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Behavioral Experiments on Competitive Contagion
LILI DWORKIN and MICHAEL KEARNS, University of Pennsylvania

1. INTRODUCTION

We describe behavioral experiments based on the model of networked competitive contagion developed
by Goyal and Kearns in [2012], which built upon the work of [Bharathi et al. 2007; Borodin et al.
2010; Chasparis and Shamma 2010]. In this model, there are two distinct “infections” competing for
maximum spread through a social network. For instance, these infections might represent the products
of two rival firms, or the ideas of two opposing political parties. Each individual in the network must
choose only one of the two options, and this decision is stochastically influenced by the choices of
his neighbors. We imagine that each competing firm can “seed” the initial adoption of its product by
selecting certain individuals to receive promotions or give-aways. The goal of each firm is to choose
these seeds to maximize eventual adoption throughout the network at the expense of its competitor.

In our experiments, a player takes the perspective of a firm, and chooses seed vertices for a series of
networks. We evaluate a player on the performance of his seed choice against the distribution over the
seed choices of all other players. Our goal is to study the collective performance of the population as a
whole, which is measured by the population’s distance to equilibrium on each network.

Our use of behavioral experiments to study strategic interaction in networks is inspired by the long
line of work summarized in [Kearns 2012]. In these previous experiments, each participant was given
control of a single vertex in a network, and provided with a local view of his immediate neighbors only.
The experiment was performed simultaneously, with each player present in the same room. Our setting
is notably different. We allow each subject a global view of the network when running simulations and
making seed choices. Additionally, participation is asynchronous, with each participant playing on a
web-based simulator at his convenience. The new setup allows for greater flexibility in experiment
design, and makes participation easier for the subjects. Our motivation for shifting from local to global
information stems from the increased awareness of networks in everyday life; individuals no longer
simply act within networks, but have begun to reason about them as well. Thus, there is great value
in discovering how people understand these mathematical models.

2. EXPERIMENT DESIGN

The precise game mechanics we consider are as follows. There are two competing players, denoted
“Red” and “Blue.” Each player is allowed to choose two seed vertices, which are immediately infected
with his color. If a vertex is chosen by both players, its color is chosen at random. After the initial
seeding, stochastic adoption dynamics determine the spread of each infection. We use a discrete time
model. On each step, we consider all uninfected vertices that are adjacent to an infected vertex. If such
a vertex has more Red neighbors than Blue neighbors, it becomes Red, and similarly for Blue. If a
vertex’s neighbors are evenly split, the color of the vertex is chosen at random. Thus, infection spreads
via a stochastic breadth-first traversal. At the end of the process, every vertex will be infected. The
score of each player depends on the fraction of vertices that are eventually infected with its color.

Rather than having two players compete directly, we use an asynchronous design in which each
subject essentially competes against all other players simultaneously. Our population consists of 101
students taking the undergraduate course “Networked Life” at the University of Pennsylvania. Each
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Fig. 1. A screenshot of our simulator. Fig. 2. Sorted histogram of the population’s regrets on each of
the 42 graphs.

student was required (for a class assignment) to choose the Red seeds for a series of 42 networks. The
students were given access to a web-based simulator that allows them to experiment with different
choices of Red and Blue seeds, see the randomized outcomes, and compute average adoptions over
many simulations. A screenshot is shown in Figure 1. Importantly, the simulator also allows a stu-
dent to play against the seed choices already submitted by his classmates (in the Blue role). That is,
by pressing the “Play Random Opponent” button, a player can (repeatedly) sample a Blue seed pair
from the distribution of submissions, and then run simulations to determine which Red seeds compete
favorably. This permits a player to optimize his strategy against the current population of opponents.
The students were also allowed to update their choices for the Red seeds as often as desired for the
week-long duration of the experiment. Thus, the population evolved over time, as students returned to
change their choices in response to the updates made by their classmates.

We next describe our scoring mechanism. The rules are designed to emphasize that, from an indi-
vidual player’s perspective, this is a two-player game in which the opponent is the distribution over all
other players’ choices. Let G = (V,E) be a graph on which the game is played, and let IG(x, y) denote
the expected fraction of Red infections when x, y ∈ V 2 are the initial seed pairs chosen by the Red
and Blue player, respectively.1 Let PG denote the population distribution over seed pairs, and let UG

be the support of PG. The score of seed pair x on G is then defined as SG(x) =
∑

y∈UG
PG(y)IG(x, y).

