INORGANIC SYNTHESES

Volume 25

..........

Board of Directors

JOHN P. FACKLER, JR. Texas A&M University BODIE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State University JAY H. WORRELL University of South Florida STANLEY KIRSCHNER Wayne State University JEAN'NE M. SHREEVE, University of Idaho

Future Volumes

- 26 HERBERT D. KAESZ University of California, Los Angeles
- 27 ALVIN P. GINSBURG AT&T Bell Laboratories
- 28 ROBERT J. ANGELICI Iowa State University
- 29 RUSSELL N. GRIMES University of Virginia
- 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute

International Associates

MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. O. FISCHER Technical University, Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Göttingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology, London AKIO YAMAMOTO Tokyo Institute of Technology, Yokohama Editor-in-Chief

HARRY R. ALLCOCK

Department of Chemistry Pennsylvania State University

INORGANIC SYNTHESES

Volume 25

A Wiley-Interscience Publication JOHN WILEY & SONS

New York Chichester Brisbane Toronto Singapore

Published by John Wiley & Sons, Inc.

Copyright © 1989 Inorganic Syntheses, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Catalog Number: 39-23015 ISBN 0-471-61874-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This volume is dedicated to W. Conard Fernelius (1905–1986), outstanding teacher, researcher, and scholar, who was one of the founders of *Inorganic Syntheses* and who continued throughout his life to be a leader in its development.

PREFACE

The synthesis of chemical compounds is the bedrock on which all other areas of chemistry depend. In this sense, *Inorganic Syntheses* represents an evolving compilation of techniques and ideas that provide a cross section of activity in the field at a particular time. Providing such a cross section is no easy task. At the present time, the field of inorganic synthesis is undergoing significant changes. Starting from its traditional foundation in small-molecule nonmetal chemistry and metal coordination chemistry, it has in recent years absorbed the dramatic expansion of activity in transition metal organometallic chemistry and cluster chemistry. More recently, connections have been developed to polymer chemistry, ceramic science, electroactive solids, and pharmacology.

The increasing involvement of inorganic chemists with the fields of polymer chemistry, solid state science, and ceramic science is based on the precept that the experimental techniques, theories, and models of smallmolecule inorganic chemistry can be applied to the infinitely more complex molecules found in these other areas. Synthetic chemists can play a major role in the design and preparation of new materials if a significant conceptual hurdle can be overcome. This hurdle is the dividing line between the well-understood behavior of small molecules (2-500 atoms) and the more complex behavior of linear macromolecules and three-dimensional, covalently bonded solids. It is a dividing line between compounds that can be characterized easily by modern methods and those that cannot, and between species with absolute compositions and precise molecular weights and substances with variable formulas and structures that can be understood only in statistical rather than absolute terms. Yet the knowledge and experience available within the community of inorganic chemists could have a profound influence on the development of new supramolecular systems, on which much of our advanced technology increasingly depends.

For this reason I have included in this volume a few examples of inorganic polymer syntheses (Chapter 2) and preparations of inorganic ring

Previous volumes of *Inorganic Syntheses* are available. Volumes I-XVI can be ordered from R. E. Krieger Publishing Co., Inc., P.O. Box 9542, Melbourne, Florida 32901; Volume XVII is available from McGraw-Hill, Inc.; subsequent volumes can be obtained from John Wiley & Sons, Inc.

systems (Chapter 1), which constitute models for more complex molecules and may eventually serve as reaction intermediates for polymers or for main group solid state syntheses. Chapter 3 provides a brief glimpse of the emerging role being played by synthesis in the development of pharmacologically active inorganic compounds. Chapter 4 contains examples of small-molecule coordination complexes and related compounds—the traditional core of inorganic chemistry. In addition, and in accordance with the format of previous volumes of *Inorganic Syntheses*, a section (Chapter 5) is set aside for transition metal organometallic compounds, including species with metal-metal bonds and cluster molecules. In this respect, I have been fortunate to be assisted by Gregory L. Geoffroy, who gathered together and edited the syntheses in this section. I thank him for his contribution to this volume.

Synthetic chemistry of any kind is not a trivial activity, and it should be pursued only by those who can recognize and avoid the inherent safety risks that exist. Thus, most of the procedures given in this volume should be undertaken only by individuals who are already competent synthetic chemists or who are working directly under the close supervision of someone who is. Potential hazards are identified throughout this volume, and these warnings should be taken seriously.

The main purpose of *Inorganic Syntheses* is to provide illustrative synthetic methods that are *reliable*. Thus, all the syntheses reported here have been checked experimentally by independent investigators. I greatly appreciate the contributions of those who submitted the syntheses and the truly essential efforts of the individuals who did the checking. Major assistance with the routing of correspondence and manuscripts to authors and checkers, and maintaining the overall momentum and organization of this volume, was provided by Noreen Allcock. I would also like to thank the members of the Editorial Board for their helpful suggestions and support. The contributions by Thomas Sloan, who compiled the index and answered nomenclature questions, and the advice of Duward Shriver on procedural matters, are particularly appreciated.

HARRY R. ALLCOCK

University Park, Pennsylvania February 1988

NOTICE TO CONTRIBUTORS AND CHECKERS

The *Inorganic Syntheses* series is published to provide all users of inorganic substances with detailed and foolproof procedures for the preparation of important and timely compounds. Thus the series is the concern of the entire scientific community. The Editorial Board hopes that all chemists will share in the responsibility of producing *Inorganic Syntheses* by offering their advice and assistance in both the formulation of and the laboratory evaluation of outstanding syntheses. Help of this kind will be invaluable in achieving excellence and pertinence to current scientific interests.

There is no rigid definition of what constitutes a suitable synthesis. The major criterion by which syntheses are judged is the potential value to the scientific community. For example, starting materials or intermediates that are useful for synthetic chemistry are appropriate. The synthesis also should represent the best available procedure, and new or improved syntheses are particularly appropriate. Syntheses of compounds that are available commercially at reasonable prices are not acceptable. We do not encourage the submission of compounds that are unreasonably hazardous, and in this connection, less dangerous anions generally should be employed in place of perchlorate.

The Editorial Board lists the following criteria of content for submitted manuscripts. Style should conform with that of previous volumes of Inorganic Syntheses. The introductory section should include a concise and critical summary of the available procedures for synthesis of the product in question. It should also include an estimate of the time required for the synthesis, an indication of the importance and utility of the product, and an admonition if any potential hazards are associated with the procedure. The Procedure should present detailed and unambiguous laboratory directions and be written so that it anticipates possible mistakes and misunderstandings on the part of the person who attempts to duplicate the procedure. Any unusual equipment or procedure should be clearly described. Line drawings should be included when they can be helpful. All safety measures should be stated clearly. Sources of unusual starting materials must be given, and, if possible, minimal standards of purity of reagents and solvents should be stated. The scale should be reasonable for normal laboratory operation, and any problems involved in scaling the procedure either up or down should be discussed. The criteria for judging the purity of the final product should be delineated clearly. The section on Properties should supply and discuss those physical and chemical characteristics that are relevant to judging the purity of the product and to permitting its handling and use in an intelligent manner. Under References, all pertinent literature citations should be listed in order. A style sheet is available from the Secretary of the Editorial Board.

The Editorial Board determines whether submitted syntheses meet the general specifications outlined above, and the Editor-in-Chief sends the manuscript to an independent laboratory where the procedure must be satisfactorily reproduced.

Each manuscript should be submitted in duplicate to the Secretary of the Editorial Board, Professor Jay H. Worrell, Department of Chemistry, University of South Florida, Tampa, FL 33620. The manuscript should be typewritten in English. Nomenclature should be consistent and should follow the recommendations presented in *Nomenclature of Inorganic Chemistry*, 2nd ed., Butterworths & Co., London, 1970, and in *Pure and Applied Chemistry*, Volume 28, No. 1 (1971). Abbreviations should conform to those used in publications of the American Chemical Society, particularly *Inorganic Chemistry*.

Chemists willing to check syntheses should contact the editor of a future volume or make this information known to Professor Worrell.

TOXIC SUBSTANCES AND LABORATORY HAZARDS

Chemicals and chemistry are by their very nature hazardous. Chemical reactivity implies that reagents have the ability to combine. This process can be sufficiently vigorous as to cause flame, an explosion, or, often less immediately obvious, a toxic reaction.

The obvious hazards in the syntheses reported in this volume are delineated, where appropriate, in the experimental procedure. It is impossible, however, to foresee every eventuality, such as a new biological effect of a common laboratory reagent. As a consequence, *all* chemicals used and *all* reactions described in this volume should be viewed as potentially hazardous. Care should be taken to avoid inhalation or other physical contact with all reagents and solvents used in procedures described in this volume. In addition, particular attention should be paid to avoiding sparks, open flames, or other potential sources that could set fire to combustible vapors or gases.

A list of 400 toxic substances may be found in the Federal Register, Vol. 40, No. 23072, May 28, 1975. An abbreviated list may be obtained from Inorganic Syntheses, Volume 18, p. xv, 1978. A current assessment of the hazards associated with a particular chemical is available in the most recent edition of Threshold Limit Values for Chemical Substances and Physical Agents in the Workroom Environment published by the American Conference of Governmental Industrial Hygienists.

The drying of impure ethers can produce a violent explosion. Further information about this hazard may be found in *Inorganic Syntheses*, Volume 12, p. 317. A hazard associated with the synthesis of tetramethyldiphosphine disulfide [*Inorg. Synth.*, **15**, 186 (1974)] is cited in *Inorganic Syntheses*, Volume 23, p. 199.

CONTENTS

Chapter One MAIN GROUP RING SYSTEMS AND RELATED COMPOUNDS

1.	Org	anocyclophosphanes	1
	Α.	Tri-tert-butyl-cyclotriphosphane	2
	Β.	Pentamethylcyclopentaphosphane	4 5 7
2.	Die	thylammonium cyclo-Octathiotetraphosphate(III)	5
3.	Ter	valent Phosphorus-Nitrogen Ring Compounds	
	Α.		8
	В.	2,4,6,8,9,10-Hexa(isopropyl)-2,4,6,8,9,10-hexaaza-	
		$1\lambda^3, 3\lambda^3, 5\lambda^3, 7\lambda^3$ -tetraphosphatricyclo- $[5.1.1.1^{3.5}]$ decane	9
4.	2,4,	6-Trichloro-1,3,5-triethylcyclophosph(III)azanes-	
	(1,3	5,2,4,6-Triazatriphosphorinanes)	13
5.	Åm	inocyclotetraphosphazenes and Transannular Bridged	
		yclic Phosphazenes	15
	A .	2,4,4,6,8,8-Hexachloro-trans-2,6-bis(ethylamino)-	
		$1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -tetraazatetraphosphocine	
		[1,3,3,5,7,7-Hexachloro-trans-1,5-bis(ethylamino)-	
		cyclotetraphosphazene]	16
	B.	3,3,5,7,7-Pentakis(dimethylamino)-9-ethyl-1-ethylamino-	
		$2,4,6,8,9$ -pentaaza- $1\lambda^5,3\lambda^5,5\lambda^5,7\lambda^5$ -tetraphosphabicyclo-	
		[3.3.1]-nona-1,3,5,7-tetraene	18
	С.	trans-2,4,4,6,8,8-Hexakis(dimethylamino)-2,6-	
		bis(ethylamino)-1,3,5,7, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$, $8\lambda^5$ -	
		tetraazatetraphosphocine	19
	D.	9-Ethyl-1,3,3,5,7,7-Hexakis(ethylamino)-2,4,6,8,9-	
		pentaaza- $1\lambda^5$, $3\lambda^5$, $5\lambda^5$, $7\lambda^5$ -tetraphosphabicyclo[3.3.1]nona-	
		1,3,5,7-tetraene	20
	E.	2,6-Bis(tert-butylamino) and 2,4-Bis(tert-butylamino)-	
		2,4,4,6,6,8,8,hexachloro-1,3,5,7,2λ ⁵ ,4λ ⁵ ,6λ ⁵ ,8λ ⁵ -tetraaza-	
		tetraphosphocines	21
			xiii

