately capture the health trajectories observed in real populations 
(Engelman and Jackson, 2019). We also argue that multi-state models 
describing changes across age as a Markov process may also provide a 
much-needed reconciliation between deterministic and stochastic pro-
cesses when modeling individual health that would be otherwise 
obscured by the smoothing of health trajectories in gradualist ap-
proaches (Fig. 1, multi-state). 

2.2. Challenge 2: addressing data missing not at random 

Another key issue with human studies is that they likely 
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underestimate the extent of poor health in aging populations given 
limited approaches to handle missing data (Jackson et al., 2019; Jackson 
and Engelman, 2022). Selective dropout at very old ages, especially 
among unhealthy and socially disadvantaged persons, is common 
(Badawi et al., 1999; Coste et al., 2013; Duim and Lima Passos, 2020; 
Mirowsky and Reynolds, 2000; Purdie et al., 2002; Van Beijsterveldt 
et al., 2002; Young et al., 2006) and can result in the selection of robust 
individuals in late life. Moreover, many approaches to research on 
health across the life course do not account for competing risks of 
mortality, health change, and attrition across groups. This conceals 
persistent socially driven health inequities in late life because the priv-
ileged sector often suffers a higher accumulation of health penalties due 
to longer lives (Jackson and Engelman, 2022). 

As the limitations of missing data have been increasingly recognized, 
methods addressing missing data at random have become more widely 
used (e.g., multiple imputation maximum likelihood; Graham, 2009). 
However, these methods cannot remove the bias associated with data 
missing not at random (Goldberg et al., 2021). In contrast, multi-state 
models provide flexibility in the number of meaningful life states 
describing individual trajectories, allowing us to incorporate temporary 
missingness as a discrete state in the model (Engelman and Jackson, 
2019). Here, temporary missingness becomes a life state that individuals 
can transition into if they leave the study, or out of if they return to the 
study. Multi-state models are thus powerful tools that make it possible to 
empirically quantify the likelihood that a particular person belonging to 
a health state will leave and return to the sample. Because mortality (i.e., 
absorbing state) and other types of attrition can also be easily distin-
guished and incorporated, multi-state models explicitly account for the 
contribution of different types of missing data to the cohort’s health 
experiences (Engelman and Jackson, 2019). 

2.3. Challenge 3: recognizing the limitations of survey data 

Survey research and self-reported health are common elements of 
human health and aging studies addressing the impact of social in-
equalities (Black et al., 2017). Surveys have proven to be a reliable 
general tool for quickly producing empirical data from large represen-
tative samples and evidence suggests that respondent perceptions of 
their social status (Singh-Manoux et al., 2003) and health (Benyamini 
et al., 2003) are good predictors of their health status. Yet, these data 
may lead to significant biases in measurement and interpretation. For 
example, response rates are hard to control, and the data produced can 
lack many important details about the topic under investigation (Kelley 
et al., 2003). When used longitudinally (e.g., cohort studies), survey 
research suffers from other limitations due to the potential for signifi-
cant changes in individual responsiveness over time, as well as in the 
consistency of respondents in their replies to public health-relevant 

questions when asked again at a later time (patterns of abuse: Abram-
sky et al., 2022; Loxton et al., 2019; smoking: Kaestle, 2015; substance 
use: Broman et al., 2022; suicidal attempts: Hart et al., 2013). In general, 
there may be systematic differences in the ability of individuals to 
self-evaluate their own health across time (Black et al., 2017; Vuolo 
et al., 2014). Conversely, interviewer effects also contribute signifi-
cantly to biases in survey research, as respondents may be predisposed 
to provide socially desirable responses to the interviewer (Davis et al., 
2010; Salazar, 1990). There is evidence of the usefulness of interviewer 
ratings in mortality prediction (Todd and Goldman, 2013) but in-
terviewers can also contribute to misclassification of race and ethnic 
groups (Massey, 1980; Williams and Chiquita, 1995); biased assump-
tions of health among old persons (Thorslund and Wärneryd, 1990); 
biases in age, race, and gender perceptions (as reviewed by Davis et al., 
2010); and can be affected by their level of experience interviewing 
people (Salazar, 1990). Taken together, these data limitations may 
contribute to the census miscount of socially stratified groups that ul-
timately affects reported rates of health conditions (Williams and Chi-
quita, 1995). Thus, both survey and interviewer data can result in biases 
in our ability to evaluate the accuracy of models quantifying the effects 
of the social environment on human health and consequent life courses. 

