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Summary
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inghouses can achieve no unstable distributional goal. This paper
explores the scope of random clearinghouses as an effective redesign.
I show that a random mechanism inducing full participation exists
if and only if agents’ preferences are sufficiently heterogeneous. The
main finding is a polynomial-time algorithm that identifies the class
of quotas that cannot be achieved by any random mechanism.
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1 Introduction

The analysis of matching markets, both applied and theoretical, has largely
been guided by the study of stable allocations; namely, allocations that are
unblocked in the sense that every agent finds the assignment acceptable,
and no group of agents would prefer to be matched together rather than
being matched with their respective assignments (Gale & Shapley, 1962).
The prevalence of the guidance offered by stability is not surprising, as
stable allocations capture a strong sense of fairness and describe how de-
centralized markets are ultimately organized (Roth & Vande Vate, 1990).

In some markets, however, stability is not the only goal. Two well–
known examples are the assignment of medical residents to hospitals and
the allocation of students to schools. In these markets, the designer is often
concerned with possible distributional imbalances whereas rural regions
end up with few doctors and too many students with the same race or
socioeconomic background are allocated to the same school. In practice,
the clearinghouses in these markets have attempted to achieve their desired
distributional goals by imposing distributional constraints; namely, quotas
on participating institutions (Abdulkadiroğlu (2005), Kamada & Kojima
(2017)).

When a distributional goal is unstable—namely, when the desired dis-
tributional constraints are not satisfied by any stable allocation—achieving
any desired allocation requires enforcement on participants ex post, once
they have been allocated (Roth, 1986).1 Thus, what distributional goals
can be achieved depends on the “degree” of enforcement power vis a vis the
set of ex-post blocks that the clearinghouse considers should be tolerated.
These ex-post considerations have been the main focus of the literature (see,
most notably, Kamada & Kojima (2015) and Kamada & Kojima (2016b)).

When participation in the clearinghouse is voluntary and the desired
quotas cannot be enforced on nonparticipants, however, achieving unsta-
ble distributional goals requires not only ex-post enforcement, but also the
ability to prevent agents from prearranging a matching ex ante, before
the clearinghouse opens. But if the desired quotas cannot be enforced on
nonparticipants deterministic mechanisms that produce unstable assign-
ments cannot induce full participation (Roth (1984); Roth (2008), Sönmez
(1999)). To the extent that a clearinghouse can enforce its allocations
but the desired quotas can only be enforced on participants, deterministic
mechanisms can therefore achieve no unstable distributional goal.

This paper identifies the scope of random mechanisms as an effective
re–design by investigating what distributional goals could be achieved when
a clearinghouse exerting total ex post enforcement power can randomly al-

1This is not necessarily true in dynamic settings. For example, Liu (2018) shows that
distributional constraints can be implemented by means of self-enforcing punishments.
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locate its participants but the market outside the clearinghouse organizes
itself in a decentralized manner, so that non-participants are not bounded
by the clearinghouse’s desired quotas. I address the following questions.
When is the clearinghouse able to induce every group of agents to partici-
pate ex ante? How does this ability depend on agents’ preferences and the
set of unstable allocations the clearinghouse can enforce ex post?

1.1 Necessary conditions

Consider a market designer who is evaluating whether a given distributional
constraint can be achieved in a medical matching market. The market runs
a clearinghouse that randomly allocates its participants, and every agent
obtains a cardinal payoff from being matched to any agent on the other
side of the market.

The designer assumes that any group of hospitals and doctors deciding
whether to form a match among themselves instead of participating in the
clearinghouse will jointly opt out if by doing so none of them expects a
payoff loss and at least one expects a payoff gain. Both the random assign-
ment proposed by the clearinghouse and the agents’ payoffs are commonly
known among all doctors and hospitals. The designer recognizes that the
program’s ability to achieve some unstable distributional goal by means of
a random mechanism depends on three ingredients; namely, the program’s
degree of ex post enforcement on participants, the agents’ cardinal payoffs,
and whether nonparticipating agents are bounded by the program’s desired
quotas and have the ability to form random assignments among themselves.
To the extent that the designer is clueless about these ingredients, how does
she estimate whether the residency program is able to induce participation
ex ante, and so achieve some desirable allocation ex post?

The designer might reasonably search for a robust prediction; namely,
she might seek to understand what quotas cannot be achieved by any ran-
dom mechanism when the program has total ex-post enforcement power,
nonparticipants are not bounded by the clearinghouse’s desired quotas, and
any coalition of nonparticipant doctors and hospitals both can only form
deterministic assignments among its members and would jointly opt out
when by doing so none of them expects a payoff loss and at least one of
them expects a payoff gain, for every cardinal payoff consistent with their
preferences.

The designer recognizes that her hypotheses tell her little about the
clearinghouse’s ability to achieve a given distributional constraint. Indeed,
her hypotheses presume both that the program can randomize over the
whole set of assignments satisfying its desired constraints and that agents
evaluate their ex-ante blocking opportunities extremely “cautiously.”2 How-

2While the assumption that nonparticipating coalitions can only form deterministic
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ever, she is interested in identifying the scope of any random mechanism.
Thus, she seeks to understand when she can conclude, with confidence, that
a given distributional constraint cannot be achieved at all. Put another way,
the designer’s hypotheses give rise to a random, ex ante stability notion
that can be used to identify what quotas cannot be achieved by any ran-
dom clearinghouse endowed with total ex post enforcement power that is
yet part of a larger, decentralized market.3 It is worth to emphasize that,
since this ex-ante stability notion describes the best-case scenario that a
clearinghouse that evaluates the use of random mechanisms could face, the
notion is not driven by a normative consideration. Instead, it responds to
a positive, but theoretical, approach that an uncertain designer could take.

The designer could, of course, search for sharper, albeit less robust,
predictions either by looking at more stringent notions of participation or
by relaxing the assumption of total ex-post enforcement; i.e., by restricting
the analysis to subsets of the market’s set of desirable allocations that meet
other ex post properties.4 However, such a search would not only require
information about the agents’ cardinal payoffs but also a normative dis-
cussion about what ex post blocks a clearinghouse should tolerate. This
discussion, which amounts to seek the “right” ex-post stability notion in
the presence of distributional constraints, has been the main focus of the
recent literature (see section 5.5 for a discussion). However, the role of par-
ticipation in markets imposing distributional constraints has not yet been
explored. Instead of taking a stand on these ex-ante and ex-post consider-
ations, this paper presumes that a designer without information about the
agents’ cardinal payoffs might first want to search for necessary conditions;
namely, conditions required by every random clearinghouse that achieves
a given unstable distributional goal. Indeed, when no random mechanism

assignments is part of the designer’s robustness exercise, it might also be a good ap-
proximation of the matching arrangements individuals and institutions could form in
existing markets. Allowing blocking coalitions to form random assignments would as-
sume that the outcome of such an assignment is enforceable within the coalition. While
a clearinghouse might have the ability to enforce its assignments, it is not at all clear
whether the members of a given coalition can commit to the outcome of a lottery.

3Notice that this ex-ante stability notion restricts attention to deterministic blocks,
but allows for the same set of blocks that are considered in the absence of distributional
constraints. While this seems restrictive, it is at the heart of the analysis. Indeed, when
participation in the clearinghouse is voluntary but the desired quotas can be enforced
on both participants and non-participants, imposing distributional constraints does not
affect participation incentives. Thus, what distributional goals can be achieved depends
only on the above ex-post considerations. In other words, requiring nonparticipants to
be bounded by the clearinghouse’s distributional constraint implies that the assumption
of voluntary participation has not bite.

4Alternatively, the designer could pursue a different redesign. A natural one would
be the use of monetary payments. However, Agarwal (2017) showed that monetary
payments seem to be ineffective as a tool to increase the number of doctors in rural
regions.
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can induce full participation under the designer’s hypotheses the desired
distributional goal cannot be achieved no matter the degree of ex-post
enforcement—or equivalently, no matter the ex-post stability notion satis-
fying the desired quotas—or notion of ex-ante participation one adopts.5

Thus, this paper departs from—and thus complements—the ex-post focus
of the literature by studying how the presence of voluntary participation
affects the class of distributional constraints that can be achieved.

1.2 Organization and preview of results

Section 2 defines the main ingredients of the class of two-sided, many-to-one
matching markets I will focus on and Section 3 introduces a random stabil-
ity concept, random constrained stability, that accommodates the presence
of distributional constraints and embeds the notion of participation I will
consider.

Section 4 characterizes the existence of constrained stable lotteries. I
say that agents’ preferences are heterogeneous whenever the most preferred
set of doctors of every hospital contains some doctor who deems another
hospital better. I first show that under a joint condition on individual
and distributional constraints, there is a random constrained stable lottery
whenever agents’ preferences are heterogeneous. Heterogeneity is a very
strong condition, but it is not necessary for a random constrained stable
lottery to exists. I show, however, that some “degree” of heterogeneity is
necessary. Indeed, I show that a failure of heterogeneity entails that some
group of doctors must be assigned to some hospitals with probability one
by every random constrained stable lottery. Thus, a random constrained
stable lottery exists if and only if agents’ preferences are “sufficiently” het-
erogeneous with respect to the desired distributional constraints. The main
finding of the paper is a polynomial-time algorithm that pin downs precisely
the degree of heterogeneity required for a given distributional constraint.
Thus, the algorithm determines, for every preference profile and distribu-
tional constraint, whether a random constrained stable lottery exists or
not, and provides a lower bound on the quotas that can be achieved, at
any given profile of preferences, by any random mechanism.

Section 5 discusses the assumptions, the implications of the results, their
relationship with the literature, and some extensions. Section 6 concludes.