xiv	Contents
	comenta

	F.	2,2,4,4,6,6,8,8-Octakis(tert-butylamino)-	
		$1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -tetraazatetraphosphocine	23
6.	Chl	orofunctional $1,3,5,2\lambda^5,4\lambda^5$ -Triazadiphosphinines	24
	Α.	μ -Nitrido-bis(trichlorophosphorus)(1+)	
		Hexachloroantimonate	25
	Β.	1,1,2-Trichloro-1-methyl-2,2-diphenyl-µ-nitridodi-	
		phosphorus(1+) Chloride	26
	C.	2,2,4,5-Tetrachloro-6-phenyl-1,3,5,2λ ⁵ ,4λ ⁵ -	
		triazadiphosphinine	27
	D.	2,2,4,4-Tetrachloro-6-(dimethylamino)-1,3,5, $2\lambda^5$, $4\lambda^5$ -	
		triazadiphosphinine	27
	E.	2,4-Dichloro-2,4,6-triphenyl-1,3,5, $2\lambda^5$, $4\lambda^5$ -	
		triazadiphosphinine	28
	F.	2-Chloro-2-methyl-4,4,6-triphenyl-1,3,5, $2\lambda^5$, $4\lambda^5$ -	
		triazadiphosphinine	29
7.	Bin	ary Cyclic Nitrogen-Sulfur Anions	30
	Α.	Salts of $N_5S_4^-$ [1 λ^4 ,3 λ^4 ,5 λ^4 ,7-Tetrathia-2,4,6,8,9-penta-	
		azabicyclo[3.3.1]nona-1(8),2,4,6-tetraenide]	31
	В.	Salts of $N_3S_3^-$ [1 λ^4 ,3,5,2,4,6-Trithiatriazenide]	32
8.	Bin	ary Catena-Nitrogen-Sulfur Anions	35
	Α.	μ -Nitrido-bis(triphenylphosphorus)(1+)	
		Bis(disulfido)nitrate(1-)	35
	В.	Salts of the Sulfido(disulfido)nitrate $(1 -)$ Anion,	
		NS ₃ ⁻	37
9.	Pen	itanitrogen Tetrasulfide Chloride, $(N_5S_4)Cl [1\lambda^4, 3\lambda^4, 5\lambda^4, 7-$	
	Tet	rathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5-	
	tetr	aenylium Chloride]	38
10.	(N ₃	P_2S)ClPh ₄ , 1-Chloro-3,3,5,5-tetraphenyl-1 λ^4 ,2,4,6,3 λ^5 ,5 λ^5 -	
	thia	utriazadiphosphorine	40
11.	Sili	con and Tin Sulfur-Nitrogen Compounds, (Me ₃ Si) ₂ N ₂ S,	
	(Me	$e_3Sn)_2N_2S$, and $(Me_2Sn)S_2N_2$	43
	Α.	Bis(trimethylsilyl)sulfurdiimide,	
		$(Me_3Si)_2N_2S$	44
	В.	Bis(trimethylstannyl)sulfurdiimide,	
		$(Me_3Sn)_2N_2S$	45
	С.	Bis[mercaptosulfur Diimidato(2-)]tetramethylditin,	
		$[Me_2SnS_2N_2]_2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	46
12.		,1-Trimethyl-N-sulfinylsilanamine, Me ₃ SiNSO	48
13.	Sul	fur-Nitrogen Rings Containing Exocyclic Oxygen	49
	Α.	Tetrasulfurtetranitrogen Dioxide, $S_4N_4O_2$	50
	В.	Trisulfurdinitrogen Oxide, S ₃ N ₂ O	52
	С.	Dithiadiazolone, S ₂ N ₂ CO	53

Chapter Two INORGANIC POLYMER SYSTEMS

14.	Org	ganosilane High Polymers: Poly(methylphenylsilylene)	56		
	А.	Poly(methylphenylsilylene)	57		
	В.	Preparation of Other Polyorganosilanes	59		
15.	Org	anosilicon Derivatives of Cyclic and High Polymeric			
		osphazenes	60		
	Α.	gem(Methyl-trimethylsilylmethyl)tetrachlorocyclotriphos-			
		phazene	61		
	В.	Poly[gem(methyltrimethylsilylmethyl)chlorophos-			
		phazene]	63		
	С.	Poly[gem(methyltrimethylsilylmethyl)trifluoroethoxy-			
		phosphazene]	64		
	D.	Poly[gem(dimethyl)trifluoroethoxyphosphazene]	67		
16.		y(dimethylphosphazene) and Poly(methylphenylphos-			
		zene){Poly[nitrilo(dimethylphosphoronylidyne)] and			
		y[nitrilo(methylphenylphosphoranylidyne)]}	69		
	Α.	Poly(dimethylphosphazene)	69		
		1. P,P-Dimethyl-N,N-bis(trimethylsilyl)phosphinous			
		Amide	69		
		2. P, P-Dimethyl-N-(trimethylsilyl)phosphorimide			
		Bromide	70		
		3. 2,2,2-Trifluoroethyl P,P-Dimethyl-N-			
		(trimethylsilyl)phosphinimidate	71		
	-	4. Poly(dimethylphosphazene)	71		
	В.	Poly(methylphenylphosphazene)	72		
		1. P-Methyl-P-phenyl-N,N-			
		bis(trimethylsilyl)phosphinous Amide	72		
		2. 2,2,2-Trifluoroethyl P-methyl-P-phenyl-N-			
		(trimethylsilyl)phosphinimidate	72		
	-	3. Poly(methylphenylphosphazene)	73		
17.	Pentachloro(vinyloxy)cyclotriphosphazenes and Their				
	Polymers [2,2,4,4,6-Pentachloro-6-(ethenyloxy)-				
		$5,2\lambda^5,4\lambda^5,6\lambda^5$ -triazatriphosphorine]	74		
	Α.				
		(2-Vinyloxy-2,4,4,6,6-pentachlorocyclotriphospha-			
		zatriene; 2,2,4,4,6-Pentachloro-6-(ethenyloxy)-			
	-	$1,3,5,2\lambda^5,4\lambda^5,6\lambda^5$ -triazaphosphorine	75		
	В.	Poly[pentachloro(vinyloxy)cyclotriphosphazene]			
		(Poly[(2-vinyloxy-2,4,4,6,6-pentachlorocyclotriphosphaz-			
		triene)]; Poly[1-[2,2,4,4,6-pentachloro-1,3,5, $2\lambda^{5}$, $4\lambda^{5}$, $6\lambda^{5}$ -			
		triaztriphosphorine]	77		

Chapter Three COMPOUNDS OF PHARMACOLOGICAL INTEREST

18.	Boron Analogs of Amino Acids		
	Α.		80
	В.	Trimethylamine-carboxyborane (Boron Analog of	
		Betaine)	81
	C.	Trimethylamine-(ethylcarbamoyl)borane	83
	D.	Trimethylamine-carbomethoxyborane	84
19.	1-A	ziridinyl-Amino Substituted Cyclophosphazenes	86
	Α.		
		phazene [cis- and trans-2,4-Bis(1-aziridinyl)-2,4,6,6-	
		tetrakis(methylamino)-1,3,5, $2\lambda^{5}$, $4\lambda^{5}$, $6\lambda^{5}$ -triazatriphospho-	
		rine and 2,2-Bis(1-aziridinyl)-4,4,6,6-tetrakis(methyl-	
		amino)-1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -triazatriphosphorine]	86
		1. Compounds $N_3P_3Az_{6-n}Cl_n$	87
		2. Compounds $N_3P_3Az_2(NHMe)_4$	89
	Β.	trans-Non-gem-bis(aziridinyl)-hexa(methylamino)-	
		cyclotetraphosphazene[trans-2,6-Bis(1-aziridinyl)-	
		$2,4,4,6,8,8$ -hexakis(methylamino)- $1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -	
		tetraazatetraphosphocine]	91
		1. Compounds $N_4P_4Az_{8-n}Cl_n$	91
		2. Compounds $(trans-2, 6-N_4P_4Az_2(NHMe)_6$	93
20.	cis-l	Diammineplatinum α-Pyridone Blue	94
	Α.	Bis[bis(µ-2-pyridonato-N1,02)bis(cis-diammineplat-	
		inum(2.25+))] Pentanitrate Hydrate (cis-Diammine-	
		platinum α-Pyridone Blue or PPB)	95

Chapter Four METAL COMPOUNDS, COMPLEXES, AND LIGANDS

Dip	otassium Tetraiodoplatinate(II) Dihydrate	98
Alkyl or Aryl Bis(tertiary phosphine) Hydroxo Complexes of		
Platinum(II)		100
Α.	trans-Hydroxo(phenyl)bis(triethylphosphine)-	
	platinum(II)	102
В.	trans-Hydroxo(phenyl)bis(triphenylphosphine)-	
	platinum(II)	103
С.		
	platinum(II)	104
	Alk Plat A. B.	 Platinum(II) A. trans-Hydroxo(phenyl)bis(triethylphosphine)- platinum(II) B. trans-Hydroxo(phenyl)bis(triphenylphosphine)- platinum(II)

	D.	trans-Hydroxo(methyl)[1,3-propanediylbis- (diphenylphosphine)]platinum(II)	105	
23.	Tris(bidentate)ruthenium(II) Bis(hexafluorophosphate)			
25.	Complexes			
	Α.	(2,2'-Bipyridine)bis(1,10-phenanthroline)ruthenium(II)	107	
		Bis(hexafluorophosphate)	108	
	В.	Tris(2,2'-bipyridine)ruthenium(II)		
		Bis(hexafluorophosphate)	109	
24.	Potassium Trialkyl- and Triarylstannates: Preparation by the			
		rotonation of Stannanes with Potassium Hydride	110	
	Α.	Potassium Triphenylstannate	111	
	B .	Potassium Tributylstannate	112	
	С.	Properties	113	
25.	(Ber	nzenethiolato)tributyltin	114	
26.		of (Benzenethiolato)tributyltin to Prepare Complexes of		
		ganese Carbonyl Having Bridging Thiolate Ligands	115	
	Α.	Bis-µ-(benzenethiolato)-octacarbonyldimanganese(I)	116	
	В.	Tetra-µ ₃ -(benzenethiolato)-		
		dodecacarbonyltetramaganese(I)	117	
	C.	Tetraethylammonium Tris-(µ-benzenethiolato)-		
		hexacarbonylmanganate(I)	118	
27.	Met	hylenebis[dichlorophosphine](Methylenebis[phosphorous		
		loride]), Chlorobis[(dichlorophosphino)methyl]phos-		
	phin	e([Chlorophosphindenebis(methylene)]bis[phosphorous		
	Dicł	nloride]), and Methylenebis[dimethylphosphine]	120	
	Α.	Preparation of Organoalumnium Intermediates	120	
	В.	Methylenebis[dichlorophosphine] and		
		Chlorobis[(dichlorophosphino)methyl]phosphine	121	
	С.	Methylenebis[dimethylphosphine]	121	
28.	1,4,1	7,10,13,16-Hexathiacyclooctadecane (Hexathia-18-crown-		
		d Related Crown Thioethers)	122	
29.		Crown-6)Potassium Dicyanophosphide(1-)	126	
30.		Diphenylphosphino)benzenamine	129	
31.		um Salt of $(1R)$ -3-Nitrobornan-2-one (Sodium d - α -		
		phornitronate)	133	
32.	Tris(glycinato)cobalt(III)	135	
33.		olution of the Tris(oxalato)chromate(III) Ion by a Sec-		
		Order Asymmetric Synthesis	139	
	Α.	Precipitation of (+)-Bis(1,2-ethanediamine)(oxalato)-		
		cobalt(III) (+)-Tris(oxalato)chromate(III)		
		Hexahydrate-(+),(+)-Diastereomer	140	

xviii Contents

	В.	Isolation of Potassium (+)-Tris(oxalato)chromate(III)	
		Dihydrate	141
	С.	Isolation of Potassium (-)-Tris(oxalato)chromate(III)	
		Monohydrate	142
34.	Dif	luorodioxouranium(VI)	144
35.	The	Ammonium Chloride Route to Anhydrous Rare Earth	
	Chl	orides—The Example of YCl ₃	146

Chapter Five TRANSITION METAL ORGANOMETALLIC COMPOUNDS

36.	Bis(phosphine) Derivatives of Iron Pentacarbonyl and		
	Tetracarbonyl(tri-tert-butylphosphine)iron(0)	151	
	A. Tricarbonylbis(triphenylphosphine)iron(0)	154	
	B. Tricarbonylbis(tricyclohexylphosphine)iron(0)	154	
	C. Tricarbonylbis(tri-n-butylphosphine)iron(0)	155	
	D. Tricarbonylbis(trimethylphosphine)iron(0)	155	
	E. Tetracarbonyltri- <i>tert</i> -butylphosphineiron(0)	155	
37.	Tricarbonyl Bis(N, N-dialkycarbamodithiolate)tungsten(II)	157	
38.	Cyclopentadienylbis(trimethylphosphine) and		
	Cyclopentadienylbis(trimethylphosphite) Complexes of Co		
	and Rh	158	
	A. (η ⁵ -Cyclopentadienyl)bis(trimethylphosphine)-		
	rhodium(I)	159	
	B. $(\eta^{5}$ -Cyclopentadienyl)bis(trimethylphosphine)cobalt(I)	160	
	C. $(\eta^5$ -Cyclopentadienyl)bis(trimethylphosphite)cobalt(I)	162	
	D. (η ⁵ -Cyclopentadienyl)bis(trimethylphosphite)-		
	rhodium(I)	163	
39.	Mixed Cobalt-Ruthenium Dodecacarbonyl Clusters:		
	Dodecacarbonylhydridotricobaltruthenium,		
	$Co_3RuH(CO)_{12}$	164	
40.	Dinuclear Phosphido and Arsenido Derivatives of		
	Molybdenum		
	A. Tetracarbonylbis(η ⁵ -cyclopentadienyl)-μ-(di-tert-butyl-		
	phosphido)-µ-hydrido-dimolybdenum(2+)	168	
	B. Tetracarbonylbis(η^{5} -cyclopentadienyl)- μ -(dimethyl-		
	arsido)- μ -hydrido-dimolybdenum(2+)	169	

