Communication

Observing in-phase single-quantum ^{15}N multiplets for NH$_2$/NH$_3^+$ groups with two-dimensional heteronuclear correlation spectroscopy

Yuki Takayama, Debashish Sahu, Junji Iwahara *

Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, 6.614A Basic Science Building, Galveston, TX 77555-0647, USA

Article info

Abstract

Two-dimensional (2D) F1-1H-coupled HSQC experiments provide 3:1:1:3 and 1:0:1 multiplets for AX$_3$ spin systems, respectively. These multiplets occur because, in addition to the 2S$_g$H$_x^1$ to 2S$_p$H$_x^2$ process, the coherence transfers such as 2S$_g$H$_x^2$ to 2S$_p$H$_x^1$ occurring during the t_2 period provide detectable magnetization during the t_1 period. Here, we present a 2D F1-1H-coupled 1H-15N heteronuclear correlation experiment that provides a 1:3:1:3 quartet for AX$_3$ spin systems and a 1:2:1 triplet for AX$_2$. The experiment is a derivative of 2D HISQC experiment [J. Iwahara, Y.S. Jung, G.M. Clore, Heteronuclear NMR spectroscopy for lysine NH$_3$ groups in proteins: unique effect of water exchange on 15N transverse relaxation, J. Am. Chem. Soc. 129 (2007) 2971–2980] and contains a scheme that kills anti-phase single-quantum terms generated in the t_1 period. The purge scheme is essential to observe in-phase single-quantum multiplets. Applications to the NH$_2$ and NH$_3$ groups in proteins are demonstrated.

© 2008 Elsevier Inc. All rights reserved.

For heteronuclear AX$_3$ and AX$_2$ spin systems, one-dimensional NMR measurement on nucleus A that comprises a single excitation pulse immediately followed by detection without decoupling generally gives an in-phase 1:3:3:1 quartet and a 1:2:1 triplet, respectively, provided that relaxation rates for individual multiplet components are identical. It is because overall modulations of detected magnetizations due to J and chemical shift evolutions are given by:

$$
\exp(i\Omega t) \cos^3 \pi J t = \frac{1}{8} \exp [i(\Omega - 3\pi J)t] + \frac{3}{8} \exp [i(\Omega - \pi J)t] + \frac{3}{8} \exp [i(\Omega + \pi J)t] + \frac{3}{8} \exp [i(\Omega + 3\pi J)t]$$

for an AX$_3$ spin system, and

$$
\exp(i\Omega t) \cos^2 \pi J t = \frac{1}{4} \exp [i(\Omega - 2\pi J)t] + \frac{1}{2} \exp(i\Omega t) + \frac{1}{4} \exp [i(\Omega + 2\pi J)t]$$

for AX$_2$. For simplicity sake, we use terms such as ‘1:3:3:1’ and ‘1:2:1’ hereafter, although actual intensity ratios of multiplet components can deviate due to cross-correlations [1].

In the case of a two-dimensional heteronuclear correlation experiment, it is not trivial to obtain the in-phase 1:3:3:1 quartet and 1:2:1 triplet. In an F1-1H-coupled HSQC experiment (such as one shown in Fig. 1A), heteronuclear AX$_3$ and AX$_2$ spin systems exhibit 3:1:1:3 quartet and 1:0:1 triplet, respectively [2–4], because not only the 2S$_g$H$_x^1$ to 2S$_p$H$_x^2$ process but also the coherence transfers such as 2S$_g$H$_x^2$ to 2S$_p$H$_x^1$ occurring during the t_1-evolution period generates magnetizations detectable in the t_2-period. With the additional contributions, the real part of the overall modulation due to J and chemical shift evolutions in the t_1-period for AX$_3$ is given by:

$$
(cos^3 \pi J t_1 - 2 \sin^2 \pi J t_1 \cos \pi J t_1) \cos \Omega t_1
$$

resulting a 3:1:1:3 quartet. Likewise, the corresponding modulation for AX$_2$ is:

$$
(cos^3 \pi J t_1 - \sin \pi J t_1 \cos \pi J t_1) \cos \Omega t_1
$$

which gives a 1:0:1 triplet. Since it appears to be a doublet, the multiplet itself does not indicate whether the spin system is of AX$_2$ or AX unless the true J-coupling is known.