5Sections 5.5 and 5.7 discuss the consequences of relaxing the designer’s hypotheses.
In particular, section 5.5 argues that, in some cases, achieving any unstable distribu-
tional goal requires total ex-post enforcement power. Specifically, I show by example
that in some cases there exists a random mechanism inducing full participation only if it
puts positive probability on some assignment that is not envy-free. Thus, in those cases,
achieving the desired distributional goal can only be done via “unfair” assignments.
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2 The environment

2.1 Agents and preferences

The primitives of the model are the following. There is a set I = D ∪ H
of agents—where D is a non-empty finite set of doctors and H a non-
empty finite set of hospitals—that form a two-sided, many-to-one matching
market without transfers. I denote by i ∈ I a generic agent. A coalition C
is a subset of I ∪ {∅}. Each doctor d ∈ D has a strict preference relation
�d over the set of hospitals and being unmatched; namely, over H ∪{∅}. I
denote by %d the weak order of d and write, for any h, h′ ∈ H ∪ {∅}, h %d h

′

if and only if h �d h′ or h = h′. Each hospital h has a strict preference
relation �h over the set of subsets of doctors; namely, over P(D).6 I denote
by %h the weak order of h and write, for any D′, D′′ ⊆ D, D′ %h D

′′ if and
only if D′ �h D′′ or D′ = D′′. For any h ∈ H and d ∈ D, hospital h is
acceptable to d if and only if h �d ∅, and doctor d is acceptable to hospital
h if and only if d �h ∅.7 I assume that every hospital finds every doctor to
be acceptable; i.e., d �h ∅ for every d ∈ D and every h ∈ H. I denote by
�= (�i)i∈I a preference profile. Throughout the paper, I assume that �h
is responsive for every h:8

1. For any D′ ⊆ D and any d ∈ D \D′ and d′ ∈ D′, (D′∪{d})\{d′} %h

D′ if and only if d %h d
′.

2. For any D′ ⊆ D and d′ ∈ D′, D′ %h D
′ \ {d′} if and only if d′ %h ∅.

2.2 Assignments

A matching—allocation or assignment—is a mapping µ that satisfies: i)
µd ∈ H ∪ {∅} for every d ∈ D; ii) µh ∈ P(D) for every h ∈ H; and iii) for
any d ∈ D and any h ∈ H, µd = h if and only if d ∈ µh. I denote by M
the set of all matchings and by ∆(M) the set of all lotteries—or random
assignments—over M. I denote by Supp(γ) the support of γ ∈ ∆(M) and
by γ(µ) the probability that γ ∈ ∆(M) assigns to µ ∈M. The distribution
that puts probability one to µ ∈M will be denoted by δµ.

Given a preference profile � and two distributions γ, γ′ ∈ ∆(M), I will
say that γ [strictly] first-order stochastically dominates (FOSD) γ′ for agent
i given � iff:

6For a set X, P(X) denotes its power set.
7Notice that since hospitals’ preferences are defined on subsets of doctors, I should

write {d} �h ∅ instead of d �h ∅. I will, however, slightly abuse the notation and
identify singleton sets by their (unique) element.

8This is the standard notion of responsiveness (Roth & Sotomayor, 1990). It is
often assumed that hospitals’ preferences are responsive with respect to their individual
capacity. However, this is a difference in notation, not in substance.
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∑
µ̄:µ̄i%iµi

γ(µ̄) ≥
∑

µ̄:µ̄i%iµi
γ′(µ̄) for every µ ∈M,

[with strict inequality for some µ ∈M].

2.3 Constraints

Each hospital h has a capacity qh > 0 that describes the maximum number
of doctors it can hire.9 For any vector of individual capacities {qh}h∈H , I
denote by:

F := {µ ∈M : |µh| ≤ qh for every h}

the set of feasible assignments; namely, the set of matchings that respect
the capacity of every hospital.

I introduce distributional constraints by assuming the existence of a
partition R of H where each cell r ∈ R denotes a region.10 I will write
r(h) for hospital h’s region. For each region r ∈ R, there is a regional
quota qr ≥ 0 that represents the maximum number of doctors who can
be assigned to region r. For a given pair (R, {qr}r∈R), let µr :=

⋃
h∈r µh

denote the total number of doctors assigned to region r under µ ∈ M.
For a given triplet (R, {qr}r∈R, {qh}h∈H), let A denote the set of admissible
assignments, namely

A := {µ ∈M : |µr| ≤ qr for every r ∈ R and |µh| ≤ qh for every h ∈ H}.

The term “admissible” aims to highlight that once the desired distribu-
tional constraint has been set, the market should look to produce a match-
ing in this set.11 Since each triplet (R, {qr}r∈R, {qh}h∈H) defines a set of
admissible matchings A, I will often use the two interchangeably.

2.4 States

A state of nature describes both preferences and constraints. Hence, I will
write θ = (�,A) for a generic state and denote by Θ the set of all states of
nature. I will write �θ to denote the preference profile that realizes at θ and
A(θ) or (R(θ), {qr(θ)}r∈R(θ), {qh(θ)}h∈H) to denote the realized admissible
set at state θ. Moreover, I write F(θ) to denote the set of feasible matchings
at θ. These dependences will be omitted when no confusion arises. Notice

9Since each doctor can work for at most one hospital, one could add to the description
a capacity for doctors. I will, however, omit such a capacity.

10Thus,
⋃

r∈R r = H and, for every r, r′ ∈ R, r ∩ r′ = ∅ or r = r′.
11Some papers, notably Kamada & Kojima (2015), Kamada & Kojima (2018b) and

Kamada & Kojima (2016b), call A the set of “feasible” matchings and define M in terms
of the capacity of the hospitals. This is a difference in terminology, not in substance.
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that A(θ) ⊆ F(θ) for every θ ∈ Θ. States are assumed to be commonly
known among doctors and hospitals.

2.5 Stability

A matching µ ∈M is blocked by a pair (C, µ′), where C is a coalition and
µ′ ∈ F if i) µ′i = ∅ for every i 6∈ C; ii) µ′d ∈ C for every d ∈ C; iii) µ′h ⊆ C
for every h ∈ C; iv) µ′i %i µi for every i ∈ C, µ′i %i µi; and v) µ′i �i µi for
some i ∈ C.12

Armed with this blocking notion, one can define the class of stable
assignments (Gale & Shapley, 1962): A matching µ is stable if and only if
it is both feasible and unblocked. I will let S(θ) denote the set of stable
assignments at state θ.13

I denote by Θ̄ the class of states where the distributional constraint is
nontrivial in the sense that it is not satisfied by any stable assignment:

Θ̄ := {θ ∈ Θ : S(θ) ∩ A(θ) = ∅}.

Intuitively, states in Θ̄ describe an attempt to reallocate some doctors
with respect to their assignment at some stable assignment.14

3 Participation

3.1 Features

Participation in the clearinghouse of many centralized markets that impose
distributional constraints is voluntary. For example, participation is vol-
untary for students and charter schools in most school districts (Ekmekci
& Yenmez, 2014), and both doctors and hospitals are free to opt out of the
U.S. and Japanese residency matching programs (Roth & Shorrer, 2018).15

12Notice that since coalitions are defined as subsets of I ∪{∅}, unblocked assignments
are individually rational in the following sense: A matching µ ∈ M is individually
rational if i) µd %d ∅ for every d ∈ D, and ii) µh %h D̄ for every D̄ ⊆ µh and every h.
Since hospitals have responsive preferences and find every doctor to be acceptable, ii)
always holds in this paper.

13This stability notion is referred to as “group stability” by Roth & Sotomayor (1990).
Whenever hospitals’ preferences are responsive, however, the notion is equivalent to
“pairwise” stability (Roth & Sotomayor, 1990) (pp. 130); namely, feasible assignments
that are unblocked in the following sense. Given a matching µ, a pair (d, h) is a blocking
pair if h �d µd and either i) d �h ∅, and |µh| < qh, or ii) d �h d′ for some d′ ∈ µh.
Moreover, responsiveness implies that a stable assignment exists at every state.

14Notice that by the “rural hospitals theorem”, restricting attention whether the in-
tersection is nonempty is without loss of generality.

15For details about the Japanese residency matching program, see
http://www.jrmp.jp/kiyaku-byouin.htm.
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In these clearinghouses, however, participation is typically restricted to
agents that formed no matching before participating.16 At the same time,
agents opting out from the clearinghouse in these markets are typically free
to form any feasible assignment; namely, doctors can work for any hospital
not participating and nonparticipating hospitals can hire up to their true
capacity. This is typically a feature of markets in which distributional con-
straints are aggregate—in the sense that regions contain a large number of
institutions—but seems to hold also in some markets in which constraints
are imposed at the level of the institutions.17

This section introduces a notion of participation that builds on these
three features.

3.2 Deterministic assignments

In markets in which the clearinghouse produces deterministic allocations
that can be enforced on participants ex-post but coalitions of agents can opt
out, ex-ante, by forming any feasible matching among their members, the

16This is the case, for example, for the Japanese residency matching program (I’m
grateful to Yusuke Narita for pointing this out). On the other hand, the U.S. national
residency matching program (NRMP) imposes an “all in” policy that seeks to restrict the
formation of prearrangements (Niederle & Roth, 2003). See http://www.nrmp.org/faq-
questions/what-is-the-all-in-policy/.

17For example, California and Connecticut require charter schools to maintain a bal-
anced intake of students in terms of race, ethnicity, and socioeconomic background.
The Connecticut State statute states that the “State Board of Education shall con-
sider the effect of the proposed charter school on the reduction of racial, ethnic, and
economic isolation in the region in which it is to be located.” Similarly, the state
of California asks charter schools to describe “the means by which the school will
achieve a racial and ethnic balance among its pupils that is reflective of the general
population residing within the territorial jurisdiction of the school district to which
the charter petition is submitted” (see http://www.sccoe.org/depts/esb/charter-schools-
office/Documents/faqs/admission.pdf). In practice, however, most states do not estab-
lish explicit requirements to meet a diversity balance: By 2006, only 11 states included
explicit provisions to enhance racial and ethnic balance. Nine of these have balance
provisions that do not require charter schools to meet numeral indices of racial diversity
and one of the other two, South Carolina, has a very flexible provision, only requiring the
school’s intake to differ by no more than 20 percent of that of district-run schools (Gajen-
dragadkar, 2006). In turn, many charter schools show levels of segregation and racial
isolation that are higher than those observed in public schools. By 2000, the U.S. Depart-
ment of Education had identified at least 12 states in which charter schools were signifi-
cantly more segregated than their surrounding district-run public schools (Parker, 2001).
This observation is still valid in some states. Carlson and Seo report that in 2013, only 28
per cent of charter schools complied with the policy of reduced isolation introduced by
the State of Connecticut (see http://commons.trincoll.edu/cssp/2015/05/11/reduced-
isolation-2/). Since many charter schools do not participate in the clearinghouse for
their own district (Ekmekci & Yenmez, 2014), this might suggest that some charter
schools do not effectively face the quotas for target characteristics that public schools
participating in the clearinghouse are subject to.
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standard notion of blocking does not capture ex post blocking arrangements
among participants, but rather ex ante participation constraints. Under
this interpretation, it follows that no deterministic mechanism can achieve
a distributional constraint that is only satisfied by unstable allocations.