-

41.	Dicarbonylbis(di-tert-butylphosphine)(µ-di-tert-butylphos-				
	phido)-µ-hydrido-dirhodium(1 +)(Rh ₂ (µ-t-Bu ₂ P)-				
	$(\mu-H)(CO)_2(t-Bu_2PH)_2$ and μ -Chloro-bis $(\eta^4-1,5$ -cycloocta-				
	diene)(μ -di-tert-butylphosphido)dirhodium(1+)				
	(Rh	$u_2(\mu-t-Bu_2P)\mu-Cl(cod)_2$, cod = 1,5-cyclooctadiene)	170		
	Â.	Dicarbonylbis(di-tert-butylphosphine)(µ-di-tert-butyl-			
		phosphido- μ -hydrido-dirhodium $(1 +)$ [Rh ₂ (μ -t-Bu ₂ P)-			
		$(\mu-H)(CO)_2(t-Bu_2PH)_2$]	171		
	B.	μ -Chloro-bis(η^4 -1,5-cyclooctadiene)(μ -di-tert-butylphos-			
		phido)-dirhodium(1+) [$Rh_2(\mu-t-Bu_2P)\mu$ -Cl(cod) ₂]	172		
42.	Bis-	tert-butylphosphido (t-BuP(H) ⁻) Bridged Dimers of			
	Rho	dium(1+) and Nickel(1+) Containing Rh=Rh Double			
		Ni—Ni Single Bonds	173		
	A.	Bis-tert-butylphosphidotetrakis(trimethylphosphine)-			
		dirhodium(1+)	174		
	В.	Bis-tert-butylphosphidotetrakis(trimethylphosphine)-			
	D.	dinickel(1+)	176		
43.	Tet	racarbonylbis(μ -di- <i>tert</i> -butylphosphido)dicobalt(I)[Co(μ -t-	1/0		
ч		$P)(CO)_2]_2$	177		
44.		Cyclopentadienyl)diruthenium Complexes	179		
	A.	Tetracarbonylbis(η^{s} -cyclopentadienyl)diruthenium	180		
	B.	μ -Carbonyl-carbonylbis($\eta^{-cyclopentadienyl)$ (μ -3-oxo-	100		
	Б.	1,2-diphenyl-1-η:1,2,3-η-1-propen-1,3-diyl)diruthenium			
		$(Ru-Ru), [Ru_2(CO)(\mu-CO)\{\mu-\eta^1:\eta^3-C(O)C_2Ph_2\}(\eta^5-$			
			181		
	0	$C_{5}H_{5}_{2}$ (1)	101		
	C.	μ -Carbonyl- μ -methylene-bis[carbonyl(η^{s} -cyclopenta-	100		
	-	dienyl)ruthenium]	182		
	D.	μ-Carbonyl-μ-ethenylidene-bis[carbonyl(η ⁵ -cyclo-	102		
	-	pentadienyl)ruthenium]	183		
	Е.	μ-Carbonyl-μ-ethylidyne-bis[carbonyl(η ⁵ -cyclopenta-	404		
	_	dienyl)ruthenium] Tetrafluoroborate	184		
	F.	μ-Carbonyl-μ-ethylidene-bis[carbonyl(η ⁵ -			
		cyclopentadienyl)ruthenium]	185		
45.	Di-µ-iodo-bis(tricarbonylosmium),				
	Bis(tetracarbonyliodoosmium), and Dicarbonyliodo-				
	(η ⁵ -	Cyclopentadienyl)osmium	187		
	Α.	Hexacarbonyl-di-µ-iododiosmium(I)	188		
	В.	Bis[tetracarbonyliodoosmium(I)]	190		
	С.	Dicarbonyl(n ⁵ -Cyclopentadienyl)iodoosmium and			
		$Dicarbonyliodo(\eta^5$ -pentamethylcyclopentadienyl)osmium	191		
46.		litrido-bis(triphenylphosphorus(1 +)µ-carbonyl-			
	dec	acarbonyl-µ-hydridotriosmate(1-)	193		

Contents

47.	Dec	arbonyl-(n ⁵ -cyclopentadienyl)dihydrocobalttriosmium,				
	$CoOs_3(\mu-H)_2(\eta^5-C_5H_5)(\mu-CO)(CO)_9$; Nonacarbonyl-					
	(m ⁵ -	cyclopentadienyl)trihydrido- and (n ⁵ -Cyclopentadienyl)-				
	tetrahydridocobalttriosmium CoOs ₃ (μ -H) ₄ (η ⁵ -C ₅ H ₅)(CO) ₉ and					
		$Ds_{3}(\mu-H)_{4}(\eta^{5}-C_{5}H_{5})(CO)_{9}$	195			
	Α.	Decarbonyl(n ⁵ -cyclopentadienyl)dihydridocobalt-				
		triosmium $CoOs_3(\mu-H)_2(\eta^5-C_5H_5)(\mu-CO)(CO)_9$	196			
	В.	Nonacarbonyl(n ⁵ -cyclopentadienyl)trihydro- and				
		tetrahydro(n ⁵ -cyclopentadienyl)cobalttriosmium,				
		$CoOs_3(\mu-H)_3(\eta^5-C_5H_5)(CO)_9$ and $CoOs_3(\mu-H)_4(\eta^5-$				
		$C_{5}H_{5})(CO)_{9}$	197			
Inde	x of	Contributors	201			
Subj	ject I	ndex	211			
For	nula	Index	243			

XX

CORRECTION TO VOLUME 24

DICARBONYL(η⁵-CYCLOPENTADIENYL) (2-METHYL-1-PROPENYL-κC¹)IRON AND DICARBONYL(η⁵-CYCLOPENTADIENYL)(η²-2-METHYL-1-PROPENE)IRON(1+) TETRAFLUOROBORATE

SUBMITTED BY MYRON ROSENBLUM*

The preparation of dicarbonyl(η^5 -cyclopentadienyl)(2-methyl-1-propenyl- κC^1)iron requires 3-chloro-2-methyl-1-propene (methallyl chloride), not the reagent given in Reference 1, p. 165.¹

References

1. M. Rosenblum, W. P. Giering, and S.-B. Samuels, Inorg. Synth. 24, 163 (1986).

*Department of Chemistry, Brandeis University, Waltham, MA 02254.

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

Chapter One

MAIN GROUP RING SYSTEMS AND RELATED COMPOUNDS

1. ORGANOCYCLOPHOSPHANES

Submitted by M. BAUDLER* and K. GLINKA* Checked by A. H. COWLEY and M. PAKULSKI†

Organocyclophosphanes $(PR)_n$ (n = 3-6) can be prepared by various methods, most of which start from the corresponding organodihalophosphane RPCl₂. The common methods of preparation¹ are either based on the dehydrohalogenation reaction between RPH₂ and RPCl₂ or on the dehalogenation of RPCl₂ with metals or metal hydrides. These reactions are nonspecific as to the ring size of the cyclophosphane formed, and in most cases those oligomers $(PR)_n$ are generated that exhibit the relatively highest thermodynamic stability. Small alkyl substituents as well as the phenyl group favor ring size five, whereas bulky organo groups lead to the formation of four-membered rings.² In addition, in the last decade it has

Editor's note: The nomenclature used in this synthesis follows accepted practice among many synthetic chemists. It differs, however, from the Chemical Abstracts recommendation in which a cyclotriphosphane would be described as a triphosphirane. A third usage describes them as cyclotriphosphines.

*Institut für Anorganische Chemie, Universität Köln, Greinstrasse 6, D-5000 Köln 41, Federal Republic of Germany.

†Department of Chemistry, University of Texas, Austin, TX 78712.

been shown that cyclotriphosphanes can be synthesized if substituents of suitable bulkiness are chosen.^{3,4} The stability of these compounds must be attributed to kinetic effects.

A very interesting feature of the cyclophosphanes of various ring sizes is their ability to form complexes with metal carbonyls and transition metal salts.¹

The procedure described for the synthesis of tri-*tert*-butyl-cyclotriphosphane, the first stable three-membered phosphorus ring compound, follows the originally published route.⁵

Pentamethylcyclopentaphosphane has been prepared by the thermal disproportionation of CH_3PF_2 ,⁶ by the action of metallic lithium^{7,8} or magnesium turnings⁷ on CH_3PCl_2 and by the reaction of CH_3PBr_2 with magnesium powder.⁹ The following procedure, using lithium hydride as the reducing agent, has been found advantageous because it is time saving and gives satisfactory yields.¹⁰

Important

Since the organodihalophosphanes and the organocyclophosphanes are easily oxidized, all reactions must be carried out under an atmosphere of dry, oxygen-free argon or nitrogen, and all reaction products must be manipulated under strict exclusion of air.

A. TRI-tert-BUTYL-CYCLOTRIPHOSPHANE

 $3t-C_4H_9PCl_2 + 3Mg \longrightarrow (t-C_4H_9P)_3 + 3MgCl_2$

Procedure

■ **Caution.** Careful handling of organodichlorophosphanes and organocyclophosphanes inside an efficiently working fume hood is absolutely necessary.

A 1-L, two-necked, round-bottomed flask fitted with a lateral stopcock is equipped with a pressure-equalizing dropping funnel and a reflux condenser capped with an adapter. The lateral stopcock and the adapter are both connected via a selector valve with a source of argon (including a mercury bubbler) and a vacuum pump, respectively. The vessel is charged with 29 g (1.2 mol) of magnesium turnings and some crystals of iodine. The apparatus is evacuated and filled with argon three times. A 350-mL sample of dry tetrahydrofuran (THF) is then poured into the flask under countercurrent argon flow, and a solution of 63.6 g (0.4 mol) of *tert*-butyldichlorophosphane (*tert*-butylphosphonous dichloride)¹¹ in 200-mL dry THF is transferred to the dropping funnel following the same precaution as before. The flask is heated in a water bath until the solvent refluxes. After removing the bath and starting the magnetic stirrer, the t-C₄H₉PCl₂ solution is added dropwise at such a rate that the reflux is maintained. If no spontaneous reaction starts during the addition of the first 50 mL of the solution, it is necessary to initiate the reaction by adding some drops of bromine via the lateral stopcock using a syringe and a cannula. The reaction mixture becomes yellow with vigorous foaming, and magnesium chloride precipitates. After the addition is complete, stirring is continued for a further 15 min without heating.

The dropping funnel and the condenser are replaced with a stopper and an adapter under countercurrent argon flow via the lateral stopcock. At about 40°, the solvent is removed under vacuum (water aspirator connected with the adapter, trap cooled to -78°), to leave a solid, which is covered with 500 mL of dry *n*-pentane and crushed thoroughly with a glass rod. while argon is introduced via the lateral stopcock. The stopper is then replaced with a filtration apparatus (medium-porosity glass frit and 2-L flask, each fitted with a lateral stopcock), which previously has been evacuated and filled with argon three times, the glass frit being closed by a socket cap during these operations. The pentane suspension is poured into the filter by turning the whole apparatus upside down. Filtration proceeds by evacuating the 2-L flask via the lateral stopcock. Subsequently the filter cake is washed with 5 \times 100-mL portions of dry *n*-pentane. The pentane solution is concentrated under reduced pressure to a volume of about 80 mL (water jet pump, trap cooled to -78°) and transferred through a bent tube to a 100-mL round-bottomed flask fitted with a lateral stopcock and filled with argon. After removing the remaining solvent by successive use of a water aspirator and an oil pump the residue is fractionated by vacuum distillation through a vacuum jacket vigreux column (15 cm) topped with a short-path distillation head that is fitted with a vertical condenser. Pure colorless $(t-C_4H_9P)_3$ distills at 76 to 80°/0.2 torr (bath temperature 140-160°) and solidifies in the ice-cooled receiver (yield 20.1 g, 57%).

At the end of the distillation the column may be blocked by subliming tetra-*tert*-butyl-cyclotetraphosphane, $(t-C_4H_9P)_4$. In this case the distillation must be interrupted at once by removing the oil bath.

Properties

The colorless needle-shaped crystals of $(t-C_4H_9P)_3$ (mp 41°, sealed tube) can be stored for months at -18° under an inert gas atmosphere. They are readily soluble in benzene, toluene, THF, dioxane, carbon disulfide, and *n*-pentane, whereas contact with halogenated hydrocarbons or water brings about decomposition. The compound is rapidly attacked by atmo-

spheric oxygen, mainly in solution. Therefore, $(t-C_4H_9P)_3$ may ignite, if it is finely divided or comes in contact with cell tissue. The ³¹P {¹H} NMR spectrum shows an A₂B system with $\delta_A = -71.0$, $\delta_B = -109.6$, $J_{AB} = -201$ Hz (in C₆D₆); the appearance of a singlet at $\delta = -58.1$ indicates the presence of some $(t-C_4H_9P)_4$.

Reaction of $(t-C_4H_9P)_3$ with PCl₅ (molar ratio 1:2) yields the diphosphane Cl $(t-C_4H_9)P$ —P $(t-C_4H_9)Cl$,¹² which is an excellent synthon for threemembered phosphorus heterocycles of the type $(t-C_4H_9P)_2ER_n$ (E = hetero atom, n = 0-2)⁴ as well as for polyphosphorus compounds.¹³

B. PENTAMETHYLCYCLOPENTAPHOSPHANE

 $5CH_3PCl_2 + 10LiH \longrightarrow (CH_3P)_5 + 10LiCl + 5H_2$

Procedure

■ **Caution.** Pentamethylcyclopentaphosphane is extremely sensitive toward oxygen. Use the precautions listed in Section A and in addition, take into account that more than 12 L of hydrogen is evolved.

