Weissman, D.H., Grant, L.D., & Jones, M. (in press). The congruency sequence effect in a modified prime-probe task indexes response-general control. Journal of Experimental Psychology: Human Perception and Performance.

Grant, L.D., Cookson, S.L., & Weissman, D.H. (2020). Task sets serve as boundaries for the congruency sequence effect. Journal of Experimental Psychology: Human Perception and Performance, 46, 798-812.

Cassady, K., Gagnon, H., Freiburger, E., Lalwani, P., Simmonite, M., Park, D., Peltier, S.,Taylor, S., Weissman, D.H., Seidler, R., and Polk, T.A. (2020). Network segregation varies with neural distinctiveness in sensorimotor cortex and predicts sensorimotor performance. NeuroImage, 212, 116663.

Weissman, D.H. (2020). Interacting congruency effects in the hybrid Stroop-Simon task prevent conclusions regarding the domain-specificity or generality of the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 945-967.


Weissman, D.H. (2019). Let your fingers do the walking: Finger force distinguishes competing accounts of the congruency sequence effect. Psychon Bull Rev, 26, 1619-26.

Russman Block, S, Weissman, D.H., Sripada, C., Angstadt, M. Duval, E.R., King, A.P., Liberzon, I. (2019). Neural Mechanisms of Spatial Attention Deficits in Trauma. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5:S2451-9022(19), 30142-9.

Lalwani, P., Gagnon, H., Cassady, K.E., Simmonite, M., Peltier, S.J., Seidler, R.D., Taylor, S., Weissman, D.H., Polk, T.A. (2019). Neural distinctiveness declines with age in auditory cortex and is associated with auditory GABA levels. NeuroImage, 201,116033.

Aabedi, A.A., Ahn, E., Kakaizada, S., Young, J.S., Hervey-Jumper, H., Zhang, E., Sagher, O.,    Weissman, D.H., Brang, D., Hervey-Jumper, S.L. (2019). Assessment of Wakefulness During Awake Craniotomy to Predict Intraoperative Language Performance. Journal of Neurosurgery, 31, 1-8.

Simmonite, M., Carp, J., Foerster, B., Ossher, L., Petrou, M., Weissman, D.H., & Polk, T.A. (2019). Age-related declines in occipital GABA are associated with reduced fluid processing ability. Academic Radiology, 26, 1053-1061.

Braem, S., Bugg, J.M., Schmidt, J.R., Crump, M.J.C., Weissman, D.H., Notebaert, W., Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends Cogni Sci, 23, 769-783.

Gagnon, H. Simmonite, M., Cassady, K., Chamberlain, J., Freiburger, E., Lalwani, P., Kelly, S., Foerster, B., Park, D.C., Petrou, M., Seidler, R.D., Taylor, S.F., Weissman, D.H., Polk, T.A. (2019). Michigan Neural Distinctiveness (MiND) project: Investigating the scope, causes, and consequences of age-related neural dedifferentiation. BMC Neurology, 19:61.

Cassady, K. Gagnon, H., Lalwani, P., Simmonite, M., Foerster, B., Park, D., Petrou, M., Taylor, S.F., Weissman, D.H., Seidler, R.D., & Polk, T.A. (2019). Sensorimotor network segregation declines with age, is linked to GABA, and predicts sensorimotor performance. NeuroImage, 186, 234-244.

Grant, L.D. & Weissman, D.H. (2019). Turning distractors into targets increases the congruency sequence effect. Acta Psychologica, 192, 31-41.


Weissman, D.H., Drake, B., Colella, K., & Samuel, D. (2018). Perceptual load is not always a crucial determinant of early versus late selection. Acta Psychologica, 185, 125-135.


Bissett, P.G., Grant, L.D., & Weissman, D.H. (2017). Resisting distraction and response inhibition trigger similar enhancements of future performance. Acta Psychologica, 180, 40-51.

