The kernel of a derivation

H.G.J. Derksen

Department of Mathematics, Catholic University Nijmegen, Nijmegen, The Netherlands

Communicated by C.A. Weibel Received 12 November 1991 Revised 22 April 1992

Abstract

Derksen, H.G.J., The kernel of a derive on, Journal of Pure and Applied Algebra 84 (1993) 13-16.

Let K be a field of characteristic 0. Nagata and Nowicki have shown that the kernel of a derivation on $K[X_1, \ldots, X_n]$ is of finite type over K if $n \le 3$. We construct a derivation of a polynomial ring in 32 variables which kernel is not of finite type over K. Furthermore we show that for every field extension L over K of finite transcendence degree, every intermediate field which is algebraically closed in L is the kernel of a K-derivation of L.

1. The counterexample

In this section we construct a derivation on a polynomial ring in 32 variables, based on Nagata's counterexample to the fourteenth problem of Hilbert. For the reader's convenience we recall the fourteenth problem of Hilbert and Nagata's counterexample (cf. [1-3]).

Hilbert's fourteenth problem. Let L be a subfield of $\mathbb{C}(X_1, \ldots, X_n)$. Is the ring $L \cap \mathbb{C}[X_1, \ldots, X_n]$ of finite type over \mathbb{C} ?

Nagata's counterexample. Let $R = \mathbb{C}[X_1, \ldots, X_r, Y_1, \ldots, Y_r]$, $t = Y_1 Y_2 \cdots Y_r$ and $v_i = t X_i / Y_i$ for $i = 1, 2, \ldots, r$. Choose for j = 1, 2, 3 and $i = 1, 2, \ldots, r$ elements $a_{j,i} \in \mathbb{C}$ algebraically independent over \mathbb{Q} . Define $w_j = \sum_{i=1}^r a_{j,i} v_i$ for j = 1, 2, 3. Define $L = \mathbb{C}(w_1, w_2, w_3, t)$. If r is a square ≥ 16 then $R \cap L$ is not of finite type.

Using this example, we will construct a derivation of R with kernel equal to

Correspondence to: H.G.J. Derksen, Department of Mathematics, Catholic University Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands.

0022-4049/93/\$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

 $L \cap R$. Therefore the kernel of a derivation on $\mathbb{C}[X_1, \ldots, X_n]$ does not have to be of finite type.

Let D be the derivation

$$\frac{\partial}{\partial X_1} + X_2 \frac{\partial}{\partial X_2} + X_2 X_3 \frac{\partial}{\partial X_3} + \dots + X_2 X_3 \cdots X_n \frac{\partial}{\partial X_n}$$

on $K(X_1,\ldots,X_n)$.

Theorem 1. The kernel of D is equal to K.

Proof. First we will assume that $K = \mathbb{C}$. Define complex differentiable functions H_1, H_2, \ldots, H_n by $H_1(z) = z$ and $H_i(z) = \exp(H_{i-1}(z))$ for $i = 2, 3, \ldots, n$. H_1, H_2, \ldots, H_n are algebraically independent over \mathbb{C} . Let \mathcal{M} be the set of meromorphic functions on \mathbb{C} . Define a field-inclusion $\phi : \mathbb{C}(X_1, \ldots, X_n) \to \mathcal{M}$ by $\phi(X_i) = H_i$ for $i = 1, 2, \ldots, n$. It is easy to verify that $\phi(Df)(z) = \frac{d}{dz}\phi(f)(z)$ for all $f \in \mathbb{C}(X_1, \ldots, X_n)$ (it is sufficient to verify it for $f = X_1, \ldots, X_n$). If Df = 0 then $\phi(Df) = \frac{d}{dz}\phi(f) = 0$. So $\phi(f) \in \mathbb{C}$ and therefore $f \in \mathbb{C}$.

Now we will treat the general case. Suppose $f \in K(X_1, \ldots, X_n)$ with Df = 0. So f is a fraction of polynomials. Each polynomial is a finite K-linear combination of monomials. Therefore, one can choose $\alpha_1, \ldots, \alpha_k \in K$ such that $f \in \mathbb{Q}(\alpha_1, \ldots, \alpha_k)(X_1, \ldots, X_k)$. Let $L = \mathbb{Q}(\alpha_1, \ldots, \alpha_k)$. Then L can be embedded in \mathbb{C} and so $L(X_1, \ldots, X_n)$ can be embedded in $\mathbb{C}(X_1, \ldots, X_n)$. Because Df = 0 we have that $f \in \mathbb{C} \cap L(X_1, \ldots, X_n) = L$. So $f \in K$. \square

Corollary 2. If K is a field with characteristic 0, then there exists a derivation D of $K(X_1, \ldots, X_n)$ with kernel K. \square

Look again at the Nagata-counterexample. Choose also $a_{j,i}$ for $j=4,5,\ldots,r$ and $i=1,2,\ldots,r$ such that all $a_{j,i}$ with $i,j\in\{1,2,\ldots,r\}$ are algebraically independent over \mathbb{Q} . Define $w_j=\sum_{i=1}^r a_{j,i}v_i$ for $j=1,2,\ldots,r$, $w_j=Y_{j-r}$ for $j=r+1,\,r+2,\ldots,2r-1$ and $w_{2r}=t$.