The compound $(CH_3P)_5$ is prepared in a reaction apparatus and by a technique analogous to that described in Section A, but using a 500-mL reaction flask, a filtration apparatus with a 1-L flask, and a normal distillation link.

Over a period of 3 hr a solution of 65 g (0.56 mol) of methyldichlorophosphane (methylphosphonous dichloride)* in 100 mL of dry THF is added dropwise to a stirred suspension of 10 g (1.26 mol) of lithium hydride in 200 mL of THF. The reaction is started without external heating and the CH₃PCl₂ solution is added at such a rate, that the solvent refluxes smoothly. After additional heating at reflux for at least 3 hr, the solvent is removed *in vacuo* and the residue is crushed under 300 mL of dry *n*-pentane. The suspension is then filtered, the filter cake is washed with 5×20 -mL portions of pentane, and the combined filtrates are concentrated to a volume of about 50 mL. After transferring the yellow solution to a 100-mL flask, the pentane is completely removed and the crude product is purified by vacuum distillation. Colorless (CH₃P)₅ distills at 100°/0.5 torr (lit.⁷ bp 110-112°/1 torr); yield 20.3 g (79%).

Properties

The compound (CH₃P)₅ is a colorless oily liquid with a characteristic strong odor. It is extremely sensitive to oxygen; contact with traces of air causes

*Hoechst AG, Postfach 800320, D-6230 Frankfurt am Main 80, Federal Republic of Germany, or prepared according to ref. 14.

an immediate turbidity. The compound is readily soluble in aliphatic and aromatic hydrocarbons as well as in cyclic and open-chain ethers, whereas halogenated hydrocarbons initiate decomposition. Infrared and Raman spectra of $(CH_3P)_5$ have been reported.¹⁰ In the ³¹P {¹H} NMR spectrum a complex AA'BB'C pattern centered at $\delta = +19.7$ is observed.¹⁵

References

- 1. L. Maier, Organic Phosphorus Compounds, Vol. 1, G. M. Kosolapoff and L. Maier (eds.), Wiley-Interscience, New York, 1972, p. 339.
- 2. L. R. Smith and J. L. Mills, J. Am. Chem. Soc., 98, 3852 (1976).
- 3. M. Baudler, Pure Appl. Chem., 52, 755 (1980).
- M. Baudier, Angew. Chem., 94, 520 (1982); Angew. Chem. Int. Ed. (Engl.), 21, 492 (1982).
- 5. M. Baudler, J. Hahn, H. Dietsch, and G. Fürstenberg, Z. Naturforsch., B 31, 1305 (1976); M. Baudler and Ch. Gruner, Z. Naturforsch., B 31, 1311 (1976).
- V. N. Kulakova, Yu.M. Zino'ev, and L. Z. Soborovskii, Zh. Obshch. Khim., 29, 3957 (1959); Chem. Abs. 54, 20846c (1960).
- 7. Wm. A. Henderson, Jr., M. Epstein, and F. S. Seichter, J. Am. Chem. Soc., 85, 2462 (1963).
- K. Issleib, Ch. Rockstroh, I. Duchek, and E. Fluck, Z. Anorg. Allg. Chem., 360, 77 (1968).
- 9. W. Kuchen and W. Grünewald, Chem. Ber., 98, 480 (1965).
- 10. M. Baudler and K. Hammerström, Z. Naturforsch., B 20, 810 (1965).
- 11. M. Fild, O. Stelzer, and R. Schmutzler, Inorg. Synth., 14, 4 (1973).
- 12. M. Baudler, J. Heilmann, and J. Hahn, Z. Anorg. Allg. Chem., 489, 11 (1982).
- 13. M. Baudler and W. Göldner, Chem. Ber., 118, 3268 (1985).
- 14. L. Maier, Inorg. Synth., 7, 82 (1963), note 2.
- J. P. Albrand, D. Gagnaire, and J. B. Robert, J. Am. Chem. Soc., 95, 6498 (1973); 96, 1643 (1974).

2. DIETHYLAMMONIUM cyclo-OCTATHIOTETRAPHOSPHATE(III)

 $P_4 + 2(Et_2NH_2)_2S_4 \longrightarrow (Et_2NH_2)_4(P_4S_8)$

Submitted by HANS H. FALIUS* and ANDREAS B. SCHLIEPHAKE* Checked by A. H. COWLEY and M. PAKULSKI[†]

Compounds containing phosphorus-phosphorus bonds are synthesized either by coupling of phosphorus atoms or by partial chemical cleavage of

*Institut für Anorganische und Analytische Chemie, Technische Universität, Hagenring 30, 3300 Braunschweig, Federal Republic of Germany.

†Department of Chemistry, University of Texas, Austin, TX 78712.

the bonds in elemental phosphorus.¹ Normally the latter method does not lead to uniform reaction products, but compounds that have not yet been prepared by other methods are isolable from the mixtures.^{2,3} White phosphorus readily reacts with polysulfidic sulfur and to a large extent only two bonds are broken in the P₄ tetrahedra. This leads to the first known square homocycle consisting of four tetracoordinated phosphorus atoms. The reaction is rapid and the cyclic tetraphosphate can be isolated in 2 hr giving 50% yield.

Caution. Because of the very poisonous nature of the H_2S , the reaction must be performed in an efficient hood. Notice should be taken of the usual precautions for handling white phosphorus: It is very air sensitive and must be stored and cut under water. Before it is weighed and used in the reaction, it is washed with methanol. Protective gloves, glasses, and clothing should be worn. Low valent phosphorus compounds are toxic, and contact with eyes or mucous membranes should be strictly avoided.

Procedure

Solvents and H₂S are dried (N-N-dimethylformamide with 4-A molecular sieves, diethylamine with sodium wire, and hydrogen sulfide with P_4O_{10}). To a three-necked, round-bottomed, 250-mL flask equipped with a magnetic stirrer, thermometer, reflux condenser, and a gas inlet (vented through a safety bubbler) is added 60 mL (0.779 mol) of N,N-dimethylformamide (DMF), 25.1 mL (0.242 mol) of diethylamine, and 10.35 g (0.323 mol) of sulfur. The mixture is heated in a water bath to 45° and flushed with hydrogen sulfide with vigorous stirring until the solution is saturated (about 20-30 min). The hydrogen sulfide source is then removed and replaced with nitrogen. After addition of 5.00 g (0.161 mol) of white phosphorus, the dark brown solution is stirred slowly. Once the phosphorus has melted the reaction begins and the reaction rate depends on the degree of distribution of the molten phosphorus. If the exothermic reaction proceeds too quickly the temperature will rise above 50° resulting in a greater amount of by-products. When the evolution of a small amount of gas has ended, the solution can be stirred faster. After the product has precipitated and the solution has turned dark green, the mixture is stirred vigorously for 20 min in order to be certain that no elemental phosphorus remains unchanged. The total reaction time after addition of phosphorus is about 1 hr. After cooling to room temperature, the precipitate is removed by filtering with a Büchner funnel and washed with DMF until it is white. Then it is suspended in acetonitrile, filtered by suction again, washed with acetonitrile and ether, and dried under vacuum (20°, 0.01 torr, 20 min) to give 12.3-14.2 g (45-52% yield) of $(Et_2NH_2)_4(P_4S_8)$.

Anal. Calcd. for C₁₆H₄₈N₄P₄S₈: C, 28.4; H, 7.2; N, 8.3; P, 18.3; S, 37.9. Found: C, 28.3; H, 7.3; N, 8.2; P, 18.5; S, 37.5.

The material so prepared is generally pure enough for most purposes.

Properties

The cyclo-tetraphosphate is a slightly yellow crystalline solid, mp 144°, which is readily soluble in water and formamide. The compound is stable in air and the anion is hydrolyzed very slowly.⁴ Its ³¹P NMR spectrum (formamide) shows a singlet at $\delta = 121.6$ ppm (85% H₃PO₄, external) and the IR spectrum has been reported.⁵ The diethylammonium salt may easily be converted to the ammonium salt by pouring its aqueous solution into a concentrated solution of ammonium nitrate. The compound $(NH_4)_4(P_4S_8) \cdot 2H_2O$ forms less soluble shiny flaky platelets. The $[P_4S_8]^{4-1}$ anion contains a square planar P₄ ring⁴ and gives precipitates with Ag, Cu^{II}, Cd, Hg^{II}, Sn^{II}, Pb^{II}, and Bi^{III} cations.

References

- 1. A. H. Cowley, Compounds Containing Phosphorus-Phosphorus Bonds, Benchmark Papers, Dowden, Hutchinson, and Ross Inc., Stroudsburg, PA, 1973.
- 2. H. H. Falius, Z. Anorg. Allgem. Chem., 394, 217 (1972); 396, 245 (1973).
- 3. W. Krause and H. H. Falius, Z. Anorg. Allgem. Chem., 496, 80 (1983).
- 4. H. H. Falius, W. Krause, and W. S. Sheldrick, Angew. Chem., 93, 121 (1981); Angew. Chem. Int. Ed. (Engl.), 20, 103 (1981).
- 5. H. Bürger, G. Pawelke, and H. H. Falius, Spectrochim. Acta, 37 A, 753 (1981).

3. TERVALENT PHOSPHORUS-NITROGEN **RING COMPOUNDS**

Submitted by O. J. SCHERER* and R. ANSELMANN* Checked by R. T. PAINE[†] and S. KARTHIKEYAN[†]

The first cyclodiphosphazane (diazadiphosphetidine) was reported by Michaelis and Schröter¹ in 1894. The synthesis of 1,3-di-tert-butyl-2,4-di-

*Fachbereich Chemie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-6750 Kaiserslautern, Federal Republic of Germany.

†Department of Chemistry, The University of New Mexico, Albuquerque, NM 87131.

7

chlorocyclodiphosphazane, (CIPNCMe₃)₂, in 1969² and later,^{3,4} the X-ray sturcture characterization of the cis isomer,⁵ as well as the discovery of monomeric aminoiminophosphanes⁶ of the type RR'N—P=NR" gave important impulses to the chemistry of these four-membered tervalent phosphorus-nitrogen ring compounds.⁷ Chlorine atom substitution reactions, oxidation of one or both phosphorus atoms,⁷ separation of cis and trans isomers, and especially coordination chemistry^{4,7,8} have been studied intensively.

A. 1,3-DI-tert-BUTYL-2,4-DICHLOROCYCLODIPHOSPHAZANE

Method 1

$$2(Me_{3}Si)(Me_{3}C)NLi + 2PCl_{3} \longrightarrow cis$$

$$P \longrightarrow N$$

$$P \longrightarrow N$$

$$P \longrightarrow N$$

$$P \longrightarrow N$$

$$Me_{3}C \qquad Cl$$

$$P \longrightarrow N$$

$$P \longrightarrow N$$

Procedure a: (Me₃Si)(Me₃C)NH (Me₃Si)(Me₂CH)NH

The reaction vessel is a 2-L, three-necked flask equipped with a mechanical stirrer, a water-cooled reflux condenser, and a 1-L pressure-equalizing dropping funnel. Under inert atmosphere conditions, distilled chlorotrimethylsilane (120 mL, 102.7 g, 0.95 mol) in diethyl ether (500 mL) is added dropwise at room temperature from the dropping funnel to an efficiently stirred solution of *tert*-butylamine (100 mL, 69.6 g, 0.95 mol, freshly distilled from KOH) and triethylamine (135 mL, 98.2 g, 0.97 mol, freshly distilled from KOH) in diethyl ether (500 mL). The reaction mixture is stirred for 2 hr. Solid amine hydrochloride is filtered off (D3 frit) and washed twice with 100 mL of diethyl ether. Fractional distillation yields 100-120 g (70-80%), bp $119-122^{\circ}/760 \text{ torr}$.

The reaction between 0.95 mol of chlorotrimethylsilane and isopropylamine (162 mL, 118.2 g, 2.0 mol) affords 87-112 g (70-80%), bp 100- $104^{\circ}/760$ torr.

Properties

The properties of trimethylsilyl-*tert*-butylamine⁹ [¹H NMR (C₆H₆, TMS int.): $\delta_{CH_3Si} = 0.25$ ppm(s), $\delta_{CH_3C} = 1.2$ ppm(s)], and trimethylsilyl-isopropylamine¹⁰ [¹H NMR (C₆H₆, TMS int.): $\delta_{CH_3Si} = 0.10$ ppm(s), $\delta_{CH} = 2.95$ ppm(d, sp), $\delta_{CH_3} = 1.0$ ppm(d), ³J_{HH} = 6.9 Hz] have been reported.

Procedure b: [ClPNCMe₃]₂

A solution of 146 mmol (Me₃Si)(Me₃C)NLi [prepared from 21.2 g (146 mmol) (Me₃Si)(Me₃C)NH in 100 mL of diethyl ether and 146 mmol of *n*butyllithium in hexane (commercially available from Metallgesellschaft as \sim 1.6 *M* LiBu in hexane) with magnetic stirring and 1-hr reflux] is added dropwise at room temperature with magnetic stirring to 21.0 g (153 mmol) of PCl₃ in 200 mL of diethyl ether. The reaction mixture is then stirred for 30 min and reduced in volume to approximately 200 mL (half). Lithium chloride is filtered off (D4 frit) and washed with pentane. The solvent from the combined filtrates is removed by room temperature evaporation under reduced pressure. The residue is heated to 130° (oil bath) while the pressure is slowly reduced to 0.01 torr [bp 70–75°/0.01 torr, mp 42–44°, yields varying from 13.4–15.5 g (65–75%].

