Multispectral (or multiband) Imaging Workflow for *Textiles*

Authors: Suzanne Davis and Caroline Roberts, Kelsey Museum of Archaeology, University of Michigan Last updated: May 2023

Table of Contents

About Multispectral Imaging	2
Imaging Techniques	
Light Sources and Filters, In Order of Operation	
A Note on Image Calibration and Additional Equipment	5
Image Capture	6
Helpful Hints	6
Camera Checklist	6
Visible Light (VIS) Image	7
UV Luminescence (UVL) Image	7
Infrared Reflectance (IRR) Image	8
MBR Indigo Images (2 total)	8
Image Processing	g
DNG Conversion and Camera Raw Corrections	<u>c</u>
Generating Infrared Reflected False Color (IRRFC) Images	10
Generating Indigo Subtraction (MBR Indigo) Images	10
Image Data Management	11
Bibliographic Resources	11

About Multispectral Imaging

Multispectral imaging (MSI) is a nondestructive photographic technique that can be used to identify pigments, dyes, and fibers and to map their locations on an object.

At the Kelsey Museum, we conduct MSI using a camera that has been modified to detect visible, ultraviolet, and infrared light, and our two-step workflow includes image capture and processing. We use the following set of equipment:

- Nikon D80 DSLR camera with a "full spectrum" modification, mounted on a tripod
- A remote shutter release for the camera
- Longwave UV, visible, and infrared light sources (listed below)
- A set of bandpass lens filters, which allow the camera to capture characteristic reflectance or luminescence from dyes and fibers, while blocking unwanted radiation
- Magnetic ring adapters to make changing filters quick and easy—the filter is held in place with a magnet, eliminating the need to screw it on and off the lens
- Calibration standards, including a color checker and 99% diffuse reflectance standard
- Adobe Photoshop for image processing

Imaging Techniques

Visible light (VIS)

Visible light is what most people use in day-to-day photography. VIS images capture the reflectance and absorption of visible light off the surface of an object, a phenomenon our eyes perceive as color. In MSI, the VIS image is used as a reference to compare with other images and for processing false color images (more on this below).

Ultraviolet-induced visible luminescence (UVL)

This technique's light source is a longwave UV–generating black light, and although we can see some purple light that emerges with it, we can't actually see UV light with our eyes. The energy in longwave UV can "excite" electrons in the atoms of certain materials, causing them to emit a characteristic colorful glow that we can see (a phenomenon known as fluorescence or luminescence) in materials such as the plant-based dye madder. Undyed wool and linen also look different under UVL, which can help to distinguish these fibers without sampling, while modern restorations and yarns may appear very dark or very bright. These features make UVL useful for identifying dyes and fibers and mapping their locations on a textile, as well as for visualizing restorations.

Infrared reflectance (IRR)

Infrared light is used in many imaging applications, from night vision to astrophysics. As with UV light, IR is invisible to our eyes, but materials still absorb and reflect it in characteristic ways. In the study of textiles, IRR images are primarily useful for generating infrared false color images (see below). Following capture, the IRR image is processed and used in grayscale.

Infrared reflected false color (IRRFC)

IRR and VIS images can be combined through RGB channel substitution in Photoshop to create an infrared "false color" image that indicates reflectance/absorption characteristics in a colorant. It is useful for confirming **madder**, **tannins**, and **indigo** as dye colorants, and for distinguishing between **undyed linen** and wool.

Indigo subtraction (MBR Indigo)

Indigo dye molecules absorb light at a high level (660 nanometers, the end of the visible light range) and reflect light at a higher level (735 nanometers, the start of the infrared light range). These behaviors can be captured by using lens filters that allow the camera to record these specific wavelengths. Images captured at 660 and 735 nm can then be combined using the "difference" blend mode in Photoshop. The resulting image is in grayscale, and areas that contain indigo (which absorbs and reflects at those specific wavelengths) appear white.