Van Steenbergen, H., Weissman, D.H., Stein, D.J., Malcolm-Smith, S., & van Honk, J. (2017). More pain, more gain: Blocking the opioid system boosts adaptive cognitive control. Psychoneuroendicrinology, 80, 99-103.

Grant, L.D. & Weissman, D.H. (2017). An attentional mechanism for minimizing cross-modal distraction. Acta Psychologica, 174, 9-16.

Weissman, D.H., Colter, K.M., Grant, L.D., & Bissett, P.G. (2017). Identifying stimuli that cue multiple responses triggers the congruency sequence effect independent of response conflict. Journal of Experimental Psychology: Human Perception and Performance, 43, 677-689.

Russman Block, S., King, A.P., Sripada, R.K., Weissman, D.H., Welsh, R., & Liberzon, I. (2017). Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder. Cognitive, Affective, and Behavioral Neuroscience, 17, 422-436.


Adelman, N., Chen, G., Reynolds, R., Frackman, A., Razdan, V., Weissman, D.H., Pine, D.S., & Leibenluft, E. (2016). Developmental differences in the neural correlates of trial-to-trial variance in reaction time. Developmental Cognitive Neuroscience, 19, 248-257.

Harrivel, A.R., Weissman, D.H., Noll, D.C., Huppert, T., & Peltier, S.J. (2016). Dynamic filtering improves attentional state prediction with fNIRS. Biomedical Optics Express, 7, 979-1002.

Schmidt, J.R. & Weissman, D.H. (2016). Congruency sequence effects and previous response times: conflict adaptation or temporal learning? Psychological Research, 80, 590-607.

Larson, M.J., Clayson, P.E., Kirwan, C.B., & Weissman, D.H. (2016). Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds. Psychophysiology, 53, 814-822.

Weissman, D.H., Hawks, Z., & Egner, T. (2016). Different levels of learning shape the congruency sequence effect. Journal of Experimental Psychology: LMC, 42, 566-583.


Weissman, D.H., Colter, K., Drake, B., & Morgan, C. (2015). The congruency sequence effect transfers across different response modes. Acta Psychologica, 161, 86-94.

Schmidt, J.R. & Weissman, D.H. (2015). Contingent attentional capture triggers the congruency sequence effect. Acta Psychologica, 159, 61-68.

Weissman, D.H., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica, 156, 8-21.


Schmidt, J.R., De Schryver, M.D., & Weissman, D.H. (2014). Removing the influence of feature repetitions on the congruency sequence effect: Why regressing out confounds from a nested design will often fall short. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2392-2402.

Weissman, D.H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022-2037.

Schmidt, J.R. & Weissman, D.H. (2014). Congruency sequence effects without feature integration or contingency learning confounds. PLoS One. 9(7): e102337. doi:10.1371/journal.pone.0102337.

Moore, K.S. & Weissman, D.H. (2014). A bottleneck model of set-specific capture. PLoS One.


Harrivel, A.R., Weissman, D.H., Noll, D.C., & Peltier, S.J. (2013). Monitoring attentional state with fNIRS. Frontiers in Human Neuroscience, 7, 1-10.

Weissman, D.H. & Carp, J. (2013a). Congruency sequence effects are driven by previous-trial congruency, not previous-trial response conflict. Frontiers in Psychology, 4, 1-8.

Weissman, D.H. & Carp, J. (2013b). The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict. PLoS One, 8(4):e62405.

Kim, K., Carp, J., Fitzgerald, K.D., Taylor, S.F. & Weissman, D.H. (2013). Neural congruency effects in the posterior medial frontal cortex vanish in healthy youth after controlling for conditional differences in mean RT. PLoS One, 8(4):e60710.


Liu, Y., Gehring, W.J., Weissman, D.H., Taylor, S.F., & Fitzgerald, K.D.  (2012). Trial-by-trial adjustments of cognitive control are altered in pediatric obsessive compulsive disorder. Frontiers in Child and Neurodevelopmental Psychiatry, 3:41.