In recent years, human health studies have complemented survey 
data with objective measures of health such as biomarkers (Harris and 
Schorpp, 2018; Sonnega et al., 2014) and medical records (Mullins et al., 
2022), providing new opportunities for unbiased analyses and accurate 
interpretations about the role of social factors in human aging processes. 
These new approaches also revealed other challenges when studying 
human aging within social contexts. For example, associations between 
self-reported health and objective health, as measured by biological risk 
factors, may also differ across socially stratified groups (Dowd and 
Zajacova, 2010; Layes et al., 2012). Moving forward, researchers 
studying human health and aging should continue adjusting and inno-
vating their approaches, but we argue this must be done in conjunction 
with the use of animal models, as nonhuman animals remain an 
unparalleled opportunity to test novel biodemographic methods and 
perspectives on the evolution of aging within social contexts. 

2.4. Social animal models for the biodemography of aging 

The biological pathways from social adversity to health and 
longevity, together with the proximate physiological and molecular 
mechanisms that shape these changes, are now being revealed (Cavigelli 
and Caruso, 2015; Snyder-Mackler et al., 2020; Shively and Wilson, 
2016). Yet, the need for a unified evolutionary framework for the social 
determinants of health and aging across species remains. Animal models 
provide several advantages relative to human studies, as they allow us to 
record the specific nature of social relationships, positioning, and 

Fig. 1. Comparison of mixed-effects regression and multi-state model predictions of individual health histories from simulated survey data. Survey data: colored 
trajectories represent 10 randomly chosen individual histories from the total pool of trajectories. Mixed-effects: black trajectories represent 10 randomly chosen 
predicted individual histories from the total pool of trajectories (gray). For this, the survey data (gray dots) was modeled using a linear mixed-effect model. Multi- 
state model: black trajectories represent 10 randomly chosen predicted individual histories from the total pool of trajectories (gray). For this, the survey data (gray 
dots) was discretized into five health states and modeled using a 5 × 5 matrix population model. 
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exposure in more systematic ways to reduce observer bias and without 
complex processes of human cultural evolution (Mesoudi and Thornton, 
2018). Animal models allow us to measure the natural course of health 
deterioration and recovery with no interventions or significant con-
founding factors that may impact human outcomes (Challenge 1; 
Muennig, 2008; Blumstein et al., 2018). Animal models also allow us to 
quantify nonrandom mortality risks given that each individual’s 
endpoint is either known or can be easily integrated to robust model 
assumptions of death and dispersal (Challenge 2). Finally, animal 
models allow us to evaluate the accuracy of health and aging forecasting 
models using systematic data collection on social factors difficult to 
implement in many human studies (Challenge 3; Colman, 2018). Thus, 
animal models provide comparative approaches that could become our 
gateway to explore the evolutionary origins of the social mechanisms of 
human aging and how this relates to health: whether and how our 
closest relatives are similarly shaped by social gradients, and why 
certain aging trajectories across the tree of life are shared by some but 
not others (Jones et al., 2014). 

A call to advance studies on cross-species comparisons of social di-
mensions – including sociality (degree of association with others such as 
how integrated and connected an individual is to others in their envi-
ronment), social status (position), and early life social adversity (expo-
sure) – and their effects on health, longevity, and life histories was 
enthusiastically made almost a decade ago when the National Research 
Council of the National Academies prompted a discussion about soci-
ality, hierarchy, and health within a comparative biodemographic 
perspective (Committee on Population, 2014). Since then, several ad-
vances in our understanding of the social mechanisms of aging have 
highlighted the complex dynamics between social traits and exposures 
and life outcomes, as well as the need to study animals with long life-
spans if we intend to understand the extraordinary longevity of humans 
(Colchero et al., 2016; Korb and Heinze, 2021). In this section, we re-
view recent comparative reports on the evolution of aging within social 
contexts that followed such call. 