In the present study, we have developed a new 2D 1H-15N correlation experiment to observe an in-phase 1:3:3:1 quartet for a NH$_3^+$ group and a 1:2:1 triplet for a NH$_2$ group along F1 axis. Fig. 1B shows the 2D 1H-15N F1-coupled 1H-15N heteronuclear correlation experiment to observe 1:3:1:1 and 1:2:1 multiplets for NH$_3^+$ and NH$_2$, respectively. The experiment was derived from the water-flip-back 2D 1H-15N HISQC (heteronuclear in-phase single
quantum coherence; Fig. 1C) experiment for NH₃ groups [2], and therefore we refer to it as F1-¹H-coupled HSQC. This pulse sequence starts with the ¹H excitation, and the coherence transfer form H₂ to NH₂ occurs before the t₁ period. The length of delay t₀ (=1.3 ms) is a compromise to simultaneously observe NH₂, NH₂, and NH, and overall J-modulations for these groups through four t₀ periods are given by 3cos²2πf₁t₀sin²2πf₁t₀ (=0.49 with f₁ = 74 Hz), 2cos²2πf₁t₀sin²2πf₁t₀ (=0.74 with f₁ = 89 Hz), and sin²2πf₁t₀ (=0.55 with f₁ = 93 Hz), respectively. Due to these attenuations along with relaxation loss during the additional schemes, the sensitivity of the F1-¹H-coupled HSQC experiment is roughly a half of that of the F1-¹H-coupled HSQC. A similar experiment that starts with the ¹⁵N excitation instead of the ¹H excitation could be more sensitive if the magnetization loss during the coherence transfer from H₂ to NH₂ in the scheme of Fig. 1B is over 90% (=1/3¹H/¹⁵N), which is not the case in the present study; however, such an experiment that starts on ¹³C with NOE enhancement via ¹H saturation should be with acceptable sensitivity for ¹H-¹³C systems [5]. At the beginning of the t₁ period, the observed magnetization is an in-phase single-quantum term N⁺ or N₋ on the phase φ₁. Since there is no ¹H-decoupling during the t₁ period, anti-phase single-quantum terms such as 2N⁺H₁, 4N⁺H₂, and 8N⁺H₃ are generated. The scheme right after the t₁-period (hereafter, referred to as the AP purge scheme; indicated with an arrow in Fig. 1B) kills the 2N⁺H₂ and 8N⁺H₃H₄ terms, so only N⁺ and 4N⁺H₄ terms can survive. The reason for the survival of 4N⁺H₄ is that 4N⁺H₄ generated by ¹H 90° pulses in the AP purge scheme cannot be killed with the pulse field gradient because it is a homonuclear zero-quantum term [6–8]. However, the following scheme for coherence transfers does not allow such zero-quantum terms to become observable magnetizations in the t₂ acquisition period. Therefore, only the in-phase single-quantum term N at the end of the t₁ period is detectable. Since the real part of the overall modulation for the N term in t₁ is given by cos²πf₁t₀cosΩ₁t₀ (n, number of hydrogens), the spectra obtained with this pulse sequence should show 1:3:3:1, 1:2:1, and 1:1 multiplets for NH₂, NH₂, and NH, respectively.

Using the pulse sequences shown in Fig. 1, we recorded 2D ¹H-¹⁵N heteronuclear correlation spectra for NH₂/NH₂ groups in proteins (Figs. 2 and 3). Data were collected with Varian 800- or 750-MHz NMR systems. Fig. 2 displays spectra recorded on the Lys57 NH₂ group of the HoxD9 homeodomain bound to 24-bp DNA. Owing to formation of an ion-pair with a DNA phosphate group, this NH₂ group exhibits relatively slow hydrogen-exchange with water molecules and the ¹H-¹⁵N cross peak from this group can clearly be observed [2]. Just as expected from considerations above, F1-¹H-coupled HSQC (Fig. 2A) and F1-¹H-coupled HSQC (Fig. 2B) exhibits in-phase quartets of 3:1:1:3 and 1:3:3:1 types, respectively. Actual intensity ratios deviate from these numbers.
because the relaxation rates for inner and outer components of the quartet are different due to cross-correlations [2,5,9].