Method 2

 $2PCl_3 + 6Me_3CNH_2 \longrightarrow cis - [ClPNCMe_3]_2 + 4Me_3CNH_2 + HCl$

tert-Butylamine (62.9 g, 0.860 mol) is added dropwise to an efficiently stirred solution of PCl₃ (39.4 g, 0.287 mol) in diethyl ether (600 mL) at -78° . On completion of the addition, the mixture is allowed to warm to room temperature and is stirred overnight. Solid amine hydrochloride is removed by filtration and the solid is carefully washed with diethyl ether (200 mL), and the washings are added to the filtrate. The solvent is removed by room temperature evaporation under reduced pressure. Traces of diethyl ether and a considerable quantity of Cl₂PNHCMe₃ are finally removed at 35–75°/0.1 torr. Distillation at 95°/0.1 torr followed either by sublimination (50–70°/0.05–0.001 torr) or recrystallization from light petroleum (bp 40–60°) gives *cis*-[CIPNCMe₃]₂ in yields varying from 35 to 63%, mp 42–43°. The product is completely free from 1,3-di-*tert*-butyl-2-chloro-4-*tert*-butylamino-cyclodiphosphazane.

Properties

cis-[CIPNCMe₃]₂ is an air and moisture sensitive, colorless solid, mp 42– 44° ¹H NMR (C₆H₆, TMS int.): $\delta = 1.18$ ppm(t), ⁴J_{HH} = 1.1 Hz. ³¹P {¹H} NMR (C₆H₆, 85% H₃PO₄ ext.): $\delta = 207.8$ ppm(s).

B. 2,4,6,8,9,10-HEXA(ISOPROPYL)-2,4,6,8,9,10-HEXAAZA-1λ³,3λ³,5λ³,7λ³-TETRAPHOSPHATRICYCLO-[5.1.1.1.^{3,5}]DECANE

Cyclodiphosphazanes (diazadiphosphetidines) are very useful starting materials for cages and cagelike (polycyclic) P—N compounds. The eightmembered cage compound $P_4(NCMe_3)_4$ is formed by the reduction of *cis*-[CIPNCMe_3]₂ with Mg.¹¹ The compound $P_4(NCHMe_2)_6$ is a nonadamantane-type molecule that contains two superimposed diazadiphosphetidine rings coupled through the phosphorus atoms by bridging NCHMe₂ groups and has been synthesized according to the reaction sequence in eqs. (1) to (4).¹²

$$(Me_3Si)(Me_2CH)NLi + PCl_3 \longrightarrow Cl_2PN(CHMe_2)(SiMe_3) + LiCl \quad (1)$$

$$2Cl_2PN(CHMe_2)(SiMe_3) \xrightarrow{\Delta} [ClPNCHMe_2]_2 + 2Me_3SiCl \qquad (2)$$

$$[CIPNCHMe_{2}]_{2} + (MeSi)(Me_{2}CH)NLi \longrightarrow (Me_{3}Si)(Me_{2}CH)NPNCHMe_{2}PCINCHMe_{2} + LiCl (3)$$

$$2(Me_{3}Si)(Me_{2}CH)NPNCHMe_{2}PCINCHMe_{2} \xrightarrow{\Delta} P_{4}(NCHMe_{2})_{6} + 2Me_{3}SiCl (4)$$

Procedure a: 2,4-Dichloro-1,3-diisopropylcyclodiphosphazane, [ClPNCHMe₂]₂

To a solution of 70.04 g (0.51 mol)PCl₃ in 250 mL of diethyl ether a solution of 0.50 mol of (Me₃Si)(Me₂CH)NLi [prepared from 65.65 g (92.5 mL, 0.5 mol) (Me₃Si)(Me₂CH)NH in 300 mL of diethyl ether and 0.5 mol of *n*-butyllithium in hexane] is added dropwise (2 hr) at -78° with magnetic stirring. After removal of the dry ice-acetone bath the reaction mixture is stirred overnight and reduced in volume under vacuum to approximately 250 mL. Lithium chloride is filtered off (D4 frit) and washed with pentane (100 mL). The filtrate is again reduced (vacuum) in volume to approximately 200 mL and heated (water-cooled reflux condenser) for 2 hr at 50 to 60° (oil bath temperature). Chlorotrimethylsilane and the solvent are removed in vacuum. The residue is fractionally distilled [bp 45–50°/0.001 torr, yield 45 g (73%)].

Properties

2,4-Dichloro-1,3-diisopropylcyclodiphosphazane is an air- and moisturesensitive, colorless liquid.³ ¹H NMR (C₆H₆, TMS int.): $\delta_{CH} = 3.39 \text{ ppm}(t,\text{sp})$, ${}^{3}J_{PH} = 0.9 \text{ Hz}$, ${}^{3}J_{HH} = 6.5 \text{ Hz}$; $\delta_{CH_3} = 1.13 \text{ ppm}(d,t)$, ${}^{4}J_{PH} = 0.9 \text{ Hz}$, ${}^{3}J_{HH} = 6.4 \text{ Hz}$. ${}^{31}P \{{}^{1}H\}$ NMR (C₆H₆, 85% H₃PO₄ ext.): $\delta = 220.6 \text{ ppm}(s)$. The checkers point out that this compound is not as stable as the *tert*-butyl analog. It decomposed within 24 hr even in rigorously dried glassware at room temperature. It is stable, however, at -78° for at least a week.

Procedure b: 2-Chloro-1,3-diisopropyl-4-isopropyltimethylsilyamino-1,3,2 λ^3 ,4 λ^3 -cyclodiphosphazane, (Me₃Si)(Me₂CH) NPNCHMe₂PClNCHMe₂ To a solution of 25.27 g (102.3 mmol) of [CIPNCHMe₂]₂ in 50 mL of diethyl ether a solution of 102.3 mmol of (Me₃Si)(Me₂CH)NLi [prepared from 13.42 g (18.9 mL, 102.3 mmol) of (Me₃Si)(Me₂CH)NH in 50 mL of diethyl ether and 102.3 mmol of *n*-butyllithium in hexane] is added dropwise (30 min) with magnetic stirring at -16° (ice-sodium chloride mixture). [*Note:* The stoichiometry must be exact: even a small excess of LiN(*i*-Pr)TMS induces decomposition.] After removal of the cold bath the reaction mixture is stirred for 45 min at room temperature and reduced in volume to approximately 50 mL. Lithium chloride is filtered off (D4 frit) and washed twice with 10 mL of pentane. The solvent is removed under reduced pressure (0.01 torr) to yield 33.1 g (95%) of an orange-brown oil (crude).

Properties

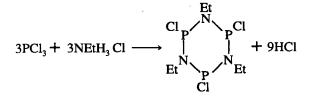
Crude (Me₃Si)(Me₂CH)NPNCHMe₂PCINCHMe₂ is an exceedingly air- and moisture-sensitive, orange-brown oil (NMR spectroscopically measured purity >90%). ³¹P {¹H} NMR (C₆H₆, 85% H₃PO₄ ext., 293 K): $\delta_{P(N)} = 185.4$ (cis), 208.5(trans), $\delta_{P(CI)} = 130.2$ (cis), 175.8 ppm(trans); cis isomer: trans isomer = 80: 20%. Beause of the large half-width at 293 K all signals are broad singlets (C₇D₈/203 K: all signals are doublets ²J_{PP} = 45.8(cis) and 42.7 Hz(trans). It should be used immediately, since it decomposed within 12 hr, even at -78° .

Procedure c: 2,4,6,8,9,10-Hexa(isopropyl)-2,4,6,8,9,10-hexaaza- $1\lambda^3$,3 λ^3 ,5 λ^3 ,7 λ^3 -tetraphospha-tricyclo[5.1.1.1^{3,5}]decane, P₄(NCHMe₂)₆

A 9.65 g (28 mmol) sample of (Me₃Si)(Me₂CH)NPNCHMe₂PCINCHMe₂ (crude) in a 100-mL Schlenk tube is dissolved in 50 mL of acetonitrile and refluxed for 2 hr. After cooling to room temperature slightly yellow-orange crystals precipitate and were separated. With the filtrate this procedure is repeated three times. After the fourth refluxing period the solution is cooled to -35° . The collected crystals yield 2.7 g (41%) of crude product with approximately 10% "impurity" of the adamantane-type isomer. Recrystallization from 60 mL of hot acetonitrile and cooling slowly to room temperature affords 2.2 g (34%) of P₄(NCHMe₂)₆. [*Note:* The checkers experienced some difficulties with this synthesis and obtained much lower yields (\sim 7%).] A key factor appears to be the length of time that passes between synthesis and reaction of the trimethylsilyl precursor.

Properties

 $P_4(NCHMe_2)_6$ forms air- and moisture sensitive colorless crystals ¹². The crystal structure confirms the rectangular arrangement of the four phos-


phorus atoms ¹². ¹H NMR (CD₂Cl₂, TMS int.): δ CH₃(bridge) = 1.19 ppm(d), ³J_{HH} = 6.8 Hz; δ CH₃(four-membered ring) = 1.20 ppm(d), ³J_{HH} = 6.4 Hz, δ CH = 3.82 - 4.22 ppm(m). ³¹P{¹H}NMR (C₆H₆, 85% H₃PO₄ ext.) δ = 147.0 ppm(s) ¹². Thermolysis (156 - 158°C, several days) yields the adamantane-type isomer. ¹H NMR (C₆H₆, TMS int.): δ CH₃ = 1.37 ppm(d), ³J_{HH} = 6.8 Hz. ³¹P{¹H} NMR (C₆H₆, 85% H₃PO₄ ext.): δ = 84.0 ppm(s) ¹². The oxidation for example with sulfur yields P₄(NCHMe₂)₆S_x (x = 1,2; only the isomer where two diagonal arranged phosphorus atoms are oxidized) ¹³. The ligating properties (P-coordination) have been realized with the synthesis of the complexes [P₄(NCHMe₂)₆-Cr(CO)₅] and [P₄(NCHMe₂)₆]₂ Au⁺Cl⁻¹⁴.

References

- 1. A. Michaelis and G. Schröter, Ber. Dtsch. Chem. Ges., 27, 490 (1894).
- O. J. Scherer and P. Klusmann, Angew. Chem., 81, 743 (1969); Angew. Chem. Int. Ed. (Engl.), 8, 752 (1969).
- 3. R. Jefferson, J. F. Nixon, T. M. Painter, R. Keat, and L. Stobbs, J. Chem. Soc. Dalton Trans., 1973, 1414.
- 4. J. C. T. R. Burckett, St. Laurent, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 249, 243 (1983).
- K. W. Muir and J. F. Nixon, Chem. Commun., 1971, 1405; K. W. Muir, J. Chem. Soc. Dalton Trans., 1975, 259.
- 6. Reviews: (a) E. Niecke and O. J. Scherer, Nachr. Chem. Tech., 23, 395 (1975). (b) E. Fluck, Top. Phosphorus Chem., 10, 194 (1980).
- Reviews: (a) A. F. Grapov, N. N. Mel'nikov, and L. V. Razvodovskaya, Russ. Chem. Rev., 39, 20 (1970). (b) O. J. Scherer, Nachr. Chem. Tech. Lab., 28, 6 (1980). (c) R. Keat, Top. Curr. Chem., 102, 89 (1982).
- 8. O. J. Scherer, R. Anselmann, and W. S. Sheldrick, J. Organomet. Chem., 263, C26 (1984).
- R. M. Pike, J. Org. Chem., 26, 232 (1961), E. C. Ashby, J. J. Lin, and A. B. Goel, J. Org. Chem., 43, 1564 (1978).
- 10. A. W. Jarvie and D. Lewis, J. Chem. Soc., 1963, 1073.
- 11. D. Du Bois, E. N. Duesler, and R. T. Paine, J. Chem. Soc., Chem. Commun., 1984, 488.
- O. J. Scherer, K. Andres, C. Krüger, Y.-H. Tsai, and G. Wolmershäuser, Angew. Chem., 92, 563 (1980); Angew. Chem., Int. Ed. (Engl.), 19, 571 (1980).
- 13. K. Andres, Ph.D. Thesis, University of Kaiserslautern, 1983.
- 14. O. J. Scherer and R. Anselmann, unpublished results.

4. 2,4,6-Trichloro-1,3,5-Triethylcyclophosph(III)azanes 13

4. 2,4,6-TRICHLORO-1,3,5-TRIETHYLCYCLOPHOSPH(III)AZANES (1,3,5,2,4,6-TRIAZATRIPHOSPHORINANES)

Submitted by JAMES GEMMILL* and RODNEY KEAT* Checked by RAHIM HANI† and ROBERT H. NEILSON†

Introduction

The cyclotriphosph(III)azanes (triazatriphosphorinanes) (XPNR)₃ (R = alk, X = Cl) have, as yet, received little attention,¹ mainly because a convenient route to synthesis is lacking. The synthesis² of (ClPNMe)₃ from PCl₃ and (Me₃Si)₂NMe requires a source of the latter compound, and this method does not give good yields of the P₃N₃-ring compound. Recent work³ shows that the analogous ethyl compound, (ClPNEt)₃ (but not the methyl compound) can be prepared in good yield using readily available materials, and the method is practical on a large scale. The chemistry of this compound is beginning to be explored, and it offers interesting possibilities for the study of the properties of P₃^(III)N₃ ring compounds, including those of a potentially tridentate phosphorus compound. The product is a mixture of cis and trans isomers, with the latter predominating at ambient temperatures. Care must be taken to avoid contact of the hot reaction mixture and the hot product with air. All ground glass joints should be thoroughly coated with a silicon or, preferably, Kel-F grease.