While many mechanistic questions on the evolution of increased 
longevity remain unanswered, both physiological and social mecha-
nisms appear to shape mortality schedules across species (Lucas and 
Keller, 2020; Noren Hooten et al., 2022; Snyder-Mackler et al., 2020). 
Evidence that social factors are associated with long lives across the tree 
of life has been accumulating, partly due to the recent focus of aging 
researchers on eusocial insects (Johnson and Carey, 2014) and the 
counterintuitive observation that those who reproduce more also have 
exceptionally long lives (i.e., absence of the fecundity/longevity 
trade-off; Dixon et al., 2014; Heinze and Giehr, 2021; Korb et al., 2021; 
Kramer et al., 2021; Negroni et al., 2021; Rau and Korb, 2021; Tasaki 
et al., 2021). Here, the evolution of a reproductive division of labor 
confers strong advantage to reproductive individuals through increased 
survival. Transcriptome analyses revealed that experimental reproduc-
tive activation in worker honeybees increased survival through a 
reduction in risk of disease and increased oxidative stress resistance 
(Kennedy et al., 2021). Similar patterns of resilience to oxidative stress 
were observed in leaf-cutting ant workers (Majoe et al., 2021) and the 
ant Temnothorax rugatulus (Korb et al., 2021) after experimental loss of 
the nest’s queen. This is especially intriguing because leaf-cutting ant 
workers, for example, do not produce fertile offspring. Thus, such 
findings raise important questions regarding the evolution of improved 
health trajectories in queenless workers (Majoe et al., 2021). 

By expanding comparative studies beyond eusocial insects, we gain 
further insights into whether and how multiple social dimensions 
including sociality, status, and early life social adversity exposures shape 
health and aging trajectories across a physiological and cognitive 
complexity gradient (Marmot and Sapolsky, 2014). For example, social 
status in a cooperative breeder population of Seychelles warblers is 
associated to the pace of aging through a reduction in telomere attrition 
(a marker of cellular senescence) among dominant females, likely due to 
reduced costs of parental care trading-off against increased senescence 

(Hammers et al., 2019). The observation that breeders receiving help in 
raising the young age more slowly than the helpers has been observed 
across several taxa (Berger et al., 2018; Downing et al., 2021), although 
causality or associations to health remain unknown. Direct causality 
from social factors is often hypothesized, however reverse causality may 
also play a role, i.e., slower aging predicts social status. In primates, 
evidence from genome-wide and multi-region transcriptomic studies 
show that social status affects immune regulation and aging producing 
evidence of antiviral phenotypes (Snyder-Mackler et al., 2016, 2018) 
and younger relative transcriptional ages (Chiou et al., 2022) in 
high-status females. However, associations among social status, health, 
and aging are often sex-specific and context-dependent. High-status 
male baboons exhibit up-regulation in inflammation and immune 
defense-related genes, but such traits may have been present in these 
males before moving up in the hierarchy (Lea et al., 2018). This complex 
relationship between socioenvironmental factors and aging trajectories 
was further highlighted by Anderson et al. (2021), who found that 
high-status males were predicted to be older than their chronological 
ages with respect to a DNA methylation-based age predictor (‘epigenetic 
clock’). High-status meerkats similarly show higher rates of both telo-
mere attrition and survival (Cram et al., 2018). While such accelerated 
aging may be indicative of costs associated to higher reproductive effort 
in high social status individuals, this raises questions regarding the role, 
if any, of other social dimensions on epigenetic age across populations. 