Light Sources and Filters, In Order of Operation

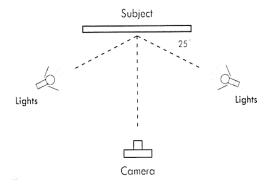
Technique	Light Source	Filter(s)	Camera settings*
1. VIS	Impact VC 500-LR monolights, ~2700 K (or similar, such as Scandles lamps)	PECA #916 Visible Pass Filter or similar, such as B&W UV-IR filter	 Exposure: F8, start with 1/3 second shutter speed and bracket (increase/decrease shutter speed by one step) as needed White balance: Pre-Set Manual
2. UVL	Blak-Ray longwave UV lamp, ~6500 K	PECA #916 Visible Pass Filter or similar, such as B&W UV-IR + 2e filters	 Exposure: F8, start with 4 second shutter speed and bracket as needed White balance: Shade
4. IRR	Impact VC 500-LR monolights, ~2700 K (any IR-irradiating source will do, such as an incandescent floor or desk lamp)	PECA #914 (89B) Filter or similar, such as X-Nite 330	 Exposure: F8, start with 1/15 second shutter speed and bracket as needed White balance: Pre-Set Manual
6. MBR Indigo	Overhead fluorescent light banks (or any fluorescent lamp)	MidOpt 735 + 660 filters	 Exposure: F8, start with ¼ second shutter speed for each filter and bracket for each White balance: Pre-Set Manual

^{*} These settings are ideal for the Kelsey Museum's imaging setup—yours may need to be adjusted depending on the specific camera, light sources, and filters you select for your technical imaging kit.

A Note on Image Calibration and Additional Equipment

- The workflows presented here are optimized for the equipment and processing techniques used at the Kelsey Museum. They produce useful and consistent, but not calibrated, images
- Calibrated images are good if you wish to publish the images or compare them between institutions; we recommend following the MSI capture and processing guidelines in Dyer et al. (Dyer, J., G. Verri, and J. Cupitt. 2013. Multispectral Imaging in Reflectance and Photo-Induced Luminescence Modes: A User Manual.
 (https://www.academia.edu/7276130/J Dyer G Verri and J Cupitt Multispectral Imaging in Reflectance and Photo induced Luminescence modes a User Manual Euro pean CHARISMA Project) to produce calibrated images
- To aid in future calibration, we include color and reflectance standards in each of our images (see Figure 2). These include:
 - o Calibrite ColorChecker Passport
 - o Spectralon Diffuse Reflectance Standard

Image Capture


The first step in performing MSI is to capture your visible, UV, IR, and VIL images in their "raw," unedited formats (see table below for examples). You will save and process these images in Photoshop later. Note that the equipment brands and models referenced below are specific to the Kelsey Museum; you may be using different brands or models.

Helpful Hints

- Do not move the camera or lens while shooting
- Be careful not to disturb the camera or lens when changing lens filters (magnetic ring adapters make this process easier)
- We find it convenient to lay out all the filters, in the order they will be used, before beginning image capture
- Make sure battery-powered light sources (if applicable) are charged and ready to go
- Plug in the UV lamp (if applicable) and let it warm up while you capture the VIS image

Camera Checklist

- ☐ Charge battery
- ☐ Format memory card
- ☐ Attach desired lens to modified D80 camera
- ☐ Screw XUME magnetic lens adapter onto lens. Screw XUME filter holders onto each lens filter.
- ☐ Set image file quality at **RAW** + **JPEG** fine
- ☐ Change to lowest ISO setting (ISO 100) for use with tripod
- ☐ Switch mode to Manual (M)
- ☐ Set exposure compensation at 0 (+/- button)
- ☐ Set meter to **Center Weight** (minimizes influence of background on light metering)
- ☐ Make sure remote shutter release is ON—this will help minimize camera movement, which is important for certain image-processing steps

Figure 1. Object photography setup, Frey and Warda 2008, 55

Figure 2. An example of a labeled visible light image with color checker and reflectance standard in the shot

Visible Light (VIS) Image

- Position two light sources (KMA Impact monolights) ~25° from the object (see Fig. 1), turn on monolights and turn room lights off
- 2. Attach PECA #916 filter to camera lens.
- 3. Position the textile
- 4. Open XRite ColorChecker Passport and Labsphere color and reflectance standards and place them in the frame (see Fig. 2)
- 5. **Select F8** on the camera (you may wish to use a higher F stop if the textile is very three-dimensional, but note that the recommended shutter speeds below are all for F8, so adjust accordingly!)
- 6. Set white balance at Pre-Set Manual
- 7. Set focus to **Manual** on both the camera and the lens
- Bring shot into focus by positioning the camera, keeping camera lens <u>fully zoomed out</u> (this is important for image alignment in Photoshop); use fine focus ring to make final adjustments
- Note: From this point onward, it is very important not to alter the focus of the camera or the position of the object—between shots, you may wish to confirm that the camera lens remains fully zoomed out
- 10. Set shutter speed to 1/3 second
- 11. Set camera to detect the remote shutter release
- 12. Capture your shots. Check results on camera and correct exposure if needed, or bracket to ensure balanced exposure.