■ **Caution.** If the initial reflux described here stops, and the reaction mixture cools, the NEtH₃Cl will form a solid surface crust. This crust must be broken before any attempt is made to restart the reaction, otherwise there will be a violent "bump" and subsequent foaming as the solvent breaks the crust. Glass joints can easily be blown apart by this action, and a serious fire-toxicity hazard may ensue. The synthesis should be carried out in a fume hood because of the HCl evolution. 1,1,2,2-Tetrachloroethane is a toxic solvent.

^{*}Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.

[†]Department of Chemistry, Texas Christian University, Fort Worth, TX 76129.

Procedure

Phosphorus trichloride (220 g, 1.6 mol), ethanamine hydrochloride (98 g, 1.2 mol), and 1,1,2,2-tetrachloroethane (1 L, freshly distilled from P_4O_{10}) are mixed in a 3-L round-bottomed flask fitted with a 50-cm dimpled air condenser topped with a 30-cm water condenser. The top of the water condenser is fitted with an inlet-outlet adaptor (Dreschel type). The inlet is connected to a supply of dry nitrogen and the outlet is connected to a paraffin-oil bubbler. Antibumping stones are added to the flask. The apparatus is flushed with nitrogen for 10 min. Then the gas flow is stopped, and the mixture is boiled under reflux, using a 3-L heating mantle for 3 to 4 days. The 1,1,2,2-tetrachloroethane is allowed to recondense no higher than halfway up the air condenser. Hydrogen chloride gas is evolved, and a little phosphorus(III) trichloride is often lost despite the condenser arrangement. This loss can be minimized by careful control of the heating over the first few hours. When the evolution of gas has stopped, the mixture, now a red-brown solution, is allowed to cool under a steady stream of nitrogen gas. The air and water condensers are replaced with an air condenser (50 cm) fitted with distillation attachments and connected to a 2-L round-bottomed receiving flask. The apparatus is flushed with nitrogen for 10 min, and the 1,1,2,2-tetrachloroethane is distilled off, under nitrogen, until the solution has a volume of approximately 250 mL. The apparatus is once again cooled under a flow of nitrogen and the thick red-brown solution is transferred to a 500-mL round-bottomed flask that is connected to a vacuum line by thick walled rubber tubing via a trap, cooled by solid CO_2 , to collect the remaining solvent. The remaining 1,1,2,2-tetrachloroethane is then removed by heating to 80° under reduced pressure while the solution is stirred by a magnetic stirring bar. When the last traces of solvent have been removed, the apparatus is allowed to cool to room temperature. The thick red oil is now transferred to the smallest possible round-bottom flask, normally 250 mL, and is distilled at 0.05 torr at 135 to 140° (checkers: 117-122° at 0.1 torr) using a short air condenser. The product is a clear mobile oil that slowly crystallizes in the receiving vessel (mp 25-30°, yield 90 g, 70%).

Anal. Calcd. for $C_6H_{15}Cl_3N_3P_3$: C,21.9; H,4.6; N,12.8. Found: C,21.8; H,5.1; N,12.9.

At temperatures above 145° a variable amount of a second product is obtained from the distillation. This is $Et_5N_5P_4Cl_2$.³ It appears as a viscous heavy yellow oil that quickly solidifies.

Properties

The product is a colorless, crystalline, low melting solid. It is air and water sensitive, particularly at elevated temperatures, but it can be handled in

air at room temperature for brief periods. It may ignite spontaneously in the presence of water. Long term storage should be under nitrogen in a stoppered flask.

Phosphorus-31 NMR spectroscopy is the best method of checking identity and purity. The product, in CDCl₃, shows a singlet at 104.1 ppm for the cis isomer and a 2:1 doublet:triplet at 134.5 and 129.0 ppm, respectively, for the trans isomer, J_{PNP} unresolved at room temperature.³

The most common impurities are $Et_5N_5P_4Cl_2$ and the oxides of (Et-NPCl)₃. These are easily identified³ by ³¹P NMR spectroscopy and the oxides give signals well upfield of those noted here. The oxides may be removed by recrystallization from light petroleum (bp 40-60°).

References

1. R. Keat, Top. Curr. Chem., 102, 89 (1982).

2. W. Zeiss and K. Barlos, Z. Naturforsch., 34B, 423 (1979).

3. D. A. Harvey, R. Keat, and D. S. Rycroft, J. Chem. Soc. Dalton Trans., 1983, 425.

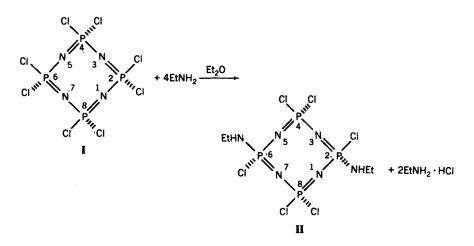
5. AMINOCYCLOTETRAPHOSPHAZENES AND TRANSANNULAR BRIDGED BICYCLIC PHOSPHAZENES

Submitted by A. C. SAU*, K. S. DHATHATHREYAN*, P. Y. NARAYANASWAMY,* and S. S. KRISHNAMURTHY* Checked by J. C. VAN DE GRAMPEL[†], A. A. VAN DER HUIZEN[†], and A. P. JEKEL[†]

Aminolysis reactions of $1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -tetraazatetraphosphocine (octachlorocyclotetraphosphazene) $\ddagger(N_4P_4Cl_8)$ with primary amines, as well as the reactions of bis(primary amino) hexachloro derivatives, $N_4P_4Cl_6(NHR)_2$, with secondary amines proceed in three distinct pathways: (a) a stepwise replacement of chlorine atoms to yield partially and fully substituted cyclotetraphosphazenes(tetraazatetraphosphocines), (b) inter-

Editor's Note: Nearly all investigators working in this area use the "phosphazene" based nomenclature (e.g., cyclotetraphosphazene) rather than the Chemical Abstracts notation. For completeness, both names are given. Note, however, that numbering of the ring atoms begins at nitrogen in the Chemical Abstracts terminology but at phosphorus in the phosphazene notation.

*Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India.


[†]Department of Inorganic Chemistry, University of Groningen, Nijenborgh 1G, 9747 AG, Groningen, The Netherlands.

molecular condensation reactions that lead to the formation of resins, and (c) an intramolecular substitution reaction to afford novel transannular phosphazenes. bridged bicvclic The relative vields of (amino)cyclotetraphosphazenes and bicyclic phosphazenes depend on the solvent, the primary amino substituent present on the phosphazene substrate, and the attacking nucleophile. A proton abstraction mechanism that involves the intermediacy of a three-coordinated P^v species has been invoked to explain the formation of the transannular P-N-P bridge. (Amino)cyclotetraphosphazenes and bicyclic phosphazenes can be readily distinguished by their thin layer chromatography (TLC) R_f values, IR data, and ³¹P NMR spectroscopy. The ³¹P {¹H} NMR spectra of these derivatives constitute excellent examples of different types of a four spin system.¹⁻⁷ The molecular skeleton of the bicyclic phosphazenes look somewhat like adamantane.⁸ (Amino)cyclophosphazenes are of considerable interest in view of their ability to function as versatile ligands in transition metal complexes.⁹

The syntheses of a few (amino)cyclotetraphosphazenes and transannular bridged bicyclic phosphazenes derived from them are described next.

■ **Caution.** Owing to the high volatility of the alkyl amines, all the reactions must be carried out in an efficient fume hood.

A. 2,4,4,6,8,8-HEXACHLORO-*Trans*-2,6-BIS(ETHYLAMINO)-1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-TETRAAZATETRAPHOSPHOCINE [1,3,3,5,7,7-HEXACHLORO-*Trans*-1,5-BIS(ETHYLAMINO)CYCLOTETRAPHOSPHAZENE] (II)

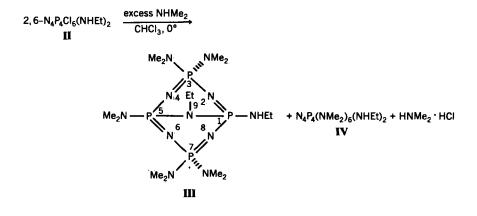
Procedure

A three-necked, 500-mL, round-bottomed flask equipped with a glassjacketed addition funnel and a potassium hydroxide drying tube is placed in a cooling bath containing ice-water slurry. A magnetic stirring bar is introduced, and the flask is charged with 9.28 g (0.02 mol) of octachlorocyclotetraphosphazene (octachloro-1,3,5,7, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$, $8\lambda^5$ -tetraazatetraphosphocine)($N_4P_4Cl_8$) (I),* followed by the addition of 200 mL of anhydrous diethyl ether (distilled and preserved over sodium wire). This neck is closed with a ground glass stopper and the contents of the flask are stirred until the crystals dissolve. Anhydrous sodium sulfate (50 g) is added to the solution. Ethylamine solution (50% w/v) in water (8.0 mL, equivalent to)0.08 mol of ethylamine)[†] is placed in the dropping funnel, cooled by placing crushed ice in the jacket of the addition funnel, and is added to the ethereal solution of $N_4 P_4 Cl_8$ with vigorous stirring^{\ddagger} over a period of 45 min. The reaction mixture is stirred at 0° for 1.5 hr and then allowed to attain room temperature (25°). Ethylamine hydrochloride and sodium sulfate are removed by filtration and washed twice with 25 mL of diethyl ether. The filtrate and the washings are combined. Removal of the solvent from the combined solution, using a rotary flash evaporator, yields an oil that is extracted with 100 mL of boiling petroleum (bp 60-80°). The solution is filtered while hot, concentrated to 50 mL, and cooled to 25°. Two crops of crystals (mp 109-112°) deposited at intervals of 1 hr are removed by filtration. The mother liquor is concentrated and cooled to obtain two more crops of the same crystalline material. Recrystallization of the crude product from petroleum gives pure trans-2,6 bis(ethylamino) derivative (II) (5.3 g, 55%).

Anal. Calcd. for C₄H₁₂Cl₆N₆P₄: C 10.0; H 2.5; N 17.5; Cl 44.3. Found: C 10.1; H 2.6; N 17.3; Cl 44.0.

Properties

The colorless crystals of compound II melt at 116°. The compound can be stored in a desiccator for a few days, without any appreciable decompo-


*A sample of $N_4P_4Cl_8$ can be obtained from Ethyl Corporation, Baton Rouge, LA 70989, or can be prepared.¹⁰ It is recrystallized from petroleum (bp 60–80°) prior to use.

 \dagger Anhydrous ethylamine, dissolved in Et₂O can also be employed; in that case, the use of Na₂SO₄ is unnecessary. Aqueous solution of ethylamine is more readily available commercially.

‡The checkers prefer the use of a mechanical stirrer.

sition and can be preserved in sealed ampules for longer periods. The IR spectrum of the compound shows a strong broad band centered at 1304 cm⁻¹ attributable to a ring P==N stretching vibration. The ¹H NMR spectrum shows the CH₂ and CH₃ resonances at $\delta = 3.12$ and 1.26. The ³¹P {¹H} NMR spectrum is of the A₂B₂ type; $\delta_{PCl_2} = -3.4$, $\delta_{PCINHEt} = -4.9$, ${}^{2}J_{AB} = 46.0$ Hz.¹¹

B. 3,3,5,7,7-PENTAKIS(DIMETHYLAMINO)-9-ETHYL-1- ETHYLAMINO-2,4,6,8,9-PENTAAZA-1λ⁵,3λ⁵,5λ⁵,7λ⁵- TETRAPHOSPHABICYCLO[3.3.1]-NONA-1,3,5,7-TETRAENE (III)

Procedure

Compound II, obtained by Procedure A, (4.8 g, 0.01 mol) is dissolved in 250 mL of chloroform (freshly distilled over P_4O_{10} and free from ethanol) in a 500-mL, two-necked, round-bottomed flask fitted with a condenser maintained at -75° (acetone-solid CO₂), an addition funnel, and a magnetic stirring bar. Ingress of moisture is prevented by placing a potassium hydroxide guard tube at the top of the condenser. The phosphazene solution is cooled in an ice-water slurry. Anhydrous dimethylamine (22.5 g, 0.50 mol)* is added rapidly to the phosphazene solution under vigorous stirring. The reaction mixture is stirred for 1 hr at 0° and for 3 hr at ~25°. Solvent is removed using a rotary evaporator and the residual viscous oil is treated with 50 mL of hot petroleum (bp 60–80°). The insoluble dimethylamine hydrochloride is removed by filtration. The filtrate is concentrated

*The ampule containing Me₂NH has to be cooled to -25° before opening; the dropping funnel has to be cooled at the same temperature.

to 25 mL and cooled to 0° in a refrigerator overnight.* A crystalline material is deposited slowly that is removed by filtration. The mother liquor is cooled further to obtain two more crystalline crops at intervals of 24 hr.† The crude crops (2.7 g, mp 118–120°) are combined and recrystallized from petroleum at 0° (yield 2.5 g, 51.3%).