Social networks metrics, such as how integrated and connected an 
individual is to others in the network, have recently emerged as an 
important domain for understanding associations between sociality, 
aging and mortality processes (Silk, 2014). Social network statistics 
have opened the opportunity to deconstruct sociality into the types of 
social connections that predict longevity (Ellis et al., 2019). Individuals 
with strong connections and central roles in the network, or those that 
are highly integrated, exhibit lower risks of mortality. This is potentially 
mediated through social security (Montero et al., 2020), mutualistic 
behaviors (Archie et al., 2014; Cheney et al., 2016; Ellis et al., 2019; 
Lehmann et al., 2015), stronger social support (Nuñez et al., 2015), and 
better access to social information (Ellis et al., 2017). Whether these 
associations between an individual’s social integration and connected-
ness and their life trajectory are equally conserved at old ages requires 
more attention. Using physiological and anatomical markers of immu-
nity in an adult population of rhesus macaques which included aging 
individuals, Pavez-Fox et al. (2021) found associations between social 
integration and low white blood cell counts suggesting links between 
social integration and inflammation markers. On the other hand, 
increased social support through higher pack size in cooperative grey 
wolves was found to offset individual costs of disease (Almberg et al., 
2015). The absence of an association between group size and increased 
senescence was also described for a socially foraging bat (Gager et al., 
2016). These findings contradict long-standing hypothesized costs of 
group living (i.e., disease transmission, increased infection rates) and 
further highlights the need to revisit classical hypotheses on life history 
trade-offs in social animals. Contrasting patterns have also been re-
ported. Several mammal species have shown increased mortality risk in 
highly connected individuals (Blumstein et al., 2018; Thompson and 
Cords, 2018), in cooperatively breeding species versus non-cooperative 
ones (Vágási et al., 2021), and in individuals with more social support 
(Begall et al., 2021), suggesting that benefits from social relations may 
not be universal across species (Blumstein et al., 2018). 

Finally, several comparative studies echoing the potential role that 
early life social adverse exposures (e.g., low social status of mother, 
maternal death) have on compromising health and shaping the fate of 
individuals have emerged (Dettmer and Chusyd, 2023). An accumula-
tion of adverse exposures early in life predicted shorter lifespan in ba-
boons (Tung et al., 2016) and such adverse environment had 
intergenerational effects (Zipple et al., 2019). Early adversity was also 
found to elevate glucocorticoid levels in adult female baboons, a mea-
sure of stress response associated to health (Patterson et al., 2021; 
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Rosenbaum et al., 2020). The mechanisms behind the relationship be-
tween early life adversity and health across the lifespan may involve 
physiological changes such as inflammation and disease risk (Kinnally 
et al., 2019). Other primate populations have shown resiliency to early 
life insults (gorillas: Morrison et al., 2023; rhesus macaques: Gonzalez 
et al., 2023), raising questions regarding the evolutionary roots of 
sensitivity to early life adversity. 

These relationships among social dimensions, health and aging also 
involve complex interactions among them. Multiple species show shifts 
in patterns of social behavior and underlying psychological processes as 
individuals age (Kroeger et al., 2021; Machanda and Rosati, 2020; Sir-
acusa et al., 2022) indicating that sociality trajectories are as varied as 
health and aging trajectories and likely modulated by social status, so-
cial organization, and sex. For example, while many primates show re-
ductions in sociality during aging, in very long-lived chimpanzees older 
males have higher-quality relationships and are more gregarious by 
many metrics than are younger males, despite their lower social status 
(Rosati et al., 2020). Changes in sociality later in life may occur as a 
direct result of senescence (e.g., physical deterioration, energetic de-
ficiencies, decline in sociocognitive abilities); as an adaptive response to 
mitigate negative effects of senescence (e.g., increased selectivity of 
limited resources with age, changing reproductive value); and/or as a 
result from positive effects of age and demographic changes (e.g., 
enhanced experience and skills with age; shifting demographics; Sir-
acusa et al., 2022). Thus, there are likely reciprocal causalities whereby 
longevity changes an individual’s social patterns, which in turn impacts 
senescence (Carey and Judge, 2001; Lucas and Keller, 2020). On the 
other hand, social status is not necessarily fixed across the life course, 
especially in species with sex-biased dispersal where the dispersing sex 
may experience changes in social positioning within a group and 
despotic social systems with contest rank (Perlman et al., 2016; Watts 
2018). Together, these patterns highlight further the need for a foun-
dational eco-evolutionary methodological framework to study health 
and aging within social contexts (Lange et al., 2022). 