Proposition 1. There is an admissible and unblocked matching at θ if and

only if every stable allocation at θ is admissible; i.e., there is an unblocked

µ ∈ A(θ) if and only if θ 6∈ Θ̄.

Notice that the “only if” part hinges on a straightforward application
of the rural hospitals theorem. Whenever some stable matching is not
admissible, the rural hospitals theorem entails that no stable allocation is
admissible. Thus, no admissible and unblocked matching exists.

Proposition 1 entails that clearinghouses that employ deterministic mech-
anisms can induce full participation if and only if they impose no distribu-
tional constraints. Put differently, clearinghouses that employ deterministic
mechanisms can only achieve stable allocations. This result is therefore a
formal counterpart, in markets that impose distributional constraints, of
the observation that a market’s ability to induce participation is closely
related to its ability to produce stable allocations (Roth (1984), Niederle
& Roth (2003)). Notice, importantly, that the result holds regardless of
the set of admissible allocations a clearinghouse can enforce. Thus, ex post
enforcement is necessary, but never sufficient, to achieve unstable alloca-
tions. Put another way, restricting attention to deterministic assignments
seems to be a substantial restriction in markets in which participation is
voluntary.18

3.3 Random assignments

Proposition 1 might lead a market designer to ask whether a clearinghouse
could induce full participation—and thus achieve some nontrivial set of
regional quotas—by randomly allocating its participants.

Imagine that one such designer considers a notion of participation that
extends, naturally, the notion of participation in markets that run deter-
ministic clearinghouses; namely, she assumes that a coalition of agents opts
out whenever it can form a feasible assignment among its members in such
a way that no member expects to be worse off and at least one member
expects to be better off.

The designer recognizes that the ability of a random clearinghouse to
induce full participation depends on three ingredients: the agents’ cardinal

18Notice that Proposition 1 also entails that an admissible and unblocked allocation
exists if and only if both deferred acceptance algorithms produce an admissible assign-
ment.
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payoffs; the set of admissible allocations the clearinghouse can randomize
over; and whether nonparticipating coalitions can form a random assign-
ment among its members. While the designer knows that these ingredients
are commonly known among doctors and hospitals, she is however clueless
about them. In those situations, how does she estimate whether the clear-
inghouse can induce full participation ex ante and so achieve some desirable
allocation ex post?

This paper will presume that instead of taking a stand on the above
ingredients, the designer wants to search for a robust prediction; namely,
she seeks to understand whether the market’s desired distributional goal
can be achieved by some random assignment when i) the clearinghouse can
randomize over the whole set of assignments that satisfy the desired quotas;
ii) nonparticipating coalitions can only opt out by forming (feasible and)
deterministic assignments; and iii) a coalition opts out only when doing so
makes no member worse off and some member better off for every cardinal
payoff consistent with their preferences.19

The designer of course knows that these three hypotheses tell her little
about the clearinghouse’s actual ability to achieve a given distributional
constraint. Indeed, i) grants the clearinghouse total ex-post enforcement
power over the allocation it produces and ii)-iii) jointly entail that agents
evaluate ex-ante blocking opportunities very ”cautiously”.20 Thus, these
hypotheses should be understood as capturing the designer’s interest in
predicting what distributional goals cannot be achieved at all. Indeed,
whenever no random clearinghouse can induce full participation under these
hypotheses the designer can conclude, with confidence, that the desired
distributional goal can be achieved by no random mechanism.21

3.3.1 Random assignments: Blocking

The ordinal nature of the notion of participation embedded in the designer’s
working hypotheses ii) and iii) above entails that a coalition of agents does
not participate whenever its members can form a feasible and deterministic

19While the assumption that nonparticipating coalitions can only form deterministic
assignments is part of the designer’s robustness exercise, it might also be a good ap-
proximation of the matching arrangements individuals and institutions could form in
existing markets. Allowing blocking coalitions to form random assignments would as-
sume that the outcome of such an assignment is enforceable within the coalition. While
a clearinghouse might have the ability to enforce their assignments, it is not at all clear
whether the members of a given coalition can commit to the outcome of a lottery.

20Thus, this blocking notion resembles the blocking concept considered by Liu et al.
(2014) for matching markets with incomplete information but no distributional con-
straints. Alternatively, this blocking notion could be interpreted as capturing agents
that evaluate lotteries optimistically (Erdil & Ergin, 2008).

21Sections 5.5 and 5.7 offer a brief discussion about the consequences of relaxing these
hypotheses.
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assignment among themselves that first–order stochastically dominates the
lottery for each of them, and strictly for some; i.e.,

Definition 1. γ ∈ ∆(M) is blocked by a pair (C, µ′), where C is a coalition

and µ′ ∈ F , if µ′i = ∅ for every i 6∈ C and

1. µ′d ∈ C for every d ∈ C;

2. µ′h ⊆ C for every h ∈ C;

3. for every i ∈ C, δµ′ FOSD γ; and

4. for some i ∈ C, δµ′ strictly FOSD γ.

Notice that this blocking notion reduces to the standard one whenever
the lottery is degenerate (see section 2.5 above). Moreover, notice that a
coalition blocks a lottery if and only if it can form a feasible and determin-
istic assignment among its members where the assignment of every member
of the coalition is weakly better than every assignment in the support of
the lottery, and strictly better, for some member, than some assignment in
the support of the lottery.

3.3.2 Random assignments: Stability

Together, the blocking notion described above and the designer’s working
hypothesis i)—namely that a clearinghouse that imposes a given distribu-
tional constraint can randomize over the whole set of admissible assignments—
define an ex ante stability notion for centralized markets in which the clear-
inghouse imposes distributional constraints but cannot enforce participa-
tion:

Definition 2. γ ∈ ∆(M) is random constrained stable at θ if:

1. Supp(γ) ⊆ A(θ) and

2. γ is unblocked.

Two comments are in order. First, notice that random constrained sta-
bility reduces to stability when we restrict γ to be degenerate and focus
on states in Θ \ Θ̄. Second, a random constrained stable lottery should be
interpreted as a lottery over admissible assignments that induces full par-
ticipation. Since random constrained stability builds from the designer’s
working hypotheses, however, it describes the best scenario for a clear-
inghouse. As a consequence, the existence of random constrained stable

12



lotteries tells the designer little about the market’s ability to induce full
participation. Instead, the designer is interested in identifying the class of
states in which a random constrained stable lottery does not exist. Indeed,
whenever a random constrained stable lottery does not exist the designer
can conclude, with confidence, that the desired distributional goal cannot
be achieved by any random clearinghouse.

4 Achieving distributional goals

4.1 Sufficient conditions

This subsection introduces a joint condition on preferences and constraints
that guarantees the existence of random constrained stable lotteries at
states in Θ̄. Let �̇d denote d’s most preferred hospital and write �̇h for h’s
most preferred set of doctors that satisfies qh; i.e.:

�̇h := argmaxD̂⊆D:|D̂|≤qh �h.

Definition 3. Agents’ preferences are heterogeneous at θ if, for every

hospital h such that �̇d = h for some d, there is some d̃ ∈ �̇h such that

�̇d̃ 6= h.

Notice that heterogeneity is a joint condition on preferences and ca-
pacity constraints. To gain a more intuitive grasp, consider the following
thought experiment. Imagine that we ask every doctor and hospital to
point, respectively, to their most preferred hospital and feasible set of doc-
tors. Consider the class of hospitals that are pointed by some doctor.
Agents’ preferences are heterogeneous whenever the set of doctors pointed
by each of these hospitals contains at least one doctor pointing to a different
hospital.

The following condition is a joint condition on capacity and distribu-
tional constraints:

Definition 4. A state θ is rich if qr(h) ≥ qh for every h.

Richness is a reasonable condition in markets in which the desired distri-
butional goal is aggregate—that is, markets whose regions contain a large
number of institutions, and thus the capacity of each institution is small
relative to its regional quota. This is the case, for example, for the Japanese
medical residency matching program, the assignment of graduate students
to universities in China, and the assignment of undergraduate students to
universities in Ukraine and the U.K. (see Kamada & Kojima (2015) for
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details).22 On the other hand, richness is expected to fail whenever re-
gions contain a single institution. This would be the case, for instance, for
affirmative action policies implemented at the level of the schools.

The next result follows:

Proposition 2. If agents’ preferences are heterogeneous in a rich state θ,

then there is a random constrained stable lottery at θ.

The proof is in the appendix, but I go back to the thought experiment
described before to provide an intuition. Think of the outside option of a
hospital as the best feasible set of doctors pointing at it. Richness ensures
that the outside option of, and the set of doctors pointed by, every hospital
is admissible. In turn, heterogeneity ensures that no hospital points to its
outside option. It follows that there exists a set of admissible assignments in
which each assignment matches a different agent to the set of agents she/it
points to. Consider any lottery that assigns positive probability (only) to all
of these assignments. Since every hospital is assigned to the set of doctors
it is pointing to with positive probability, every hospital would only be
willing to form a blocking coalition with the set of doctors it is pointing to.
However, not every doctor in the set would accept: Heterogeneity implies
that the set must contain a doctor who is not pointing to the hospital.
Since this doctor is assigned to the hospital she is pointing to with positive
probability, she prefers to participate. The following example illustrates
this construction:

Example 1. Consider a market with three doctors and five hospitals and

a state θ ∈ Θ̄ with three regions, two rural, r1 = {h1} and r3 = {h5}, and

one urban, r2 = {h2, h3, h4}. Moreover, every region has a regional quota

of one; i.e., qr = 1 for every r. The following figure uses dashed (resp.

solid) circles to describe the rural (resp. urban) regions, brackets to denote

the capacity of every hospital, and solid arrows to represent the maximal

element in the corresponding agents’ preferences:

22Within markets that impose aggregate distributional constraints where qr ≥ 1 for
every r ∈ R, richness is always satisfied whenever every institution can hire at most one
agent.
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d3

h4[1] h5[1]

Figure 1: A rich state with heterogeneous preferences.