UV Luminescence (UVL) Image

- 1. Put on UV-protective glasses
- 2. Plug in and switch on UV lamp
- 3. Set camera white balance to "Shade"
- 4. Set shutter speed to 4 seconds; bracket as needed
- 5. Set camera to detect the remote shutter release
- 6. Turn off monolights
- 7. Release the shutter while moving the UV lamp evenly over the object
- 8. Check results on camera
- 9. Keep UV lamp on if imaging a series of objects!

Unprocessed VIS

Unprocessed UVL

Infrared Reflectance (IRR) Image

- 1. Turn on monolights
- 2. Remove #916 filter and attach PECA #914 filter
- 3. Set camera white balance at Pre-Set Manual
- 4. Set shutter speed to 1/15 second; bracket as needed
- 5. Set camera to detect the remote shutter release
- 6. Capture your shots & check results on camera

Unprocessed IRR

MBR Indigo Images (2 total)

- 1. Leave monolights on
- 2. Remove #914 filer and attach #735 filter to lens
- Set shutter speed to 1/4 second; bracket +/- 1-2 steps (correct exposure is important for postprocessing these images)
- 4. Capture first image using remote shutter release
- 5. Remove #735 filter and attach #660 filter to lens
- Capture second image, bracketing +/- 1-2 steps

Unprocessed 660 nm (I) and 735 nm (r) images

Next, working with images for one object at a time, you will process the images. Create an object folder for your images. Transfer the images from the camera to your computer and save them in this folder.

Image Processing

The second step in performing MSI is to process your UV, IR, and VIL images. Each processing step can be carried out in Adobe Photoshop and Camera Raw (also part of Adobe Creative Suite). Note: There can be slight variations between different versions of Photoshop. These instructions were written for Photoshop 24.3.0.

DNG Conversion and Camera Raw Corrections

An important first step is to convert your Nikon NEF (or Canon CRW) files to DNG. DNG files are considered the standard RAW format for conservation photography because they are more universally accessible than camera manufacturer file formats and because they preserve metadata in the file.

 Convert your images from NEFs to DNGs using Adobe DNG Converter. Save the DNGs in the object folder you've created for unprocessed images.

Color checker showing Neutral 5 and Neutral 8 squares

- 2. Open the DNG images in Camera Raw. Camera Raw is Adobe's processing platform for RAW image files. It will launch automatically when you open your DNG files. Choose "Open," navigate to the folder with the DNG files, and select the images. The images will open in a filmstrip along the bottom of the Camera Raw interface. Once you've completed your Camera Raw corrections (steps 3-5), you'll then proceed to Photoshop (step 6).
- 3. Color correct the VIS image. Select the VIS image and hover Eyedropper tool (next to the White Balance tool drop-down box in the "Edit (E)" tab) over the Neutral 8 gray square on the ColorChecker (the light gray square directly next to the white square; see figure above). The "R" in the RGB values on the square should be between 150 and 200—the closer to 200 the better. Use the Exposure tool to adjust this value as needed. Color correct the image by clicking the gray Eyedropper tool onto the Neutral 5 square (this is the gray square three to the left, or three above/below, the white square, depending on orientation of the ColorChecker; see figure above).
- 4. Color correct the UVL image. Select UVL image and color correct by dragging the Temperature slider down to ~4000 and the Tint slider down to -75. This will approximate what the eye sees when examining the object under the UV lamp.
- 5. Select IRR, 735 nm, and 660 nm images. Use the Eyedropper tool to check the RGB values of the Neutral 8 gray square. Again, the R value should be as close to 200 as possible. Also note: The R value of the 660 nm image should be slightly lower than that of the 735 nm image.
- 6. If you wish to crop or rotate the images, select all photos and use the Crop and Rotate tools in RAW.
- 7. Select all photos, then click Open button in Camera Raw to open images in Photoshop.