The use of social animal models to further our understanding of the 
evolution of aging is promising, but animal models also present chal-
lenges and limitations for translational research. We recognize that our 
human concept of aging cannot be directly transferred to numerous 
species, especially within social contexts, but we also emphasize that 
this represents an opportunity to further our knowledge and not an 
occasion for disengagement (Cohen, 2018). The subjective nature of 
many disease symptoms and the difficult evaluation and predictive 
validation of a model (Nestler and Hyman, 2010; Prabhakar, 2012; 
Teeple et al., 2013; McGonigle and Ruggeri, 2014; Planchez et al., 2019) 
may contribute to high rates of translational failure using laboratory 
animal models. These common challenges may exacerbate when 
studying health within social contexts as researchers also need to vali-
date the simulated social environment in the laboratory. For many so-
cially complex species, experimental approaches become impossible, 
and thus we rely on observational studies. As humans, free-living animal 
subjects may be susceptible to attrition (e.g., dispersal), biases (e.g., 
participatory willingness, trap happiness) and measurement error (e.g., 
misidentification, observation effort). However, advances in quantita-
tive methods within statistical ecology are now capable of accounting 
for these issues, while remaining strong in assumptions of randomness. 

3. A comparative biodemographic perspective of health and 
aging within social contexts 

To advance our understanding of the biodemography of aging within 
social contexts, we need a unifying method linking current research in 
the social determinants of individual variability to evolutionary 
demography approaches to the fundamental rules of life history evolu-
tion. Here, we provide a general roadmap for accomplishing this using 
rhesus macaques living at the Cayo Santiago Biological Field Station as 
an example. Although we do not provide empirical data, our model 

formulation is based on realistic demographic and health phenotype 
metrics currently being collected in this population. Our methods can be 
applied across the entire spectrum of animal models, yet nonhuman 
primates provide unique advantages to gain insights into aging due to 
their complex social behavior with analogs of human health-relevant 
status disparities (Phillips et al., 2014). 

3.1. Conceptual framework of evolutionary demography 

Classical work on life history theory traces back to the foundations of 
evolutionary theory (Charlesworth, 1994; Hamilton, 1966; Stearns, 
1992). In any given age-structured population, individuals have a sur-
vival rate and a fertility rate that depend on age. The famous Lotka 
equation demonstrates that in this scenario the annual population 
growth rate, λ, is a function of age, survival and fertility. Because these 
three parameters make up a life history, the Lotka equation provided 
means to quantify associations between life history components and the 
corresponding values of λ that these associations yield. The realization 
that the population growth rate, λ, was a quantitative definition of 
population fitness – it is defined by fitness components – allowed a direct 
connection between life history theory and evolutionary theory (Ham-
ilton, 1966). Now, estimating changes in fitness λ produced by changes 
in the life history was made possible. For example, if changes are 
assumed to arise from random mutations, consequent changes in fitness 
can be interpreted as selection acting on the mutations (Charlesworth, 
1994). Crucially, such fitness changes can also be computed from λ and 
its partial derivatives (i.e., sensitivity; Caswell, 2001). The definition of 
these quantitative associations between fitness and the life history 
directly linked individual phenotypes to population and evolutionary 
dynamics, setting the stage for the field of evolutionary demography. 

Because of its flexible applicability grounded in general theory, many 
developments to this approach have been made for both ecological and 
evolutionary theory (Charlesworth, 1994; Caswell, 2001). More recent 
studies addressing the evolutionary demography of animal populations 
have focused on integral projection models (IPMs) as a flexible method 
to quantify population and evolutionary dynamics while accounting for 
continuous phenotypes (Levin et al., 2021). Since the development of 
IPMs (Easterling et al., 2000), studies addressing size-based de-
mographics by structuring populations into a body size continuum have 
become common mostly in mammals and birds (Coulson, 2012; Levin 
et al., 2021; Merow et al., 2014; Rees et al., 2014), however few studies 
have attempted to incorporate social structures into the model (Kappeler 
et al., 2019; Paniw et al., 2021), while studies explicitly incorporating 
health structures have just started to emerge (Vincze et al., 2022). 