Notice that the state is rich and that agents’ preferences are heteroge-

neous. Since the urban region has a regional quota of one, the distributional

goal involves assigning one doctor to each rural region; i.e., to hospitals one

and five. Each of the following admissible assignments assigns some doctor

and urban hospital to the agent they point to:

h2

d1

h1

d2

h3

d3

h5h4 h2 h4

d1

h5

d2

h1 h3

d3

h2 h3

d1

h1

d2

h5

d3

h4

h3h2

d2

h5

d1

h4

d3

h1 h3 h4

d2

h5

d1

h2

d3

h1 h3 h4

d1

h1

d2

h2

d3

h5

Figure 2: A set of admissible assignments.

It is not hard to check that every lottery over these assignments consti-

tutes a random constrained stable lottery at θ. Thus, each rural region is

assigned a doctor with probability one.

Notice that the strength of Proposition 2 lies in states in which sta-
ble assignments are not admissible; namely, states in Θ̄. Since unstable
allocations can be achieved by no deterministic clearinghouse, Proposition
2 therefore highlights a stark contrast between deterministic and random
clearinghouses. However, Proposition 2 is silent about how the given dis-
tributional constraint should be implemented. As a consequence, some
random constrained stable lotteries might result in wasteful assignments;
namely, assignments in which either some over-demanded regions end up
with an intake of doctors that is less than the region’s cap or not enough
“urban” doctors are allocated to rural hospitals.
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4.2 Necessary conditions

Proposition 2 seems to shed no light on what is of interest to the designer:
The class of states in which a random constrained stable lottery does not
exist. Since neither heterogeneity nor richness is sufficient for the existence
of random constrained stable lotteries, however, Proposition 2 entails that
both are necessary at some states. Thus, analyzing the class of states
in which either heterogeneity or richness fail and no random constrained
stable lottery exists might shed light on what is required by the existence
of random constrained stable lotteries.

4.2.1 Non-rich states

It is not hard to see that richness is not necessary for the existence of
random constrained stable lotteries. However, a failure of richness can
mean that a hospital’s outside option is inadmissible—that is, larger than
the hospital’s regional quota. In those cases, no random constrained stable
lottery exists because the hospital finds every doctor to be acceptable (has
responsive preferences), and no lottery over admissible assignments could
assign to the hospital an intake of doctors equal to or larger than the size
of its outside option. This observation always holds true at states in Θ̄ in
which every region contains a single hospital, but also more generally as
the following example illustrates:

Example 2. Consider a market with three doctors and four hospitals and

a state θ ∈ Θ̄ with three regions, two rural, r1 = {h1} and r3 = {h4},
and one urban, r2 = {h2, h3}. Moreover, every region has a regional quota

of one; i.e., qr = 1 for every r. The following figure uses dashed (resp.

solid) circles to describe the rural (resp. urban) regions, brackets to denote

the capacity of every hospital, and solid arrows to represent the maximal

element in the corresponding agents’ preferences:

d1

h2[2]

d2 d3

h3[1]h1[1] h4[1]

Figure 3: A non-rich state with inadmissible outside options.

Notice that preferences are heterogeneous, as h2’s outside option is

{d1, d2} but h2 is pointing to {d2, d3}. Since qh2 = 2 > qr(h2) = 1, however,
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θ is not rich. Moreover, there is no random constrained stable lottery at θ.

The reason is the failure of richness: No admissible assignment can assign

two doctors to h2.

On the other hand, a failure of richness might entail that a group of
doctors must be matched to some hospital with probability one. This would
be the case whenever the outside option of a given hospital is admissible,
but every assignment the hospital finds strictly better than its outside
option is larger than the hospital’s regional quota. In those situations, the
hospital must be matched to its outside option with probability one by
every unblocked lottery. This could be problematic, however, because the
“conditional” regional quota in such a hospital’s region would be zero, so
no other hospital in the region facing a non-empty outside option could be
induced to participate. Put differently, this could be problematic because
richness could fail with respect to the conditional quotas. This possibility
is illustrated in the following example:

Example 3. Consider a market with three doctors and four hospitals and a

state θ ∈ Θ̄ with three regions, two rural, r1 = {h1} and r3 = {h4}, and one

urban, r2 = {h2, h3}. Moreover, the state specifies the following regional

quotas: qr1 = qr3 = 1 and qr2 = 2. The following figure uses dashed (resp.

solid) circles to describe the rural (resp. urban) regions, brackets to denote

the capacity of every hospital, solid arrows to represent the maximal element

in the corresponding agents’ preferences, and dashed arrows to denote the

second–best element in the corresponding agents’ preferences:

d1

h2[3]

d2 d3

h3[1]h1[1] h4[1]

Figure 4: A non-rich state with conditionally inadmissible outside options.

Notice that agents’ preferences are heterogeneous, as h2 is pointing to

{d1, d2, d3} but d3 is pointing to h3. Since qr = 2, however, θ is not rich.

Assume that h2’s outside option, {d1, d2}, is h2’s most preferred set of two

doctors. While h2’s outside option is admissible, the unique set of doctors

that h2 finds better than its outside option, {d1, d2, d3}, is not admissi-

ble. Thus, every random constrained stable lottery must assign {d1, d2} to
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h2 with probability one. But then the conditional regional quota is zero.

Hence, h3’s outside option, d3, becomes inadmissible. Notice, then, that no

reallocation is possible at this state even though preferences are heteroge-

neous.23

4.2.2 Aligned preferences

It is not hard to see that heterogeneity is not necessary for the existence
of random constrained stable lotteries. However, there are rich states in
which heterogeneity fails and no random constrained stable lottery exists.
Whenever heterogeneity fails, some sets of doctors must be assigned to some
hospitals with probability one by every unblocked lottery. Thus, whenever
a failure of heterogeneity means that the number of doctors who must be
assigned to a given region with probability one is larger than the region’s
quota, no lottery can induce full participation. This is illustrated in the
following example:

Example 4. Consider a market with three doctors and four hospitals and

a state θ ∈ Θ̄ with three regions, two rural, r1 = {h1} and r3 = {h4},
and one urban, r2 = {h2, h3}. Moreover, every region has a regional quota

of one; i.e., qr = 1 for every r. The following figure uses dashed (resp.

solid) circles to describe the rural (resp. urban) regions, brackets to denote

the capacity of every hospital, and solid arrows to represent the maximal

element in the corresponding agents’ preferences:

h1[1]

d1

h2[1] h3[1]

d3

h4[1]

d2

h5(1)

Figure 5: A rich state where preferences are not heterogeneous.

Notice that the state is rich but preferences are not heterogeneous, since

d2 and h2 are pointing to each other. This implies that d1 must be matched

to h2 with probability one by every unblocked lottery. But then the outside

option of hospitals h3 and h4—doctors d2 and d3, respectively—is larger

23Notice that examples 2 and 3 illustrate that heterogeneity is not sufficient for the
existence of random constrained stable lotteries.
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than the conditional quota. Hence, no random constrained stable lottery

exists at θ.

A random constrained stable lottery exists in example 4 if the quota
of the urban region is increased to two.24 This suggests that no random
clearinghouse can induce full participation in the state described in example
4, because agents’ preferences are too aligned with respect to the desired
quota. Put another way, a failure of heterogeneity does not necessarily
mean that no quota can be achieved but it does restrict the extent of the
reallocation that can be achieved. As the following example illustrates,
however, whenever preferences are “completely aligned”, no reallocation is
possible.25

Example 5. Consider a market with three doctors and four hospitals and

a state θ ∈ Θ̄ with three regions, two rural, r1 = {h1} and r3 = {h4},
and one urban, r2 = {h2, h3}. Moreover, every region has a regional quota

of one; i.e., qr = 1 for every r. The following figure uses dashed (resp.

solid) circles to describe the rural (resp. urban) regions, brackets to denote

the capacity of every hospital, and solid arrows to represent the maximal

element in the corresponding agents’ preferences:

d1

h2[1]

d2

h3[1]

d3

h4[1]h1[1] h5[1]

Figure 6: A rich state where preferences are not heterogeneous.

The state is rich, but agents’ preferences are completely aligned in the

sense that for every i ∈ {1, 2, 3}, di and hi+1 are the maximal element

of each other. Hence, di must be matched to hi+1 with probability one for

every i ∈ {1, 2, 3} by every unblocked lottery. As a consequence, no random

constrained stable lottery exists at θ. At this state, not even one doctor can

be assigned to some rural region.

24This, in fact, proves that heterogeneity is not necessary for the existence of random
constrained stable lotteries.

25The preferences in this example belong to a domain of preferences for which no
reallocation is possible. See section 5.3.
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4.2.3 Algorithm

Whenever preferences are not heterogeneous and—or a failure of richness
means that—a set of doctors must be matched to some hospital with prob-
ability one, heterogeneity or richness might in turn fail with respect to
the set of unmatched agents and conditional quotas; namely, the regional
quotas that take into account the intake of every matched hospital. As
a consequence, new sets of doctors might have to be matched to some
hospitals with probability one. In other words, failures of heterogeneity
or richness might lead to yet further failures and matches. The following
procedure keeps track of these successive failures and identifies the set of
coalitions that must be matched with probability one by every unblocked
lottery.

For µ ∈M, a subset D̄ ⊆ D of doctors is µ-conditionally admissible
for hospital h if

|D̄| ≤ min{qh, qr(h) − |µr(h)|}.