Fig. 3 shows spectra recorded on side-chain NH$_2$ groups of glutamine (Gln) residues in proteins. Panels A, B, and C display spectra recorded on Gln20 NH$_2$ group in 15N-labeled HMGB1 A-domain. The rotational correlation time τ_r for this protein at 25 °C is 9 ns [10]. The NH$_2$ group exhibited 1:0:1 triplets in the F1-1H-coupled HSQC spectrum (Fig. 3A) and 1:2:1 triplets in the F1-1H-coupled HSQC spectrum (Fig. 3B). The J-coupling was measured to be 89 Hz. For a system with a long τ_r, the relaxation rates of individual triplet components for an AX$_2$ spin system can be quite different because of cross-correlations between distinct relaxation mechanisms [11]. Such a case is clearly seen in the spectra measured on the Gln12 NH$_2$ groups in the 15N-labeled HoxD9 homeodomain bound to 24-bp DNA at 16 °C (Fig. 3D, E and F). The value of τ_r is 15 ns for this system. In this case, the downfield components are substantially shaper than the other components in triplets.

Although one may think that removal of 1H-decoupling from the original HISQC experiment [2] would simply result in 1:3:3:1 and 1:2:1 multiplets, such a pulse sequence (Fig. 1C) does not give the desired multiplets. This occurs because the anti-phase single-quantum terms generated in the t_1-period also become 1H magnetizations detectable in the t_2 acquisition period. In fact, the spectra measured with the simplistic pulse sequence on the same NH$_3$ and NH$_2$ groups (Figs. 2C and 3C, F) are very different from those measured with the AP purge scheme (Figs. 2B and 3B, E). Intensity ratios are far from 1:3:3:1 for NH$_3$ and 1:2:1 for NH$_2$; indeed, the multiplets in Fig. 3C and F are more similar to 1:0:1 triplets. In addition, some contributions from the anti-phase terms occur with 90°-shifted phases that cause dispersive distortion of the multiplets, which is evident especially in Fig. 2C. Thus, the AP purge scheme is essential to obtain 1:3:3:1 and 1:2:1 multiplets.

In conclusion, we have demonstrated the 2D F1-1H-coupled 1H-15N correlation experiment that permits observation of in-phase 1:3:3:1 quartets for NH$_3$ groups and 1:2:1 triplets for NH$_2$ groups along the F1 axis. This experiment provides a means to distinguish AX, AX$_2$, and AX$_3$ spin systems in a straightforward manner. It is particularly useful when 1H chemical shifts are degenerated. For example, the deprotonated state of an alkyl amine group (NH$_3$) shows a single 1H resonance because of rapid chiral inversion [12]. In such a case, it is hard to distinguish AX and AX$_2$ spin systems with F1-1H-coupled HISQC unless J-coupling is already known, because a 1:0:1 triplet appears to be a doublet. A 1:2:1 triplet is easier to interpret. It should be noted that a rapid hydrogen exchange with a rate greater than 2/τ_r can cause the self-decoupling effect that results in a 15N singlet even in absence of 1H-decoupling. Considering the range of 1H coupling constants, however, it is likely that such a rapid hydrogen exchange simply broadens the signal beyond the detection limit in the present case, because the hydrogen exchange also increases 1H transverse relaxation rates. Finally, it should be pointed out that the principle presented here can readily be applied to 1H-13C systems.

Acknowledgments

This work was supported by Grant H-1683 from Welch foundation (to J.L.) and Grant ES006676 from the National Institute of Environmental Health Sciences.

References