3.2. Integral projection model for socially driven health dynamics in a 
nonhuman primate 

Following the conceptual framework of evolutionary demography, if 
the evidence indicates that changes in the life history are being driven by 
sociality, then we argue that changes in fitness can be interpreted as 
selection acting on the socially driven life courses. Integral projection 
models allow us to quantitatively test this. IPMs are flexible population 
models that describe how a population structured by a continuous 
individual-level state variable (i.e., individual phenotype) changes in 
discrete time (Easterling et al., 2000). Their construction depends on 
four fundamental relationships that describe the associations between 
the phenotype and survival, the phenotype and fertility, the phenotype 
dynamics (e.g., ontogeny, growth) among survivors and the probability 
density distribution of offspring phenotypes given parental phenotypes 
(i.e., heritability; Coulson et al., 2010; Table 1). Importantly, IPMs are 
realistic as these relationships can vary with age, time and environments 
(Ellner and Rees, 2006). IPMs are also flexible as they can be extended to 
incorporate covariation between demographic rates, as well as their 
uncertainty, by including demographic parameters estimated in 
Bayesian frameworks (Elderd and Miller, 2016; Hernández-Pacheco 
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et al., 2020; Plard et al., 2019). 
For our purpose, individual sociality, social status, or social exposure 

can be defined by any relevant metric of the social environment. Thus, 
this can be expressed as either a categorical or continuous variable, 
while individual phenotypes can be defined by any relevant continuous 
metric of individual health in the population of interest (e.g., bio-
markers, body mass index, cortisol levels). The rhesus macaques of the 
Cayo Santiago Biological Field Station live in a naturalistic environment 
with well-known demographics (Hernández-Pacheco et al., 2013) and 
exhibit a complex dominance hierarchy (i.e., social status or rank) 
involving relationships between both kin and unrelated individuals (i.e., 
social integration and connectedness; Ellis et al., 2019; Pfefferle et al., 
2014). In particular, these monkeys are good comparative models for 
addressing questions about psychological health, physical health, and 
aging. Macaques share human-like social preferences for attending to 
socially relevant information (Burrows et al., 2009; Hoffman et al., 
2007), can further reason about complex social information such as 
other’s perceptual and goal states (Flombaum and Santos, 2005; Santos 
et al., 2006), and show important similarities with human reward-based 
decision-making (Santos and Platt, 2014). Individual variation in 
cognitive traits in this monkey population can be assessed by several 
well-validated experimental techniques (see Drayton and Santos, 2015; 
Winters et al., 2015 for reviews), including preferential looking time 
tasks that measure relative interest or preference to look at different 
stimuli, such as different conspecific faces (Rosati et al., 2018; Higham 
et al., 2011); expectancy violation looking time tasks that use looking 
measures to assess if individuals detect unexpected or surprising events 
by measuring how long they look at different possible outcomes (De 
Petrillo and Rosati, 2019; Marticorena et al., 2011; Hughes and Santos, 
2012); gaze following tasks that measure animals’ responsivity to 
various social cues (Rosati et al., 2016a; Bettle and Rosati, 2019); and 
choice tasks that assess animals’ preferences to approach or manipulate 
different aspects of an experimental setup (Flombaum and Santos, 2005; 
Rosati, Santos, 2016b). Multiple metrics of physical health are also 
possible to index in this population, including body mass, records of 
injury and illness, and even various health biomarkers and increased 
body condition which influences their overall health status (Bauer et al., 
2011). Thus, to gain insights into the social determinants of health and 
the evolution of aging, we propose to structure our rhesus macaque 
population into proxies of both psychological (cognitive) health and 
physical health. With this information, we can quantify the individual- 
and population-level demographic effects of changes in individual 
health across a sociality gradient using IPMs. A key point is that any such 
cognitive or physical health traits that can be indexed as a continuous 
variable could be assessed in the proposed model described below. 