For any state θ = (�,A) ∈ Θ, consider the following procedure T :

Step 1: : Each doctor d points to her most preferred hospital h and each
hospital h points to its most preferred set of doctors that satisfy both
qh and qr(h); if, for some h, a subset of the set of doctors pointing at
h satisfies qh but violates qr(h), then T breaks down; otherwise, if
a hospital points to a subset of doctors who point at it, match the
hospital to the subset. Let µ1(θ) denote the matching produced in
this way and call any doctor and hospital available if they are not
matched; if µ1(θ) is not admissible, then T breaks down; otherwise,
it goes to step 2.

Step k > 1: : Each available doctor d points to her most preferred available hos-
pital and each available hospital points to its most preferred µk−1(θ)-
conditionally admissible set of available doctors; if, for some available
h, a subset of the set of doctors pointing at h satisfies qh but is not
µk−1(θ)-conditionally admissible, then T breaks down; otherwise,
if a hospital points to a subset of doctors who point at it, match
the hospital to the subset; let µk(θ) denote the matching that the
algorithm produces up to Step k; if µk(θ) is not admissible, then T
breaks down; otherwise, it goes to step k + 1.

The algorithm terminates either if it breaks down, or if µk(θ) =
µk−1(θ) for some k ≥ 1 (where µ0(θ) = ∅). In the latter case, I let µ(θ)
denote this matching.

Notice that the number of steps T takes to terminate is bounded above
by the number of agents, which is a finite number. It follows that T is fast

20



in the sense that the number of steps it takes to terminate grows linearly
with the number of agents.26 Intuitively, T describes a procedure that
resembles, at each step, the thought experiment described above; i.e., T
asks hospitals to point to their most preferred conditionally admissible set
of doctors but defines hospitals’ outside options as their most preferred
feasible set of doctors pointing at it. This “asymmetry” captures the key
feature triggered by voluntary participation; namely, hospitals cannot be
promised a conditionally inadmissible set of doctors by any lottery over
admissible assignments, but they are free to form any feasible matching
outside the clearinghouse.27 The following example describes how T works:

Example 6. Consider a market with eight doctors and seven hospitals

and a state θ ∈ Θ̄ with three regions, r1 = {h1, h2}, r2 = {h3, h4} and

r3 = {h5, h6, h7} and the following regional quotas: qr1 = 3, qr2 = 2 and

qr3 = 1. The following figure uses brackets to denote the capacity of every

hospital and solid (resp. dashed) arrows to represent the maximal (resp.

second most preferred) element in the corresponding agents’ preferences:

d1

h1[1]

d2

h2[3]

d3 d4

h3[1]

d5

h4[2]

d6

h5[1]

d7

h6[1]

d8

h7[1]

Figure 7: T at work.

Assume that h2’s most preferred set of two doctors is {d2, d3}, and h4’s

most preferred doctor is d5. The algorithm matches d1 to h1 in step 1 and

produces µ1(θ), which is admissible. Given µ1(θ), T then matches h2 to

{d2, d3} in step 2 and forms µ2(θ), which is admissible. Thus, T matches

h3 to d4 in step 3 and forms µ3(θ), which is admissible. Given µ3(θ), T
26I am grateful to Larry Samuelson and Philipp Strack for pointing this out.
27T resembles Gale’s top trading cycle (TTC) algorithm. Unlike TTC, however, T

is able to deal with the existence of distributional constraints, and this entails some
important distinctions. First, the notion of a cycle behind the matches formed by T
is different from that behind TTC, in that T only looks for cycles involving a single
hospital. Second, T only matches hospitals that point to a subset of the set of doctors
pointing at it, and so not every cycle involving a single hospital in the sense of TTC
would be matched. These two distinctions imply that T might terminate matching no
set of agents.
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then matches h4 to d5 in step 4, produces the admissible assignment µ4(θ),

and then matches h5 to d6 in step 5. In turn, µ5(θ) is admissible. But

then both h6 and h7’s most preferred feasible set of doctors are not µ5(θ)-

conditionally feasible: At step 6, the conditional cap of region 3 is 0. Hence,

T breaks down.

The next result is the main finding of the paper:

Proposition 3. There is a random constrained stable lottery at θ if and

only if T does not break down at θ.

The proof is in the appendix, but the intuition is as follows: At each
step, T breaks down whenever the outside option of some hospital is con-
ditionally inadmissible because no lottery over admissible assignments can
induce the hospital and its outside option to participate. Whenever no
successive failure of richness means that some hospital’s outside option is
inadmissible, each successive failure of heterogeneity or richness entails that
some coalitions must be matched by T and thus increases the lower bound
on the quotas that can be achieved. As a consequence, the algorithm breaks
down whenever the matching it forms is not admissible at some step.

Whenever the algorithm does not break down, both richness and hetero-
geneity hold for the set of unmatched agents and conditional quotas. Thus,
Proposition 2 implies that a random constrained stable lottery exists for
the set of unmatched agents and the vector of conditional regional quotas.
Since the matching formed by the algorithm is admissible, a random con-
strained stable lottery exists for the set of all agents and the original vector
of regional quotas.28

I end this section with three remarks. First, notice that T does not
produce a random constrained stable lottery whenever one exists. Indeed,
Proposition 3 states that the algorithm only checks whether a random con-
strained stable lottery can be constructed. Thus, Proposition 3 should be
interpreted as providing a systematic way to identify the class of prob-
lems in which a random constrained stable lottery does not exist. Second,
Proposition 3 entails that determining whether a random constrained stable
lottery exists can be done fast.29 Finally, T provides, for any fixed prefer-

28It is not hard to see, then, why T does not break down at rich states in which pref-
erences are heterogeneous: At rich states, no hospital has a conditionally inadmissible
outside option and every hospital points to a conditionally admissible set of doctors.
In turn, whenever agents’ preferences are heterogeneous, no hospital would point to its
outside option. Hence, T matches no one and terminates—at step 1—without breaking
down.

29One could, of course, determine whether a random constrained stable lottery exists
or not by exhaustively checking whether some subset of admissible assignments is not
blocked. However, doing this would require a number of steps that grows exponentially
with the number of agents.
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ence profile, a lower bound on the quotas that can be achieved: Those that
can be imposed without compromising full participation.30

5 Discussion

5.1 Origins

This paper addresses when random constrained stable lotteries exist, but
not how these lotteries might arise. This is due, in large part, to the na-
ture of the exercise that gives rise to random constrained stability; namely,
to investigate whether a market’s distributional goal cannot be achieved
by any random clearinghouse. To the extent that the existence of ran-
dom constrained stable lotteries tells us little about the market’s ability
to achieve its distributional goal, the market should only be interested in
states in which no random constrained stable lottery exists. In this sense,
the analysis in this paper should be seen as one that offers a a stability
notion that serves to identify what outcomes should not be expected in
markets imposing distributional constraints much in the same way that
core allocations guide our analysis in markets without distributional and
participation constraints.

The analysis above does, however, suggest a natural way to address
how random constrained stable lotteries could be obtained. T could be
used to construct a random clearinghouse that delivers a constrained sta-
ble lottery at every state in which one such an lottery exists. In fact, T
could be used to construct a random clearinghouse that guarantees full
participation at every preference profile. Providing a mechanism that pro-
duces random constrained stable lotteries would be of value, but part of a
subsequent exercise that seeks to understand whether, and when, random
constrained stable lotteries can be implemented.31 In particular, imple-

30Notice that heterogeneity and richness jointly describe the set of states in which the
largest number of urban doctors can be reallocated. When richness holds, heterogeneity
entails that no set of doctors has to be matched to some hospital with probability one.
Hence, regional quotas are bounded, below, by the size of the hospital’s largest outside
option in each region.

31Budish et al. (2013) study the allocation of objects in the presence of general con-
straints and shed light on conditions that guarantee that a random assignment can be
implemented; namely, expressed as a convex combination of deterministic assignments
that satisfy the desired constraints. Their conditions are always satisfied when distri-
butional constraints take the form assumed in this paper; namely, that of maximum
quotas over partitions. While their notion of implementation is different from the sense
in which constraints are achieved in this paper (as the latter involves a notion of partic-
ipation), their result is, to my knowledge, the first attempt to understand what kinds
of constraints can, in fact, be implemented. A similar spirit is present in Kamada &
Kojima (2018b), who give a condition on the constraint structure that is necessary and
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mentation would involve a careful consideration of the agents’ incentives
to report their preferences truthfully after deciding to participate.32

5.2 Ex ante participation

Random constrained stability assumes a cooperative, core–like notion of
participation. The assumption seems reasonable in centralized markets
in which the process of matching formation outside the clearinghouse is
decentralized (Roth & Vande Vate, 1990). However, there are markets
where alternative notions of participation might be more appropriate.

For example, Sönmez (1999) studies the possibility of prearranged match-
ings between hospitals and doctors in markets without distributional con-
straints in which participation is not restricted to agents who formed no
pre–match (see also Kesten (2012)).33 He show that this stronger notion
of participation entails that not even stable allocations can be achieved by
deterministic clearinghouses. A natural question for future research would
be whether, in these markets, the formation of pre-matches can be avoided
by random clearinghouses.34

On the other hand, Afacan (2016) and Ekmekci & Yenmez (2014) ex-
amine a Nash-like notion of participation in the assignment of students to
schools; they study markets in which only schools opt out of the clearing-
house and can match with students after the clearinghouse produces an
assignment. However, both papers consider markets that impose no dis-
tributional constraint and examine the ability of stable clearinghouses to
induce full participation.

sufficient for the existence of a mechanism that is strategy-proof and stable in the sense
they propose.

32I believe, but have not shown, that if one considers the notion of ordinal Bayesian
incentive compatibility (see, e.g., Majumdar (2003)) the construction of a random stable
lottery in the proof of Proposition 3 gives rise to a natural random constrained stable
mechanism that is incentive compatible. Indeed, no agent matched by T can obtain a
lottery that FOSD the lottery they obtain by reporting truthfully—when every other
agent reports truthfully. At the same time, every unmatched doctor would be matched
at most twice with positive probability; to her most preferred hospital and, possibly,
to some other hospital. Similarly, every unmatched hospital would be matched twice
with positive probability; to its best (available) set of doctors, and to some other set
of doctors. Thus, no unmatched agent should be able to find a lottery that FOSD the
lottery they would obtain when they report truthfully—and every other agent reports
truthfully.