Lemma 3.
$$\mathbb{C}(w_1, \ldots, w_{2r}) = \mathbb{C}(X_1, \ldots, X_r, Y_1, \ldots, Y_r).$$

Proof. It is sufficient to prove that $X_1, \ldots, X_r, Y_1, \ldots, Y_r \in \mathbb{C}(w_1, \ldots, w_{2r})$. Let $A = (a_{j,i})_{j,i=1}^r$. Then $\det(A) \neq 0$ for otherwise there would we an algebraic relation between the $a_{j,i}$. By definition

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_r \end{pmatrix} = A \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_r \end{pmatrix}, \quad \text{so} \quad \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_r \end{pmatrix} = A^{-1} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_r \end{pmatrix}.$$

Therefore, $v_1, v_2, \ldots, v_r \in \mathbb{C}(w_1, \ldots, w_{2r})$. Furthermore, $Y_1, \ldots, Y_{r-1}, t \in \mathbb{C}(w_1, \ldots, w_{2r})$ and also $Y_r = t/Y_1Y_2 \cdots Y_{r-1} \in \mathbb{C}(w_1, \ldots, w_{2r})$. Finally, $X_i = Y_i v_i/t \in \mathbb{C}(w_1, \ldots, w_{2r})$ for all i. \square

Using Lemma 3 we see that the transcendence degree of $\mathbb{C}(w_1,\ldots,w_{2r})$ over \mathbb{C} equals 2r. So w_4,\ldots,w_{2r-1} are algebraically independent over $L=\mathbb{C}(w_1,w_2,w_3,w_{2r})$. Corollary 2 says that there is a derivation D of $L(w_4,\ldots,w_{2r-1})$ with kernel L. Choose some $h \in R \setminus \{0\}$ such that $hD(X_1),\ldots,hD(Y_r) \in R$. Then E:=hD is a derivation of R with kernel $L \cap R$.

Theorem 4. Notations as above. Then the kernel of E on $\mathbb{C}[X_1, \ldots, X_r, Y_1, \ldots, Y_r]$ is not of finite type over \mathbb{C} . \square

2. The kernel of a derivation

In this section we will generalize Corollary 2 in the following way: If L is a field extension of K of finite transcendence degree such that K is algebraically closed in L then K appears as kernel of a derivation of L. In particular, every subfield of $K(X_1, \ldots, X_n)$ which is algebraically closed in $K(X_1, \ldots, X_n)$ and contains K, is the kernel of a derivation of $K(X_1, \ldots, X_n)$ over K.

Theorem 5. Let L be a field extension of K of transcendence degree n such that K is algebraically closed in L. Then there exists a derivation of L with kernel K.

Proof. Choose a transcendence basis f_1, \ldots, f_n of L over K. Corollary 2 gives us a derivation D of $K(f_1, \ldots, f_n)$ with kernel K. Because L is an algebraic extension of $K(f_1, \ldots, f_n)$ there exists a unique extension \tilde{D} of D which is a derivation on L. Suppose $\alpha \in \ker(\tilde{D})$. Then α is algebraic over $K(f_1, \ldots, f_n)$. Let $h \in K(f_1, \ldots, f_n)[X]$ be the minimum polynomial of α over $K(f_1, \ldots, f_n)$. Write

$$h(X) = X^{k} + h_{k-1}X^{k-1} + \cdots + h_{1}X + h_{0}$$

with $h_0, \ldots, h_{k-1} \in K(f_1, \ldots, f_n)$. Then

$$0 = \tilde{D}(h(\alpha))$$

$$= D(h_{k-1})\alpha^{k-1} + D(h_{k-2})\alpha^{k-2} + \dots + D(h_1)\alpha + D(h_0)$$

So $D(h_0) = D(h_1) = \cdots = D(h_{k-1}) = 0$ because h was already the minimum polynomial of α . Then $h_0, h_1, \ldots, h_{k-1} \in \ker(D) = K$. So α is algebraic over K and therefore $\alpha \in K$. This proves that the kernel of \tilde{D} is equal to K. \square

References

- [1] J.C. Diendonné, Invariant theory, old and new, Adv. in Math. 4 (1970) 1-80.
- [2] M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Lecture Notes, No. 31 (Tata Institute, Bombay, 1965).
- [3] M. Nagata, On the fourteenth problem of Hilbert, in: Proceedings of the International Congress on Mathematics, 1958 (Cambridge Univ. Press, New York, 1966) 459-462.
- [4] M. Nagata and A. Nowicki, Rings of constants for k-derivations in $k[x_1, \ldots, x_n]$, J. Math. Kyoto Univ. 28 (1988) 11-118.