In other words, the score of x is the expected fraction of infections that x wins against the population
distribution PG. A player’s final score is the average of his seed scores over all graphs.

3. RESULTS

Given the incentives described above, the right measure of collective performance is the population’s
distance from equilibrium, the state in which no player can unilaterally improve his score by changing
his seed choice.2 To quantify this distance, we introduce the concept of regret, which measures how
close each player’s score is to the best player’s score. More formally, the regret RG of the population PG

on graph G is
∑

x∈UG
PG(x)(maxy∈UG

SG(y)− SG(x)). It is easily verified that equilibrium is reached if
and only if 1) RG = 0, and 2) there exists no seed pair z such that SG(z) > maxy∈UG

SG(y). Checking
the satisfaction of condition 2 requires enumerating through all pairs of vertices, and is therefore in-
tractable. Thus, we use RG as a one-sided approximation of how far the population is from equilibrium.

1We estimate IG(x, y) using 1000 offline simulations.
2Since players are scored against the population distribution, the equilibrium concept here is actually that of an Evolutionary
Stable Strategy (ESS).
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(a) Spotsylvania (b) Kasserine Pass

Fig. 3. Spotsylvania and Kasserine Pass had the lowest and highest regret of all 42 graphs, respectively. On each graph, we
plot the majority seed choice in red. On Kasserine Pass, we plot a less frequent but better alternative in blue.

The average regret across all 42 graphs is 0.0129, less than 3% of the average player score of 0.4911,
indicating strong collective performance by this measure. Yet if we analyze the graphs individually, we
find significant variation. See Figure 2 for a sorted histogram of the population’s regret on each graph.
Broadly speaking, there seem to be two types of graphs. The first type consists of graphs in which there
exists a dominant strategy, i.e. a seed pair that always infects at least as many vertices as the seed
pair it plays against, regardless of the identity of this competing seed pair. In this case, the distribution
over opponents’ choices is irrelevant, and the game becomes a single-player optimization problem in
which the goal is to identify the dominant choice. See Figure 3(a) for an illustration of such a graph,
where the dominant strategy is the seed pair shown in red. Note that equilibrium can be achieved on
this type of graph when everyone plays the dominant strategy. In general, the population performed
quite well on such graphs, with almost everyone converging on the dominant seed choice.

Graphs of the second type have no dominant strategy, and so the best seed choices depend strongly
on the population distribution. Here a coordination problem arises: in order to reach equilibrium,
different portions of the population must choose different seeds. The task now involves game-theoretic
strategizing rather than pure optimization. See Figure 3(b) for an example. If all players choose seeds
(7,10), one should choose (5, 19). But if all players choose (5, 19), one should choose (4, 7). In our
study, the majority chose seeds (7,10), while a minority chose (5, 19) and thus achieved a better score,
causing high regret. As a further example, note that all three-component graphs lack a dominant
strategy because a player is only allowed two seeds, and so the choice of which components in which
to play depends on the population distribution. In order to reach equilibrium, certain fractions of the
population have to play in each component pair, but we never observed such behavior. As a result, the
average regret on three-component graphs is 0.0297, more than twice the overall average.

The discrepancy in performance on graphs of each type suggests that when equilibrium requires
diversity among strategies, subjects perform more poorly. To quantify this further, we calculate the
entropy of the population distribution of each graph. Note that on graphs of the first type, equilibrium
is reached when everyone makes the same seed choice, and therefore the entropy of the distribution
is zero. But on graphs of the second type, equilibrium requires a distribution with non-zero entropy.
We found a strong positive correlation between the population’s regret on a graph and the entropy of
the distribution (namely a Pearson coefficient of 0.6659 with insignificant p-value), which supports the
observation that the population struggles with the coordination of diverse strategies.

We conclude by reiterating that, on average, human subjects demonstrate good performance on this
problem, and are capable of approaching equilibrium even on difficult graphs. While we have restricted
our attention to graph-level analyses, we note that there are interesting subject-level findings as well,
which suggest that certain players are much better than the average at this task.
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