33Postlewaite (1979) studies a similar notion of manipulation in competitive markets.
While Sönmez (1999) argues that some markets, like the Canadian lawyer market, do
not restrict participation in this way, many other markets do. See section 3.1 for a brief
discussion.

34Recall that stable (although possibly inadmissible) clearinghouses always induce full
participation in this paper.
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Finally, some papers have investigated different ex ante, random stabil-
ity notions (see Aziz & Klaus (2017)) for a recent survey). However, none
of these notions is equivalent to random constrained stability, as none of
them capture the presence of distributional constraints.35

5.3 Preference alignment

The existence of random constrained stable lotteries rules out important
domains of preferences known to be sufficient for the existence of a unique
stable matching in one-to-one markets without distributional constraints.
To my knowledge, the weakest of these conditions is the one proposed by
Eeckhout (2000). Imagine that there are n doctors and n hospitals. Then,
Eeckhout (2000)’s condition requires that for every i = 1, 2, ..., n, the doctor
in position i prefers the hospital in position i over hospitals in positions
i+ 1, i+ 2,...n, and the hospital in position i prefers the doctor in position
i over doctors in positions i+ 1, i+ 2,...n.

It is not hard to see that no random constrained stable lottery exists
at states in which the above condition holds. In fact, at those states no
reallocation at all can be achieved.36 Thus, a natural conjecture is that
no random constrained stable lottery exists at states in which there is a
unique stable lottery. Interestingly, however, the conjecture is false:

Example 7. Consider a state with the following preferences:

35Kesten & Ünver (2015) propose an ex ante stability notion that, under strict prefer-
ences, is equivalent to the notion of fractional stability of Roth et al. (1993) and weaker
than the notion proposed by Alkan & Gale (2003). On the other hand, Manjunath
(2017) describes two ex ante core notions, one weak and one strong, in which the con-
cept of blocking is defined in terms of stochastic dominance. Under strict preferences,
his strong notion is equivalent to the ex ante stability notion of Kesten & Ünver (2015).
Afacan (2018) proposes the notion of claimwise stability—a weakening of fractional
stability—that is stronger than the weak notion of Manjunath (2017). Since all of these
notions reduce to stability when only deterministic matchings are considered, none is
equivalent to random constrained stability. More generally, every notion equivalent to,
and stronger than, the notion proposed by Kesten & Ünver (2015) induces a lottery
over stable allocations. However, lotteries over unstable allocations can be random con-
strained stable. Finally, Yenmez (2013) considers stability notions that he interprets as
capturing participation constraints. The motivation behind his notions is similar to the
one in this paper in the sense that it relies on the idea that existing clearinghouses can
enforce, ex-post, the allocations they produce. However, he analyzes one-to-one markets
with transfers and no distributional constraints.

36In turn, no random constrained stable lottery exists at states in which the preference
alignment is stronger than that entailed by Eeckhout (2000)’s condition. For example,
no random constrained stable lottery exists at states in which preferences are aligned in
the sense of Clark (2006) (see also Niederle & Yariv (2009)).
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�d1 : h2 � h1 � h3 � ∅ �h1 : d1 � d3 � d2 � ∅
�d2 : h1 � h2 � h3 � ∅ �h2 : d2 � d1 � d3 � ∅
�d3 : h2 � h1 � h3 � ∅ �h3 : d3 � d2 � d1 � ∅

Figure 8: A profile of preferences that support a unique stable matching.

When every hospital can hire at most one doctor, these preferences en-

tail the existence of a unique stable matching; namely, the matching µ where

µdi = hi for every i = 1, 2, 3. However, these preferences are heterogeneous,

so that a random constrained stable lottery exists at every state in which

there is, for example, a unique region with a regional quota of one.

5.4 Alternative distributional goals

I have assumed that a market’s distributional goal can be captured by a
partition of hospitals and a unique vector of maximum, ”hard” quotas.
While these assumptions are a good approximation of how some markets
seek to implement their desired reallocation, they might fail to capture
more general distributional goals. For example, school districts typically
seek to increase diversity with respect to several characteristics, and thus
impose multiple maximum quotas (see, e.g., Goto et al. (2017)). Similarly,
some markets might pursue distributional goals that do not entail a par-
tition of institutions. For example, a residency matching program might
seek to impose maximum quotas on both geographical regions and medical
specialties (see, e.g., Kamada & Kojima (2018b)). Perhaps more impor-
tantly, maximum quotas are often used to implement some desirable vector
of minimum, or floor quotas (see, e.g., Ehlers et al. (2014), Fragiadakis &
Troyan (2017) and Hafalir et al. (2013)). Indeed, a medical matching pro-
gram might impose a maximum quota on some urban regions only to satisfy
some desired minimum quotas on some rural ones. Finally, some papers
have investigated markets that might seek to implement ”soft bounds”;
namely, quotas that take into account the preferences of the participants
and allow institutions to violate them to the extent that doing so is not
unfair (see Ehlers et al. (2014) and Hafalir et al. (2013)).

Understanding whether, and when, the results in this paper extend to
the cases above would be a natural and interesting next step. I suspect,
however, that the main insights offered here have a close counterpart in all
of them. The intuition is simple: Whether T matches a coalition of agents
or not makes use of the partitional nature of the model or the assumption
that regions are assigned a single maximum quota only to the extent that
each hospital has a unique maximum quota. Since T could be modified to
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keep track of the minimum (conditional) quotas faced by each hospital at
each step, I conjecture that the logic of the results would be valid in these
other models.

On the other hand, the results in this paper extend to the case of floor
constraints in a natural way whenever the clearinghouse can enforce every
admissible assignment. In those cases, every floor quota imposed on a rural
region can be implemented by a corresponding vector of maximum quotas
on some urban regions. Thus, whether a given vector of minimum quotas
can be achieved would amount to asking whether some corresponding vec-
tor of maximum quotas can be achieved. Put differently, the results in this
paper apply to the case of minimum quotas, because achieving maximum
quotas is necessary for achieving floor constraints.37 Thus, T could be used
to check whether a given distributional goal that involves minimum quotas
can be achieved by some random clearinghouse.

While the results in this paper seem to make heavy use of the hard na-
ture of the quotas, Proposition 3 would imply that no upper bound, hard
or soft, that entails that the outside option of some hospital is violated
can be achieved. To the extent that soft bounds are imposed at the level
of the institutions (as in Ehlers et al. (2014) and Hafalir et al. (2013)),
we should then expect difficulties trying to achieve them. Whether the
results in this paper extend to the case of aggregate soft quotas is an in-
teresting, but open question. One approach to this question would be to
relax the requirement that the clearinghouse must produce an admissible
assignment with probability one. While this would result in a weaker sta-
bility notion, the existence of preference alignment would nonetheless keep
restricting what can be achieved. To see this, notice that in Example 5 no
re-distribution can be achieved even if we allow for lotteries that produce
an admissible assignment with ”high probability”.38

I end this subsection with a comment about some markets that might
be seen as pursuing distributional goals without imposing explicit distribu-
tional constraints. For example, some school districts implement voucher
programs that seek to reallocate students who attend low-performance pub-
lic schools (Abdulkadiroğlu et al., 2015), and most clearinghouses in kid-
ney exchange markets seek to implement “long” chains of patient-donor
pairs (Ashlagi & Roth, 2014).39 Since private schools that participate in

37Notice, however, the importance of the assumption that the clearinghouse can en-
force every admissible assignment in this argument. If a clearinghouse cannot enforce,
say, individually irrational assignments, then achieving a given vector of maximum quo-
tas would not entail that the associated floor constraints can be satisfied.

38I believe that this line of analysis could be close in spirit to the recent paper by
Nguyen & Vohra (2018). They argue that in markets without distributional constraints
in which hospitals’ capacities can be considered part of the design of the market, the
presence of couples does not rule stable solutions.

39Many voucher programs also seek to offer low-income families the possibility of
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a voucher program effectively face a cap on the number of non-voucher
students they can admit, and transplant centers participating in a clear-
inghouse might effectively face a cap on the number of its patient-donor
pairs that are part of the chain implemented by the clearinghouse (Ash-
lagi & Roth, 2014), these markets could in fact be seen as imposing (some
form of) distributional constraints. Whether the analysis and results of
this paper have formal counterparts in these markets would of course be
an interesting question to investigate (see, however, section 5.6).40

5.5 Ex post enforcement

When the desired distributional constraints are not satisfied by any stable
allocation, achieving the desired distribution of doctors requires ex post
enforcement (Roth, 1986).41

Random constrained stability builds on the assumption that a clearing-
house’s ex-post enforcement power is total. The assumption is grounded on
the nature of the designer’s robustness exercise, but is also consistent with
what it is observed in some existing markets. As Kamada & Kojima (2015)
(p.13) point out, this is the case, for example, for the Japanese residency
matching program: “Indeed, in Japan, participants seem to be effectively
forced to accept the matching announced by the clearinghouse because a se-
vere punishment is imposed on deviators.”42 Another good example might
be the U.S. national residency matching program (see Yenmez (2013)).

Since not every clearinghouse might be able to enforce every possible al-
location that satisfies its desired distributional constraints, it is only natural

choosing private schools; see Afacan (2019) for a recent discussion.
40Participation in voucher programs is voluntary for both students and private schools

(Abdulkadiroğlu et al., 2015), and transplant centers are free to opt out of clearinghouses
in kidney exchange markets, but participation is not restricted in any way (Ashlagi &
Roth, 2014).

41As mentioned in the introduction,Liu (2018) shows that this is true only when one
restricts attention to static environments. Indeed, the possibility of future punishments
might allow a designer to rely on self-enforcement to implement her desired distributional
constraints. Interestingly, Liu (2018) obtains results that are very close to those found
in this paper. In particular, he shows that, in general, some hospitals must be assigned
to the same number of doctors they would be matched to in the static environment.