To describe the annual dynamics of the distribution of psychological 

and physical phenotypes across the socially stratified lifespan, we pro-
pose to build an IPM based on phenotype-demography associations 
evaluated with generalized linear models (Fig. 2). Here, social stratifi-
cation is defined by social status as a categorical variable of two levels, s 
and s′ (e.g., high status, low status) and we assume such level remains 
constant throughout the life of individuals. We recognize this is an 
oversimplification, but it is appropriate for our purpose of formulating a 
general IPM. We consider individuals tracked annually (Fig. 2, indi-
vidual life course from time t to t + 1). In a given year, a monkey of 
status s, age a, and health z has a 1-year probability of survival given by a 
function ss,a(z), i.e., the fraction of s, a, z monkeys that survive from age 
a to age a + 1 (Fig. 2, health-survival function). Ontogenetic changes of 
survivors are described by a distribution Gs,a(y|z), i.e., the fraction of s, a, 
and z monkeys that change health from z to y when transitioning from 
age a to a + 1 (Fig. 2, health-change function), where y represents the 
health phenotype z of surviving individuals one year later. Reproduction 
by monkeys of status s, age a, and health z is described by Ms,a(z), i.e., 
the fraction of s, a, z monkeys that produce an offspring (Fig. 2, health- 
fertility function). Finally, inheritance is described by a function 
Ds,a(y|z) that links the health of offspring y and parental health z ac-
cording to parental age and social status (Fig. 2, health heritability 
function). For our population, the health-dependent demographic per-
formance and population dynamics across social stratification will be 
the outcome of two demographic processes: survival and ontogenetic 
development, Ps,a(y|z) = Gs,a(y|z)ss,a(z), and reproduction, Fs,a(y|z) =

Ms,a(z)Ds,a(y|z). Thus, we propose the following general IPM 
formulation: 

n(s, t + 1, a + 1, y) =
∫ [

Ps,a(y|, z)
]
n(s, t, a, z)dz

n(s, t + 1, 0, y) =
∑

a

∫ [
Fs,a(y|, z)

]
n(s, t, a, z)dz  

where n is the population vector describing the total number of in-
dividuals of a given social status, a given age, and a given health state at 
a given time. Here, the first equation describes the aging process and the 
second describes the births where age a = 0. IPM analyses require the 
integral above to be discretized and ultimately be analyzed as traditional 
multi-state models based on Markov chains (Levin et al., 2021). 
Multi-state models (i.e., matrix population models; Caswell, 2001) yield 
a demographic equilibrium, and we can use them to compute the fitness 
λ, as well as the expected population distribution across health for in-
dividuals of a particular status and age (i.e., stable distribution; Fig. 3). 
Similarly, for a given status and age class, we can estimate the expected 
contribution to births of an individual to the next generation given its 
current health state (i.e., reproductive value, Fig. 3). 

Many of our model assumptions can be relaxed and adapted to the 
population of interest. Social metrics can be used in categorical (e.g., 
status) or continuous (e.g., group size) forms and transitions among 
social categories can be included for populations showing social 
mobility or social aging. For example, social mobility (i.e., changes in 
social position across the life course) can be incorporated by defining 
transition probabilities between social status s at time t to status s′at time 
t + 1, and vice versa, as well as the probability of stasis, i.e., remaining 
in the same status from one time-step to the next. These extensions are of 
particular interest for comparative purposes as social position in humans 
also varies throughout the life course (Jarvis and Song, 2017), percep-
tion of social position and social status is known to affect health and 
aging (Garbarski, 2010; Singh-Manoux et al., 2005) and social position 
influences health-related behaviors that in turn affect health and aging 
(Montez and Hayward, 2011). Multiple heritability functions concern-
ing social factors and health phenotypes can also be added. The vari-
ances around the health-demographic functions can also be integrated, 
and thus we can include estimates of variability around health change. 
Finally, this approach can be performed using single or two-sex models. 

With this information on fitness λ, the stable population structure, 
and the reproductive value, we can evaluate phenotype-specific selec-

Table 1 
Basic demographic information for the construction of integral projection 
models (IPMs). The construction of IPMs depends on four fundamental re-
lationships (phenotype-demographic functions) that describe the associations 
between the phenotype and survival, the phenotype and the ontogeny of the 
phenotype (change) among survivors, the phenotype and fertility, and the 
probability density distribution of offspring phenotypes given parental pheno-
types (i.e., heritability). Variables in bracket represent those in the proposed 
IPM.  