Weissman, D.H. & Prado, J. (2012). Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention. NeuroImage, 61, 798-804.

Orr, J.M., Carp, J., & Weissman, D.H. (2012).  The influence of response conflict on voluntary task switching: A novel test of the conflict monitoring model.  Psych. Research, 76, 60-73.

Carp, J., Fitzgerald, K.D., Taylor, S.F., Weissman, D.H. (2012). Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex. NeuroImage, 59, 853-860.


Visscher, K.M. & Weissman, D.H.  (2011). Would the field of cognitive neuroscience be advanced by sharing functional MRI data? BMC Medicine, 9:34.

Prado, J. & Weissman, D.H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. NeuroImage, 56, 2276-2282.

Moore, K.S. & Weissman, D.H. (2011). Set-specific contingent attentional capture can be reduced by preemptively occupying a limited-capacity focus of attention. Visual Cognition, 19, 417-44.

Orr, J. M. & Weissman, D.H. (2011). Succumbing to bottom-up biases during voluntary task choice predicts increased switch costs. Frontiers in Cognition, 2:31.

Prado, J. & Weissman, D.H. (2011). Spatial attention influences trial-by-trial relationships between response time and functional connectivity in the visual cortex. NeuroImage, 54, 465-473.

Prado, J., Carp, J.M., & Weissman, D.H. (2011). Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. NeuroImage, 54, 541-549.


Carp, J., Kim, K., Taylor, S.F., Fitzgerald, K.D., & Weissman, D.H. (2010). Conditional differences in mean reaction time explain effects of response congruency, but not accuracy, on posterior medial frontal cortex activity. Frontiers in Human Neuroscience. 4:231.

Moore, K.S. & Weissman, D.H. (2010). Involuntary transfer of a top-down attentional set into the focus of attention: Evidence from a contingent attentional capture paradigm.  Attention, Perception, and Psychophysics, 72, 1495-1509. 


Moore, K. S., Porter, C.B., & Weissman, D.H. (2009). Made you look! Irrelevant commands can hijack the attentional network. NeuroImage, 46, 270-279.

Orr, J.M. & Weissman, D.H. (2009). Anterior cingulate cortex makes two contributions to minimizing distraction. Cerebral Cortex, 19, 703-711.

Weissman, D.H., Warner, L.M., & Woldorff, M.G.  (2009). Momentary reductions of attention permit greater processing of irrelevant stimuli. NeuroImage, 48, 609-615.


Chee, M.W., Tan, J., Zagorodnov, V., Zheng, H., Weissman, D.H., Venkatraman, V., Dinges, D.F. (2008). Lapsing during sleep deprivation is associated with distributed changes in brain activation. The Journal of Neuroscience, 28, 5519-5528.

Weissman, D.H., Perkins, A.P., & Woldorff, M.G.  (2008). Cognitive control in social situations: A role for the dorsolateral prefrontal cortex. NeuroImage, 40, 955-962.


Slagter, H.A., Giesbrecht, B., Kok, A., Weissman, D.H., Kenemans, J.L., Woldorff, M.G., & Mangun, G. R. (2007). fMRI evidence for both generalized and specialized components of attentional control. Brain Research, 1177, 90-102.

Yoshizaki, K., Weissman, D.H., & Banich, M.T.  (2007). A hemispheric division of labor aids mental rotation. Neuropsychology, 21, 326-336.

Wu, C., Weissman, D.H., Roberts, K.C., & Woldorff, M.G.  (2007). The neural mechanisms underlying the top-down control of auditory spatial attention. Brain Research, 1134, 187-198. 

Lopez, M., Kosson, D., Weissman, D.H., & Banich, M.T. (2007). Interhemispheric integration in psychopathic offenders. Neuropsychology, 21, 82-93.