42School districts are not always able to enforce the assignment they produce for stu-
dents, as some participating students have been found to reject their assignments and
look for enrollment in some non-participating school (Ekmekci & Yenmez, 2014). On the
other hand, the ability to enforce assignments among participants is also present in mar-
kets that impose no distributional constraints. For example, the “commitment clause”
allows only unmatched participants to find a (different) match in the U.S. national resi-
dency matching program (see http://www.nrmp.org/policies/the-match-commitment/).
Interestingly, however, the presence of this clause suggests that the program does not
(seek to) produce stable allocations.
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to ask how (much) a market’s ability to induce full participation depends
on its ex-post enforcement power.

Relaxing the clearing house’s ability to enforce its allocations would de-
mand a stand on what admissible assignments can or should be enforced or,
equivalently, what ex post objections can or should be tolerated. In turn,
this stand should involve both a positive and a normative discussion. On
the positive side, the degree of enforcement might depend on some ex-post,
normatively appealing, properties.43 On the normative side, the presence
of a given degree of ex post enforcement does not however answer what
admissible assignments a clearinghouse should seek to achieve. Searching
for the “right” ex post stability notion has been the main focus of the lit-
erature (see, e.g., Kamada & Kojima (2015), Kamada & Kojima (2016b),
Kamada & Kojima (2017), and Kamada & Kojima (2018a)). Instead, this
paper departs from the ex-post viewpoint taken by the literature by in-
vestigating how the presence of voluntary participation affects the class of
distributional constraints that can be achieved.

I believe, however, that a natural way to weaken the clearinghouse’s
enforcement power would be to consider unblocked lotteries over envy-free
assignments (Wu & Roth, 2016).44 While a full analysis is outside the scope
of this paper, the following lines offer a brief discussion.

Definition 5. Given an assignment µ ∈ M, d has justified envy towards

d′ if µd′ 6= ∅, µd′ �d µd and d �µd′ d
′.

An assignment µ ∈M is envy-free if no doctor has justified envy. There
are two reasons why envy-freeness is a natural “ex-post fairness” notion in
the presence of distributional constraints. First, an envy-free assignment
exists at every state (e.g., the empty assignment is envy-free). Second, and
more importantly, envy-free assignments rule out blocks where a hospital
“adds” doctors. Put differently, envy-freeness considers only blocks that
do not involve a vacant position of some hospital. Since distributional
constraints reduce the intake of hospitals in over-demanded regions, envy-
freeness is then a natural ex-post restriction in these markets.45

43Indeed, legal or institutional restrictions might require that some markets are able
to enforce admissible assignments that satisfy, in addition, certain ex post properties.
These restrictions would then naturally reduce the subset of admissible assignments a
market would focus on.

44To my knowledge, every stability notion considered by the literature (in the presence
of distributional constraints) satisfies envy-freeness.

45I believe that envy-free assignments can be motivated both normatively and posi-
tively. Indeed, a clearinghouse imposing a distributional constraint might not be able to
prevent the formation of ex-post blocks where the size of the intake of a blocking hospital
remains the same. At the same time, it would be natural to imagine that envy-freeness
is part of the goals pursued by a clearinghouse regardless of its enforcement power.

29



The next example illustrates that there are states at which a lottery over
assignments satisfying the desired constraints is unblocked only if it puts
positive probability on assignments that are not envy-free. Thus, there
is a “maximal domain conflict” between ex-post fairness and a market’s
distributional goal. Put another way, total ex-post enforcement is necessary
for achieving some re-distribution at some states.46

Example 8. Consider a market with two doctors and three hospitals and

a state θ ∈ Θ̄ with two regions, one urban, r1 = {h1, h2}, and one rural,

r2 = {h3}. Both regions have a regional quota of one and the agents’

preferences are as follow:

�d1 : h1 � h2 � h3 � ∅ �h1 : d2 � d1 � ∅
�d2 : h2 � h1 � h3 � ∅ �h2 : d1 � d2 � ∅

�h3 : d1 � d2 � ∅

The following figure uses a dashed (resp. solid) circle to describe the

rural (resp. urban) region, brackets to denote the capacity of every hospital,

and solid arrows to represent the maximal element in the corresponding

agents’ preferences:

h1[1]

d2

h2[1]

d1

h3[1]

Figure 9: No unblocked lottery over admissible and envy-free assignments.

Notice that agents’ preferences are heterogeneous and the state is rich.

Thus, a random constrained stable lottery exists. However, every random

constrained stable lottery must match every agent to her/its most preferred

agent with positive probability. But then, the support of every random con-

strained stable lottery must include an assignment where d1, say, is matched

to h1 and h2 is unmatched. In this assignment, however, d2 will have justify

envy towards d1.
46It it not hard to see that restricting attention to admissible and individually rational

assignment might deliver a similar conclusion. Indeed, no unblocked lottery over indi-
vidual rational assignments exists in Example 8 below if d1 and d2 find, respectively, h2
and h1 to be unacceptable. Thus, the existence of unblocked lotteries might also rely on
the ability of the clearinghouse to enforce, ex-post, individually irrational assignments.
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5.6 Implications

Many markets employ deterministic clearinghouses but cannot enforce par-
ticipation. Within the class of these markets in which the clearinghouse has
ex post enforcement power and imposes distributional constraints, Propo-
sition 1 could be used to rationalize why some of them fail to achieve
their desired distributional goals. For example, some school districts that
pursue affirmative action policies fail to induce all charter schools to par-
ticipate (Ekmekci & Yenmez, 2014), and schools are heavily segregated
(Frankenberg & Lee (2003), Parker (2001)). Similarly, not every hospital
and resident participates in the Japanese medical residency matching pro-
gram (Besstremyannaya, 2015), and the distribution of physicians seems to
have worsened (Hara et al., 2017). Moreover, high-quality private schools
opt out of voucher programs, and some transplant centers withhold part of
their endowment of patient-donor pairs when participating in some clear-
inghouse. Thus, Proposition 1 could also explain why some voucher pro-
grams fail to achieve a desirable reallocation of students (Abdulkadiroğlu
et al., 2015) and why transplant opportunities are sometimes lost in some
kidney exchange markets (Ashlagi & Roth, 2014).47

At the same time, Propositions 2 and 3 suggest that the use of random
clearinghouses might be an effective redesign.48 In some markets, however,
the use of lotteries should be accompanied by a careful design of both re-
gions and quotas. For example, no random clearinghouse would induce full
participation in school districts unless affirmative action policies are imple-
mented at an aggregate (e.g., neighborhood) level. Proposition 3 suggests,
in addition, that regional quotas should be part of the allocation to be
implemented. After all, a vector of quotas can be achieved only if agents’
preferences are not too aligned with respect to them. One could then imag-
ine a random clearinghouse that, eliciting only ordinal information, builds
around T and seeks to achieve no vector of quotas for which the reported
preferences would cause T to breaks down.49

47Proposition 1 might also explain why some markets that pursue a distributional
goal do not run centralized assignment systems—such as the assignment of students to
schools in the United Kingdom—and why some centralized markets facing distributional
imbalances have not introduced a distributional constraint, such as the assignment of
residents to hospitals in the United States.

48One could, of course, search for alternative redesigns. A natural one would be the
use of monetary payments. As recently shown by Agarwal (2017), however, monetary
payments seem to be ineffective as a tool to increase the number of doctors in rural
regions.

49A natural alternative would be, of course, to form an estimate of the degree of
preference alignment and set regional quotas accordingly.
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5.7 Necessary conditions

Random constrained stability was constructed from hypotheses that ar-
guably describe the best scenario faced by a clearinghouse that evaluates
the use of random mechanisms. As I hope it is clear by now, this robustness
exercise is not driven by a normative consideration but instead responds
to the approach that an uncertain designer could reasonably take.

One could nonetheless ask how the analysis and results would change
if alternative hypotheses are considered. Put another way, one might be
interested in analyzing some strengthening of random constrained stability.
Relaxing the designer’s hypotheses would amount to asking whether, and
when, full participation can be induced when a clearinghouse cannot ran-
domize over the whole space of admissible assignments or a larger class of
ex ante blocking coalitions can be formed. The former could be motivated
by either the desire or the need to satisfy other ex post properties, and so
it is ultimately part of a market’s design (see section 5.5).

Instead, relaxing the notion of participation would require to take a
stand on what kind of coalitions agents can form and how these coalitions
evaluate lotteries, or equivalently how they evaluate their ex-ante blocking
opportunities. I believe that there are two natural ways to strengthen the
notion of participation behind random constrained stability. First, one
might allow coalitions to form random assignments among its members.
While allowing for ”random blocks” would deliver interesting possibilities,
it is unclear to me whether they would be well grounded in real markets.

Second, one might still restrict blocks to be deterministic but strengthen
the way agents evaluate lotteries. One possibility would be to assume
that they evaluate their blocking opportunities ”incautiously”; namely, that
agents would compare any potential blocking assignment with the worst
assignment in the support of the lottery produced by the clearinghouse.
This case would describe the other extreme of the notion of participation
assumed in this paper. It is not hard to see, however, that if agents are
incautious in this sense then random assignments do not improve upon
deterministic ones.

Alternatively, one could strengthen the notion of participation by as-
suming that the members of a coalition opt out whenever they expect a
gain by doing some, for some fixed cardinal payoff. While this assumption
could be considered the natural stand to take in terms of participation, that
would only be so provided the designer has information about the agents’
cardinal payoffs.50

50An older version of the paper analyzes these possibilities in some detail.
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6 Conclusions

Many centralized matching markets find unstable allocations undesirable,
and so impose distributional constraints; namely, quotas on participating
institutions. When participation in the clearinghouses of these markets
is voluntary, however, achieving unstable allocations requires not only en-
forcement ex post among participants but also full participation ex ante.
Since unstable and deterministic clearinghouses cannot induce full par-
ticipation (Sönmez, 1999), this paper investigates whether distributional
constraints can be achieved by random clearinghouses by introducing a
notion of random stability for centralized markets—random constrained
stability—that embeds ex ante participation constraints.

Random constrained stability describes necessary conditions for partici-
pation, and so identifies whether a market’s distributional goal is achievable
at all. I show that a random constrained stable lottery exists if, but only
if, agents’ preferences are not too aligned. Thus, the presence of distribu-
tional constraints might give rise to a novel reason for a market’s unraveling.
The main finding of the paper is a polynomial-time algorithm that checks
whether a random constrained stable lottery exists, and so provides a lower
bound on the quotas that can be achieved by some random clearinghouse.