Anal. Calcd. for $C_{14}H_{41}N_{11}P_4$: C 34.5; H 8.5; N 31.6; P 25.4. Found: C 34.5; H 8.4; N 31.5; P 25.5.

Properties

The bicyclic phosphazene III forms colorless crystals that are stable in air and melt sharply at 124°. The compound is readily soluble in petroleum, benzene, chloroform, and dichloromethane but insoluble in water. The IR spectrum of the compound shows a broad absorption band at 1195 cm⁻¹ attributable to ring P==N stretching vibration.^{1,2} The ¹H NMR spectrum is discussed in the literature.^{1,2} The ³¹P {¹H} NMR spectrum is that of an A₂BC spin system (δ 18–24).¹ The structure of the compound has been established by X-ray crystallography.⁸ The crystals are monoclinic with space group C2/c, a = 10.81, b = 17.52, c = 28.48 Å, $\beta = 94.8^{\circ}$ with eight molecules in the unit cell.

C. Trans-2,4,4,6,8,8-HEXAKIS(DIMETHYLAMINO)-2,6-BIS(ETHYLAMINO)-1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -TETRAAZATETRAPHOSPHOCINE (IV)

$$N_4P_4(NHEt)_2Cl_6 + 12HNMe_2 \xrightarrow{Et_2O} N_4P_4 (NHEt)_2 (NMe_2)_6 + 6 HNMe_2 \cdot HCl$$
IV

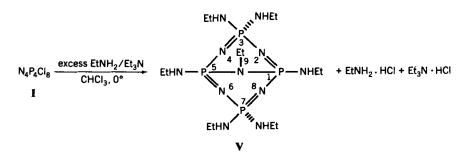
Procedure

Compound II (1.92 g, 0.004 mol) (obtained by Procedure A) is dissolved in 250 mL of anhydrous diethyl ether and is treated with anhydrous dimethylamine (13.2 g, 0.3 mol) at 0° as described in Procedure B. The reaction mixture is stirred at 0° for 1 hr and allowed to attain $\sim 25^{\circ}$ in the course of 2 hr. Dimethylamine hydrochloride is removed by filtration.

*By rigorously excluding moisture during the work-up of the reaction mixture and by cooling the concentrated petroleum extract to 25° for 2 to 3 hr, it is possible to isolate a small quantity (<5%) of the hydrochloride adduct, $N_4P_4(NHEt)_2(NMe_2)_6$ ·2HCl.¹

†The remaining mother liquor contains mainly $N_4P_4(NHEt)_2(NMe_2)_6$ (IV) and traces of compound III as shown by TLC.^{2.5}

19


Evaporation of the solvent from the filtrate yields a brownish oil that is extracted with petroleum (100 mL). The petroleum extract is washed with water to remove traces of dimethylamine hydrochloride. The organic layer is dried over anhydrous sodium sulfate, filtered and decolorized with activated charcoal (2 g). The clear filtrate is evaporated to dryness in a rotary evaporator to obtain 1.77 g (80%) of compound IV.

Anal. Calcd. for $C_{16}H_{48}N_{12}P_4$: C 36.1; H 9.1; N 31.6. Found: C 36.0; H 9.0; N 31.3.

Properties

Compound IV, isolated from the reaction mixture as a viscous liquid, solidifies on storage in a refrigerator for several months. Crystallization can be induced to a certain extent by occasionally scratching and thawing the cooled viscous liquid. The crystals of compound IV thus obtained melt between 136 to 138°. The compound is soluble in common organic solvents. The 1R spectrum of the compound shows a strong and broad absorption band centered at 1270 cm⁻¹ attributable to ring P==N stretching vibration. The ¹H and proton decoupled ³¹P NMR spectra (A₂B₂ spin system; $\delta_A = 9.2$, $\delta_B = 6.8$, ² $J_{AB} = 41.2$ Hz) are discussed in the literature.^{5,11}

D. 9-ETHYL-1,3,3,5,7,7-HEXAKIS(ETHYLAMINO)-2,4,6,8,9-PENTAAZA-1λ⁵,3λ⁵,5λ⁵,7λ⁵-TETRAPHOSPHABICYCLO-[3.3.1] NONA-1,3,5,7-TETRAENE (V)

■ CAUTION. Benzene is carcinogenic. An efficient hood should be used.

Procedure

Compound I (9.28 g, 0.02 mol) is dissolved in 250 mL of chloroform (distilled over P_4O_{10}) in an apparatus similar to that used in Procedure B

and the solution is cooled to 0° . Anhydrous ethylamine (26.2 g, 0.58 mol), previously cooled to $\sim -10^\circ$, is placed in the dropping funnel and is added to the reaction flask under vigorous stirring. An immediate reaction occurs as indicated by the formation of a curdy white precipitate of ethylamine hydrochloride. The stirring is continued at 0° for 4 hr and then the reaction mixture is allowed to attain $\sim 25^{\circ}$ during which time the excess of unreacted ethylamine escapes from the reaction flask. Ethylamine hydrochloride is removed by filtration and washed with 50 mL of chloroform. Evaporation of the solvent from the combined filtrate yields a residue consisting of a crystalline solid material dispersed in a viscous oil. The residue is extracted with hot benzene (200 mL), and the insoluble ethylamine hydrochloride is removed by filtration. Triethylamine (4.1 g, 0.04 mol) is added to the filtrate and the solution is heated under reflux for 2 hr. The solution is cooled and the precipitated triethylamine hydrochloride is removed by filtering. The filtrate is concentrated to 60 mL and cooled to \sim 25°. Crystals of crude product V are deposited slowly and are removed by filtration. The mother liquor is concentrated and cooled to obtain a further quantity of the crude product (total yield 4.7 g, 47%). The product is recrystallized from petroleum.

Anal. Calcd. for $C_{14}H_{41}N_{11}P_4$: C 34.5; H 8.5; N 31.6; P 25.4. Found: C 35.1; H 8.6; N 31.5; P 25.1.

Properties

The bicyclic phosphazene V forms colorless crystals, mp 184 to 185°. The compound is readily soluble in water, chloroform, and dichloromethane and is fairly soluble in hot benzene and moderately soluble in hot petroleum. The IR spectrum of the compound shows a split band at 1183 and 1218 cm⁻¹, attributable to a ring-P=N stretching vibration. The ¹H NMR spectrum is discussed in the literature.¹ The ³¹P {¹H} NMR spectrum is that of an A₂B₂ spin system¹ ($\delta_A = 18.6$, $\delta_B = 15.3$, ²J_{AB} = 40.9 Hz).

E. 2,6-BIS(tert-BUTYLAMINO)-2,4,4,6,8,8-HEXACHLOROand 2,4-BIS(tert-BUTYLAMINO)-2,4,6,6,8,8-HEXACHLORO-1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-TETRAAZATETRAPHOSPHOCINES (VI and VII)

 $N_4P_4Cl_8 + 4t-BuNH_2 \longrightarrow I$

2,6- and 2,4-N₄P₄Cl₆(NH-t-Bu)₂ + 2t-BuNH₂·HCl VI, VII

Procedure

Compound I (9.28 g, 0.02 mol) is dissolved in 200 mL of acetonitrile (freshly distilled over P_4O_{10} in a 500-mL, two-necked, round-bottomed flask, equipped with an ice-water cooled condenser, potassium hydroxide drying tube, and a magnetic stirring bar. The solution is heated to boiling and tert-butylamine* (5.84 g, 0.08 mol) in 20 mL of acetonitrile is added dropwise over a period of 1.5 hr. The reaction mixture is heated under reflux for 4 hr, cooled, and filtered to remove tert-butylamine hydrochloride. Evaporation of the solvent from the filtrate yields an oil that is extracted with 150 mL of petroleum (bp 60-80°). The petroleum solution is filtered to remove any insoluble material. The filtrate is concentrated (50 mL) and cooled to $\sim 25^{\circ}$. The first two crops of crystals (mp 165–170°) isolated at intervals of 12 and 18 hr are combined and recrystallized from petroleum (50 mL) to obtain 2,6-bis(tert-butylamino)-hexachlorocyclotetraphosphazene (VI) (yield 3.5 g, 32.5%).† The solution, after removal of compound VI, is concentrated to 30 mL and cooled at 25°. Two crystalline crops of crude 2,4-isomer (VII) (mp 120-125°) are isolated at intervals of 12 hr (yield 1.5 g, 14%); recrystallization from petroleum affords a pure sample of compound VII,[‡] mp 127°.

Anal. Calcd. for $C_8H_{20}N_6Cl_6P_4$: C 17.9; H 3.8; N 15.7; Cl 39.6. Found for compound VI: C 18.0; H 3.6; N 15.8; compound VII: C 17.8; H 3.6; N 15.9; Cl 39.8.

Properties

The two isomeric 2,6- and 2,4-bis(*tert*-butylamino) cyclotetraphosphazenes (VI, VII) melt at 171 and 127°, respectively. They are soluble in hot petroleum, benzene, and chloroform. Their IR spectra are similar.¹² The ring P=N vibration for the 2,6-isomer (VI) appears as a split band at 1300 cm⁻¹; for the 2,4-isomer (VII) this band is observed at 1310 cm⁻¹. The ³¹P {¹H} NMR spectrum of the 2,6-isomer (VI) is of an A₂B₂ type, $\delta_A = -5.8$, $\delta_B = -10.6$, ² $J_{AB} = 38.1$ Hz.¹³ The 2,4-isomer (VII) generates an [AB]₂-type ³¹P NMR spectrum; $\delta_A = -8.7$, $\delta_B = -7.3$.¹⁴ It is likely that in both the isomers, the amino groups have a trans orientation.^{13,15}

‡The checkers note that separation of the 2,4-isomer (VII) from the reaction mixture is very difficult. They suggest separation of both isomers by high pressure liquid chromatography (HPLC) on a silica column using hexane-diethyl ether (20:1) as eluent. A better yield of 2,4-isomer (VII) can be obtained by carrying out the reaction in chloroform.¹³

^{*}Dried over KOH pellets and distilled over sodium chips.

[†]The checkers report a yield of 21%.

F. 2,2,4,4,6,6,8,8-OCTAKIS(*tert*-BUTYLAMINO) 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-TETRAAZATETRAPHOSPHOCINE (VIII)

 $N_4P_4Cl_8 + 16t-BuNH_2 \longrightarrow N_4P_4 (NH-t-Bu)_8 + 8t-BuNH_2 \cdot HCl$ I VIII

Procedure

Compound I (4.64 g, 0.01 mol) is dissolved in 200 mL of acetonitrile in an apparatus similar to that used in Procedure E. The phosphazene solution is brought to boiling and *tert*-butylamine (17.0 g, 0.205 mol) in 50 mL acetonitrile is added dropwise over a period of 30 min. The reaction mixture is heated under reflux for 7.5 hr, cooled to \sim 25° and filtered. The filtrate is discarded and the precipitate is extracted with 100-mL petroleum using a Soxhlet apparatus (6 hr). The insoluble material is *tert*-butylamine hydrochloride. The petroleum extract is evaporated to yield a crystalline mass [mp 170–190° (d)]. The solid is dissolved in benzene-acetonitrile (1:1) (50 mL) and filtered. The filtrate is concentrated to 30 mL and cooled to 0° in a refrigerator for 24 hr. The crystals formed are removed by filtration. Further concentration and cooling of the mother liquor affords additional quantities of the desired product (VIII). The total yield of VIII is 3.9 g (52%).

Anal. Calcd. for $C_{32}H_{80}N_{12}P_4$: C 50.8; H 10.7; N 22.2; Found: C 50.5; H 10.7; N 22.6.

Properties

Compound VIII is a colorless solid [mp 180–200° (d)].* The compound is soluble in petroleum and benzene but is sparingly soluble in acetonitrile. The IR spectrum of the compound shows a strong band at 1235 cm⁻¹ attributable to ring-P=N stretching vibration.¹² The ³¹P {¹H} NMR spectrum shows a single line at $\delta = -3.1$.¹³

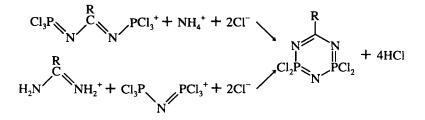
References

 S. S. Krishnamurthy, A. C. Sau, A. R. Vasudeva Murthy, R. A. Shaw, M. Woods, and R. Keat, J. Chem. Res., 1977, (S) 70; (M) 0860-0884. (S = Synopsis version, M = Microfiche)

*The checkers report that the compound crystallizes as colorless needles from benzene containing 10 to 20% acetonitrile and it has a mp >230°.