Slagter, H., Weissman, D.H., Giesbrecht, B., Kenemans, J.L., Mangun, G. R., Kok, A., & Woldorff, M.G.  (2006). Brain regions activated by endogenous preparatory set-shifting as revealed by fMRI. Cognitive, Affective, and Behavioral Neuroscience, 6, 175-189.

Weissman, D.H., Roberts, K.C., Visscher, K.M. & Woldorff, M.G.  (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971-978.   

Giesbrecht, B., Weissman, D.H., Woldorff, M.G., & Mangun, G.R.  (2006). Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks. Brain Research, 1080, 63-72.


Weissman, D.H., & Woldorff, M.G. (2005). Hemispheric asymmetries for different components of global/local attention occur in distinct temporal-parietal loci. Cerebral Cortex, 15, 870-6.

Weissman, D.H., Gopalakrishnan, A., Hazlett, C.J., Woldorff, M.G.  (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward  relevant events. Cerebral Cortex, 15, 229-237.

Busse, L., Roberts, K.C., Crist, R.E., Weissman, D.H., & Woldorff, M.G. (2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences, 102, 18751-18756.


Weissman, D.H., Warner, L.M. & Woldorff, M.G.  (2004). The neural mechanisms for minimizing cross-modal distraction.  The Journal of Neuroscience, 24, 10941-10949.

Woldorff, M.G., Hazlett, C., Fichtenholtz, H.M., Weissman, D.H., Dale, A., Song, A.W.  (2004). Functional parcellation of attentional control regions in the brain. Journal of Cognitive Neuroscience, 16, 149-165.


Weissman, D.H. & Compton, R.J. (2003). Practice makes a hemisphere perfect: The advantage of interhemispheric recruitment is eliminated with practice. Laterality, 8, 361-375.

Weissman, D.H., Giesbrecht, B., Song, A.W., Mangun, G.R., & Woldorff, M.G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage, 19, 1361-1368.

Cabeza, R., Dolcos, F., Prince, S., Rice, H., Weissman, D.H., & Nyberg, L.  (2003). Attention-related activity during episodic memory retrieval: Across-function fMRI Study. Neuropsychologia, 41, 390-399.


Weissman, D.H., Woldorff, M.G., Hazlett, C.J. & Mangun, G.R.  (2002). Effects of practice on executive control investigated with fMRI.  Cognitive Brain Research. 15 (1), 47-59.

Weissman, D.H., Mangun, G.R., Woldorff, M.G. (2002). A role for top-down attentional orienting during interference between global and local aspects of hierarchical stimuli.  NeuroImage. 17(3), 1266-1276.

Compton. R.J. & Weissman, D.H.  (2002). Hemispheric asymmetries in global-local perception. Effects of individual differences in neuroticism.  Laterality, 7, 333-350.


DiGirolamo, G. J., Kramer, A.F., Barad, V., Cepeda, N.J., Weissman, D. H., Milham, M.P., Wszalek, T.M., Cohen, N.J., Banich, M.T., Webb, A., Belopolsky, A.V., McAuley, E.  (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: A fMRI investigation of task switching.  Neuroreport, 12, 2065-2071. 


Weissman, D.H. & Banich, M.T.  (2000). Cooperation between the cerebral hemispheres underlies the performance of complex but not simple tasks. Neuropsychology, 14, 41-59.

Weissman, D.H., Banich, M.T., & Puente, E.I.  (2000). An unbalanced distribution of inputs facilitates interhemispheric interaction.  J. International Neuropsychological Society, 6, 313-321.

Banich, M.T.  & Weissman, D.H.  (2000). One of twenty questions for the twenty-first century: how do brain regions interact?  Brain and Cognition, 42, 29-32.


Weissman, D.H. & Banich, M.T. (1999).  Global-local interference modulated by communication between the hemispheres.  Journal of Experimental Psychology: General, 128, 283-307.