Generating Infrared Reflected False Color (IRRFC) Images

Creating false color images requires an additional Photoshop processing step that combines elements of the VIS and IRR images using channel substitution.

- 1. Open Photoshop. Go to File → Automate → Photomerge. Select Auto, unclick Blend Images. Use Browse to select VIS and IRR image source files, click OK.
- 2. Photoshop will align your VIS and IRR images in a new image tab, with each one appearing as a separate layer (if desired, check alignment by dropping the Opacity of the top layer to 50%. Return it to 100% before proceeding).
- 3. Perform channel substitutions in the VIS and IRR layers. Channel substitution is detailed below by copying and pasting one channel into another—green into blue, red into green, and then IRR into red. The IRR layer can be discarded when the substitutions laid out below are complete.
 - a. **Green** → **Blue:** Click on the Green channel window and press Control+A to select it, then Control+C to copy it. Click onto the Blue channel and press Control+V to paste Green into the Blue Channel.
 - b. Red → Green: Click on the Red channel window and press Control+A to select it, then Control+C to copy it. Click onto the Green channel and press Control+V to paste Red into the Green Channel.
 - c. IRR → Red: Go to your IRR image and bring its Channels window into view. Click on the IRR channel window and press Control+A to select it, then Control+C to copy it. Return to the VIS image, click onto the Red channel, and press Control+V to paste IRR into the Red Channel.
- 4. Click on RGB in the Channels window to see the final IRRFC image. If the color is off on the white reflectance standard, move to the Adjustments tab and select the middle dropper tool in Levels. Click the dropper on the Neutral 5 gray square on the ColorChecker to color correct if needed (color squares should be consistent between different IRRFC images).
- 5. Save color image with "IRRFC" in the file name.

Generating Indigo Subtraction (MBR Indigo) Images

Creating indigo subtraction images involves combining your 660 nm and 735 nm images in Photoshop.

- 1. Open Photoshop, go to File → Automate → Photomerge. Select Auto, unclick Blend images. Use Browse to select 660 and 735 image source files, click OK.
- 2. Photoshop will align your 660 and 735 images in a new image tab, with each one appearing as a separate layer (if desired, check alignment by dropping the opacity of the top layer to 50%. Return it to 100% before proceeding).
- 3. Right click the top layer and select Blending Options. In the pop-up window, select Difference from the Blend Mode drop-down. Right click the top layer again and select Merge down.
- 4. Save image with "_indigo" in the file name.

Image Data Management

- Discard any NEF files after you've finished the conversion to DNG
- Do not discard the DNGs—these capture important data and can be used to generate calibrated images using the British Museum protocol
- Discard any underexposed or overexposed VIS, IRR, or 735/660 nm images (and any others you did not use to generate blended images)

Bibliographic Resources

- Bradley, L., J. Ford, D. Kriss, V. Schussler, F. Pozzi, E. Basso, and L. Bruno. 2020. Evaluating Multiband Reflectance Image Subtraction for the Characterization of Indigo in Romano-Egyptian Funerary Portraits. In Mummy Portraits of Roman Egypt Emerging Research from the APPEAR Project. First edition. Ed. C. Cartwright and M. Svoboda. J. Paul Getty Museum, 68 78.
- Dyer, J., G. Verri, and J. Cupitt. 2013. Multispectral Imaging in Reflectance and Photo-Induced Luminescence Modes: A User Manual. European CHARISMA Project, British Museum.
- Dyer, J., D. Tamburini, E. R. O'Connell, and A. Harrison. 2018. "A Multispectral Imaging Approach Integrated into the Study of Late Antique Textiles from Egypt." Edited by Peter F. Biehl. PLOS ONE 13 (10): e0204699. https://doi.org/10.1371/journal.pone.0204699.
- Frey, F. S. and J. Warda. 2008. The AIC Guide to Digital Photography and Conservation Documentation. Washington, D.C.: American Institute for Conservation of Historic and Artistic Works.
- Webb, E. K., R. Summerour, J. Giacci. 2014. A Case Study using Multiband and Hyperspectral Imaging for the Identification and Characterization of Materials on Archaeological Andean Painted Textiles. Textiles Specialty Group Postprints Vol. 24, American Institute for Conservation 42nd Annual Meeting, San Francisco, CA, May 2014, 24 35.