Vital Rates Dependency at 
present time (t) 

Proposed dependencies 

Survival State, age Social status [s], health [z], age 
[a] 

Phenotype ontogeny 
(state change) 

State, age Social status [s], health [z], age 
[a] 

Number of offspring State, age Social status [s], health [z], age 
[a] 

Kind of offspring 
(state distribution) 

Inheritance – parental 
state, parental age 

Parental social status [s], 
parental health [z], parental age 
[a]  
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tion gradients on demographic and life history parameters through 
sensitivity analysis (Caswell, 2001; Coulson et al., 2010). For example, 
we can evaluate whether the strength and direction of selection on 
health-demography function parameters (i.e., GLMs coefficients) and 
their variances, vary with social status or sociality and aging. If there is 
high sensitivity of λ to the survival function parameters of high social 
status or highly integrated monkeys, then an appropriate conclusion is 
that there is a strong selection acting on the health-survival function 

parameters of these monkeys as these population metrics contribute 
more to fitness overall. On the other hand, low social status or poorly 
integrated individuals may experience a stronger selection on their 
health-fertility function parameters, given their expected shorter life-
span and potential selection for a faster reproduction. IPMs versatility 
also provides the novel opportunity of exploring the complex relation-
ships between social factors, health, and aging. For example, we can 
directly quantify shifts in the cognitive response and physical health 

Fig. 2. Proposed individual life course and health data to parameterize phenotype-demography functions for the construction of integral projection models for a 
nonhuman primate population. Individuals are monitored from one year (time t) to the next (t + 1). The social environment is defined by social status as a categorical 
variable of two levels, s and s′. Each year, demographic performance (i.e., survival, growth, reproduction) and cognitive and physical health phenotypes (i.e., looking 
time, body mass) are recorded. Finally, demographic variables are modeled as a function of health phenotypes using generalized linear models. This can be computed 
for different sexes. 

Fig. 3. Integral projection model output across population health and age structures needed to evaluate phenotype-specific selection gradients on demographic and 
life history parameters through sensitivity analysis. The social environment is defined by social status as a categorical variable of two levels, s and s′. Sex structure is 
not shown. 
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distributions as individuals age and determine whether such shifts 
correspond to social factors and whether they have an influence on 
fitness (Fig. 2; Fig. 3). If individuals are likely to remain within a health 
state class throughout life (i.e., stasis), then we can use the IPM to ask 
whether the social environment is driving such state persistence. Given 
that IPMs can be used to calculate generation time and net reproductive 
rate, sensitivity analysis can also evaluate how changes in selection 
gradients affect these life history descriptors (Coulson et al., 2010). 
These important features of IPMs, within the multi-state framework, 
ultimately allows us to quantify the variability in individual health that 
underlies the observed prevalence of stability, deterioration, and re-
covery from disabilities (i.e., health states) among socially advantaged 
and disadvantaged subgroups (Fig. 1, multi-state). 

4. Conclusions 

The social environment predicts health risks and mortality in 
humans and many other animals. Thus, new advances in the bio-
demography of aging require the consideration of social factors shaping 
the life course of people. Animal models for the social dimensions of 
health and aging provide new perspectives on the evolution of aging that 
can be exploited within the methodological framework of evolutionary 
demography. Our approach is timely as the accumulation of individual- 
level data in many social animal systems continues. We also recognize 
this is not an exception to humans. In the last two decades, many 
technological and innovative approaches have contributed to advances 
in human health studies (e.g., biomarkers, Harris and Schorpp, 2018; 
Sonnega et al., 2014; medical records; Mullins et al., 2022). Several 
national initiatives that pioneered broad-based biomarker collections 
have now accumulated large samples of objective measures of health 
(National Longitudinal Study of Adolescent to Adult Health; National 
Survey of Midlife Development in the United States; Health and 
Retirement Survey; National Social Life, Health, and Aging Project; see 
Harris and Schorpp, 2018). While concerns about attrition and 
non-response affecting representation remain, these many sources of 
human data provide a unique opportunity to further develop the pro-
posed unified evolutionary framework for the social determinants of 
health and aging across species. 
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