By departing from the ex post analysis conducted in the literature,
this paper suggests that voluntary participation might be an important,
although somewhat overlooked, feature of most centralized markets. That
is, a market’s inability to enforce participation might impose substantial
restrictions on the class of unstable allocations that can be achieved. To the
extent that participation in existing markets is voluntary, but they insist
on using deterministic clearinghouses, the results in this paper rationalize
why some markets fail to achieve their desired unstable allocations and
shed light on whether the use of random mechanisms might be an effective
re design.

7 Appendix: Proofs

Since Proposition 2 is a corollary of Proposition 3, this appendix contains
the proofs of Proposition 1 and Proposition 3.

Proof of proposition 1

Fix any state θ = (�,A) and assume that there is a unblocked matching
µ ∈ A(θ). It follows that µ ∈ F(θ), so that µ is stable at θ. Hence,
θ 6∈ Θ̄. For the other direction, assume that θ 6∈ Θ̄. By the Rural Hospitals
Theorem, it follows that no stable allocation at θ is admissible. But then,
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for every matching µ that is unblocked at θ we must have that µ 6∈ A(θ).

Proof of Proposition 3

At any state θ such that θ 6∈ Θ̄, the existence of random constrained
stable lotteries can be determined by running (some version of) deferred
acceptance algorithm. Hence, suppose that θ ∈ Θ̄.

I first show the “only if” part. Suppose, contrary to hypothesis,
that T breaks down at θ but some random constrained stable lottery exists.
Since T breaks down at θ, there is either:

1. some Step k ≥ 1 such that µk(θ) is not admissible; or

2. some Step k ≥ 1 and hospital h such that a subset of the set of
available doctors pointing at h satisfies qh > 0 but is not µk−1(θ)-
conditionally admissible.

I start from 1. I show by induction on k that the existence of some random
constrained stable lottery entails that µkh(θ) = µh for every µ ∈ Supp(γ)
and every h : µkh(θ) 6= ∅. Thus, the assumption that there is some k
such that µk(θ) is not admissible will lead to a contradiction. Take any
random constrained stable lottery γ. Suppose that k = 1 and consider
any h : µ1

h(θ) 6= ∅. Since µ1
h(θ) %h A for every A ⊆ D such that |A| ≤

min{qh, qr(h)}, it follows that:

µ1
h(θ) �h µh for every µ ∈ Supp(γ) : µh 6= µ1

h(θ).

Moreover, we have that h �d h̃ for every d ∈ µ1
h(θ) and every h̃ 6= h. Hence,

for every d ∈ µ1
h(θ):

µ1
d(θ) �d µd for every µ ∈ Supp(γ) : µd 6= µ1

d(θ).

If µ1 6∈ A(θ), Supp(γ) ⊆ A(θ) implies that for every µ ∈ Supp(γ) there
must be some hospital h : µ1

h(θ) 6= ∅ and some doctor d such that d ∈ µ1
h(θ)

and d 6∈ µh. Consider, then, the following pair (C, µ′), where C := {h} ∪
µ1
h(θ) and µ′ is defined as follows:

µ′i =


h i ∈ C : i 6= h

µ1
h(θ) i = h

∅ i 6∈ C

Since |µ1
h(θ)| ≤ min{qh, qr(h)}, it follows that µ′ ∈ F . Hence, (C, µ′) blocks

γ, a contradiction. Hence, for every µ ∈ Supp(γ) we must have:

µh := µ1
h(θ) for every h : µ1

h(θ) 6= ∅.
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Suppose that, up to some k > 1, we have that for every µ ∈ Supp(γ)
(inductive hypothesis):

µh := µkh(θ) for every h : µkh(θ) 6= ∅.

I now show that this implies that, for every µ ∈ Supp(γ) we must have:

µh := µk+1
h (θ) for every h : µk+1

h (θ) 6= ∅.

Take any h : µk+1
h (θ) 6= ∅ and notice that µk+1

h (θ) %h A for every µk(θ)-
conditionally admissible set A such that:

A ⊆ D \ {d : µtd(θ) 6= ∅ for some t ≤ k}.

By the inductive hypothesis, we must have:

µk+1
h (θ) �h µh for every µ ∈ Supp(γ) : µh 6= µk+1

h (θ).

Moreover, we must have h �d h̃ for every d ∈ µk+1
h (θ) and every:

h̃ 6= h : h̃ ∈ {h : µth(θ) = ∅ for every t ≤ k}.

Hence, for every d ∈ µk+1
h (θ):

µk+1
d (θ) �h µd for every µ ∈ Supp(γ) : µd 6= µk+1

d (θ).

By the induction hypothesis, for every t ≤ k and every µ ∈ Supp(γ) we
must have µh = µth(θ) for every h such that µth(θ) 6= ∅. If µk+1(θ) 6∈ A(θ),
then Supp(γ) ⊆ A implies that for every µ ∈ Supp(γ), there must be some
hospital h with µk+1

t (θ) = ∅ for every t ≤ k and µk+1
h (θ) 6= ∅ and a doctor

d such that d ∈ µk+1
h (θ) and d 6∈ µh. Consider, then, the following pair

(C, µ′), where C := {h} ∪ µk+1
h (θ) and µ′ is defined as follows:

µ′i =


h i ∈ C : i 6= h

µk+1
h (θ) i = h

∅ i 6∈ C

Since µk+1
h (θ) is µk(θ)-conditionally admissible, it follows that µ′ ∈ F .

Hence, (C, µ′) blocks γ; a contradiction. Hence, for every µ ∈ Supp(γ) we
must have:

µh := µk+1
h (θ) for every h : µk+1

h (θ) 6= ∅.

It thus follows that, for every µ ∈ Supp(γ) we must have:

µh := µh(θ) for every h : µh(θ) 6= ∅.
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This completes the “only if” part.
I now show 2. Take, then, any Step k ≥ 1 and any hospital h and

assume that a subset of the set of doctors pointing at h satisfies qh > 0
but is not µk−1-conditionally admissible. Hence, h’s most preferred subset
of the set of available doctors pointing at it satisfies qh but is not µk−1(θ)-
conditionally admissible. This follows because �h is responsive and h finds
every doctor to be acceptable. Call this set Oh. By 1. we know that, for
every µ ∈ Supp(γ) and every h such that µth(θ) for some t ≤ k − 1, we must
have µh = µth(θ). Since Supp(γ) ⊆ A(θ), it follows that µh 6= Oh for every
µ ∈ Supp(γ). By construction, Oh �h A for every µk−1(θ)-conditionally
admissible A such that:

A ⊆ D \ {d : µtd(θ) 6= ∅ for some t ≤ k − 1}.

Hence, Oh �h µh for every µ ∈ Supp(γ). Similarly, we must have h �d h̃
for every d ∈ Oh and every h̃ : µth(θ) = ∅ for every t ≤ k − 1. Thus, for
every d ∈ Oh:

h �h µd for every µ ∈ Supp(γ) : µd 6= h.

Consider the following pair (C, µ′), where C := {h} ∪Oh and µ′ is defined
as follows:

µ′i =


h i ∈ C : i 6= h

Oh i = h

∅ i 6∈ C

Since µ′ ∈ F , (C, µ′) blocks γ; a contradiction.
I now show the “if” part. Suppose that T does not break down. By

construction, T then produces a sequence of admissible assignments and,
by hypothesis, it terminates at any step k ≥ 1 where µk(θ) = µk−1(θ).
Assume, then, that T terminates at step k ≥ 1. By construction, for every
h : µk−1

h (θ) = ∅, h’s most preferred subset of the set of available doctors
pointing at it satisfying qh is µk−1(θ)-conditionally admissible. Let’s denote
this set by Oh. This is h’s “outside option” at k. On the other hand, by
construction no h with a non-empty outside option points to its outside
option. Let Ph then denote the set of doctors pointed by h. Similarly,
define Od and Pd for every d such that µtd(θ) = ∅ for every t ≤ k − 1. Notice
that, by construction, both Oi and Pi are µk−1(θ)-conditionally admissible
for every i : µk−1

i (θ) = ∅.
Recall that µ(θ) denotes the output of T when it terminates without

breaking down. By construction, then, µh(θ) := µth(θ) whenever µth(θ) for
some t ≤ k − 1. Notice that µ(θ) ∈ A. Given µ(θ), define:

AD := {d : µd(θ) = ∅} and AH := {h : µh(θ) = ∅ and Oh 6= ∅}
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to be, respectively, the set of available doctors and the set of available hos-
pitals with a non-empty outside option. I now construct a set of admissible
assignments:

1. pick any d ∈ AD and consider any assignment µd where: i) µdd = Pd
and ii) for every h : µh(θ) 6= ∅, µdh = µh(θ);

2. pick any h ∈ AH and consider any assignment µh where: i) µhh = Ph
and ii) for every h : µh(θ) 6= ∅, µdh = µh(θ).

Notice that, by construction, µd ∈ A and µh ∈ A for every d ∈ AD and
every h ∈ AH . Let F be the set containing all (and only) these admissible
assignments. I now show that any lottery over F is a random constrained
stable lottery. Denote any such lottery by γ.

It is not hard to see that the argument made in 1. of the “only if”
part entails that no i : µi(θ) 6= ∅ would block γ. Hence, it is sufficient
to show that no coalition of agents in I \ {i : µi(θ) 6= ∅} would block γ.
Take, then, any d ∈ AD. By construction, d is assigned its most preferred
available hospital at some matching in F ; namely, µdd = Pd. Hence, d
would only opt out with Pd or (possibly) some unavailable hospital. The
latter is impossible, so that d could only opt out with Pd. Set Pd = h
and consider h’s incentives to opt out. Suppose that there is a set A of
doctors that satisfies qh and is better than h’s best match in F ; namely,
µh. By construction of µh, A must contain either an unavailable doctor or
a doctor d′ such that Pd′ 6= h. No unavailable doctor would opt out with
h. Moreover, by construction µd

′

d′ �d′ h. Hence, only doctors in h’s outside
option would opt out with h. Since h’s best match in F is strictly better
than its outside option, no coalition can block γ.
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