- S. S. Krishnamurthy, K. Ramachandran, A. C. Sau, R. A. Shaw, A. R. Vasudeva Murthy, and M. Woods, *Inorg. Chem.*, 18, 2010 (1979).
- S. S. Krishnamurthy, K. Ramachandran, and M. Woods, J. Chem. Res., 1979, (S) 92; (M) 1258-1266.
- 4. P. Ramabrahmam, K. S. Dhathathreyan, S. S. Krishnamurthy, and M. Woods, Indian J. Chem., 22A, 1 (1983).
- 5. S. S. Krishnamurthy, K. Ramachandran, and M. Woods, *Phosphorus Sulfur*, 9, 323 (1981).
- 6. P. Y. Narayanaswamy, K. S. Dhathathreyan, and S. S. Krishnamurthy, *Inorg. Chem.*, 24, 640 (1985).
- P. Y. Narayanaswamy, S. Ganapathiappan, K. C. Kumara Swamy, and S. S. Krishnamurthy, *Phosphorus Sulfur*, **30**, 429 (1987).
- T. S. Cameron and Kh.Mannan, Acta Cryst., 33B, 443 (1977); T. S. Cameron, R. E. Cordes, and F. A. Jackman, Acta Cryst., 35B, 980 (1979).
- 9. H. R. Allcock, Polyhedron, 6, 119 (1987).
- 10. M. L. Nielson and G. Cranford, Inorg. Synth., 6, 94 (1960).
- S. S. Krishnamurthy, A. C. Sau, A. R. Vasudeva Murthy, R. Keat, R. A. Shaw, and M. Woods, J. Chem. Soc., Dalton Trans., 1976, 1405.
- S. S. Krishnamurthy, A. C. Sau, and M. Woods, Advances in Inorganic and Radiochemistry, Vol. 21, H. J. Emeléus and A. G. Sharpe (eds.), Academic Press, New York, 1978, p. 41.
- 13. S. S. Krishnamurthy, A. C. Sau, A. R. Vasudeva Murthy, R. Keat, R. A. Shaw, and M. Woods, J. Chem. Soc., Dalton Trans., 1977, 1980.
- 14. S. S. Krishnamurthy, K. Ramachandran, A. C. Sau, M. N. Sudheendra Rao, A. R. Vasudeva Murthy, R. Keat, and R. A. Shaw, *Phosphorus Sulfur*, 5, 117 (1978).
- 15. S. S. Krishnamurthy, Proc. Indian Natl. Sci., Acad., 52A, 1020 (1986).

CHLOROFUNCTIONAL 1,3,5,2λ⁵,4λ⁵-TRIAZADIPHOSPHININES


Submitted by ALFRED SCHMIDPETER* Checked by PHILIP P. POWER† and RASIKA DAS†

Chlorofunctional triazadiphosphinines¹ range between 1,3,5-triazine and chloro-cyclotriphosphazenes (trimeric phosphonitrilic chlorides). They give substitution reactions²⁻⁴ and thermal polymerization¹ like the latter. The tetrachloro derivatives may be prepared^{1.5} in a [5+1] cyclocondensation from N,N-bis(trichlorophosphoranylidene)amidinium hexachloroantimonates and ammonium chloride or in a [3+3] cyclocondensation from ami-

*Institut für Anorganische Chemie, Universität München, D-8000 München 2, Federal Republic of Germany.

†Department of Chemistry, University of California, Davis, CA 95616.

dinium chlorides and μ -nitrido-bis(trichlorophosphorus)(1+) hexachloroantimonate:

Partially organo substituted representatives can be prepared as well in analogy to the second route.

A. µ-Nitrido-bis(trichlorophosphorus)(1+) Hexachloroantimonate⁶

$$SbCl_5 + HCl \longrightarrow HSbCl_6$$

 $NH_4 Cl + HSbCl_6 \longrightarrow [NH_4]SbCl_6 + HCl$
 $[NH_4]SbCl_4 + 2PCl_5 \longrightarrow [N(PCl_3)_2]SbCl_6 + 4HCl$

Procedure

In a 750-mL wide-necked Erlenmeyer flask 210 mL of concentrated hydrochloric acid are cooled in ice water. With magnetic stirring 300 g (1 mol) of antimony pentachloride (Aldrich, Fluka, Merck) are added from a dropping funnel within 1 hr (**Caution.** Antimony pentachloride fumes in air. Avoid contact with skin and eyes and avoid breathing the corrosive vapors.) Crystals of $HSbCl_6\cdot 4.5H_2O$ separate from the solution. They are recrystalized from the mother liquor by gently warming (to 30–50°) and cooling to room temperature overnight. The crystals are separated on a coarse glass frit by suction. Yield: 322 g (77%) $HSbCl_6\cdot 4.5H_2O$.^{7.*}

To a concentrated solution of 10.7 g (0.2 mol) of NH₄Cl in dilute hydrochloric acid a solution of 83.3 g (0.2 mol) of $HSbCl_6$ ·4.5H₂O in 20 mL of dilute hydrochloric acid is added with stirring. After 2 hr at 0° the

^{*}Hexachloroantimonic acid may alternatively be prepared by adding chlorine to Sb₂O₃ suspended in concentrated hydrochloric acid.⁸ For the precipitation of the ammonium hexachloroantimonate solution prepared in either way may be used directly without isolating the hexachloroantimonic acid hydrate.

colorless crystalline precipitate of $[NH_4]SbCl_6$ is separated on a glass frit, washed with cold hydrochloric acid, and dried at 80° in an oil pump vacuum. Yield: 38.5 g (55%).

In a dry 100-mL round-bottomed flask with inert gas inlet and reflux condenser topped by a calcium chloride tube 21.4 g (61 mmol) of $[NH_4]SbCl_6$ and 25.4 g (122 mmol) of PCl₅ are heated to reflux in 25 mL of nitromethane. While HCl evolves, all the solid material dissolves. The flask is flushed with dry nitrogen from time to time to expel the hydrogen chloride. After 2 to 3 hr the evolution of HCl should almost cease. On cooling the product separates as large crystals and is collected on a two-ended glass frit avoiding contact with moist air. After evaporating the mother liquor to half its volume a second crop is obtained. Yield: 31.6 g (84%). The crystals do not melt below 400°.

Anal. Calcd. for [Cl₆NP₂]SbCl₆ (623.1): Cl, 68.27; P 9.94. Found: Cl, 67.90; P 9.93.

B. 1,1,2-Trichloro-1-methyl-2,2-diphenyl-μ-nitridodiphosphorus(1+) Chloride

Procedure

A 500-mL, three-necked, round-bottomed flask is equipped with stirrer, gas inlet, and paraffin oil-filled bubbler as outlet. Gaseous ammonia is passed into the stirred solution of 65.7 g (0.26 mol) of diphenylphosphinothioic chloride (prepared from commercially available Ph_2PCl and sulfur⁹) in 150 mL of diethyl ether for 2.5 hr. The precipitate forming consists of Ph_2PSNH_2 and NH_4Cl . It is separated on a funnel by suction and leached two times with 100 mL boiling benzene. On cooling Ph_2PSNH_2 separates from the filtrate in colorless crystals, mp 102–103°. Yield: 44.5 g (73%).*

In a 250-mL round-bottomed flask with inert gas inlet and equipped with reflux condenser and a calcium chloride tube 5.6 g (24 mmol) of

^{*}Alternatively Ph₂PSNH₂ may be prepared from Ph₂PSCl and 20% aqueous ammonia.¹⁰

Ph₂PSNH₂ and 9.8 g (52 mmol) of MePCl₄ (freshly prepared from MePCl₂ (Merck, Strem) and Cl₂ in CCl₄)¹¹ in 100 mL of chloroform are slowly warmed to 60°. They react with rapid evolution of HCl. After removal of the chloroform in vacuum an oil is left. This is stirred with 50 mL of toluene, warmed to 60°, and thus caused to crystallize. The product is separated on a two-ended glass frit excluding moist air. Yield: 4.2 g (45%), moisture sensitive needles, mp 173–178° (with decomposition).

Anal. Calcd. for $C_{13}H_{13}Cl_4NP_2$ (387.0): C, 40.34; H, 3.38; N, 3.61. Found: C, 39.81; H, 3.47; N, 3.62.

³¹P NMR(CH₂Cl₂): AB, $\delta_A = 42.6$ (PPh), $\delta_B = 50.0$ (PMe), $J_{AB} = 28$ Hz. ¹H NMR(CH₂Cl₂): $\delta_{CH_3} = 3.56$ (dd, $J_{PCH} = 16.0$, $J_{PNPCH} = 2.0$ Hz).

C. 2,2,4,4-Tetrachloro-6-phenyl-1,3,5, $2\lambda^5$, $4\lambda^5$ -triazadiphosphinine¹

$$2[PhC(NH_2)_2]Cl + [N(PCl_3)_2]SbCl_6 \longrightarrow PhC(NPCl_2)_2N + [PhC(NH_2)_2]SbCl_6 + 4HCl$$

Procedure

In a sublimation apparatus with a water-cooled probe 6.3 g (40 mmol) of carefully dried benzamidinium chloride^{12,*} and 12.5 g (20 mmol) of $[N(PCl_3)_2]SbCl_6$ (see Procedure A) are thoroughly mixed and heated under a vacuum of 0.5 torr at 140 to 150° for 1 hr. The reaction mixture sinters and the product deposits at the probe as colorless crystals in 3.3 g (50%) yield, mp 90–93°.

Anal. Calcd. for $C_7H_5Cl_4N_3P_2$ (334.9): C, 25.11; H, 1.51; Cl, 42.35; N, 12.55; P, 18.50. Found: C, 25.06; H, 1.80; Cl, 42.53; N, 12.21; P, 19.09. ³¹P NMR(CH₂Cl₂): δ = 41.6.

D. 2,2,4,4-Tetrachloro-6-(dimethylamino)-1,3,5, $2\lambda^5$, $4\lambda^5$ -triazadiphosphinine¹

 $2[Me_2NC(NH_2)_2]Cl + [N(PCl_3)_2]SbCl_6 \longrightarrow Me_2NC(NPCl_2)_2N + [Me_2NC(NH_2)_2]SbCl_6 + 4HCl$

*Commercially available [PhC(NH₂)₂]Cl·2H₂O (Aldrich, Fluka, Merck) loses the water at 100°.¹³ It is used here after being kept at 120° and 0.5 torr for 1 hr.

Procedure

The 1,1-dimethylguanidinium chloride is prepared from the commercially available sulfate (Aldrich, Fluka): Sodium [9.2 g (0.4 mol)] is dissolved in 200 mL of methanol in a 500-mL round-bottomed flask with a reflux condenser. To the magnetically stirred solution 54.0 g (0.2 mol) of $[Me_2NC(NH_2)_2]_2SO_4$ are added. After 3 hr stirring the separating sodium sulfate is filtered off. Dry hydrogen chloride is passed into the filtrate until it is acidic and the methanol distilled off until $[Me_2NC(NH_2)_2]Cl$ starts to separate as colorless crystals. They are dried in vacuum at 60°. Yield: 29.8 g (60%). Addition of diethyl ether to the mother liquor gives a second crop.

In a 50-mL distilling flask* 3.9 g (32 mmol) of N, N-dimethylguanidinium chloride [Me₂NC(NH₂)₂]Cl and 10.0 g (16 mmol) of [N(PCl₃)₂]SbCl₆ (see Procedure A) are heated at 120 to 140° under a vacuum of 0.2 torr. A melt is formed and within some minutes the product distills off and crystallizes in the receiving flask in colorless needles. Yield: 2.6 g (53%), mp 48-50°.

Anal. Calcd. for $C_3H_6Cl_4N_4P_2$ (301.9): C, 11.94; H, 2.00; N, 18.56. Found: C, 12.17; H, 1.99; N, 17.96.

³¹P NMR(CH₂Cl₂): δ = 36.0. ¹H NMR(CH₂Cl₂): δ _{CH₃} = 3.08 (t, J_{PNCNCH} = 0.6 Hz).

E. 2,4-Dichloro-2,4,6-triphenyl-1,3,5,2λ⁵,4λ⁵-triazadiphosphinine¹

 $[PhC(NH_2)_2]Cl + [N(PhPCl_2)_2]Cl \longrightarrow PhC(NPhPCl)_2N + 4HCl$

Procedure

In a dry 100-mL round-bottomed flask closed by a calcium chloride tube 4.0 g (25.5 mmol) of benzamidinium chloride (see Procedure C) and 10.4 g (25.5 mmol) of $[N(PPhCl_2)_2]Cl^{14}$ are heated at 120 to 130° under a vacuum of 0.5 torr. The mixture melts and gives off hydrogen chloride. The evolution of HCl ceases after 0.5 hr. After cooling to room temperature the glassy product is dissolved in warm toluene and the solution is filtered. Removal of the solvent under vacuum leaves a colorless oil, which crystallizes within several hours. The product is a 1:2 mixture of the cis and trans isomers. Yield: 10.1 g (95%); mp 127–142°.

^{*}The checkers used a short path distillation apparatus.

Anal. Calcd. for $C_{19}H_{15}Cl_2N_3P_2$ (418.2): C, 54.57; H, 3.62; N, 10.05. Found: C, 54.27; H, 3.22; N, 9.76.

³¹P NMR(CH₂Cl₂): $\delta = 41.5$ (presumably cis), 43.0 (presumably trans).

F. 2-Chloro-2-Methyl-4,4,6-triphenyl-1,3,5, $2\lambda^{5}$, $4\lambda^{5}$ -triazadiphosphinine

 $[PhC(NH_2)_2]Cl + [ClPh_2P == N - PMeCl_2]Cl \longrightarrow$ $PhC(NPPh_2) (NPMeCl)N + 4HCl .$

Procedure

In a 50-mL round-bottomed flask closed by a calcium chloride tube 1.35 g (8.5 mmol) of benzamidinium chloride (see Procedure C) and 3.35 g (8.6 mmol) of $[CIPh_2PNPMeCl_2]Cl$ (see Procedure B) are heated under a vacuum of 10^{-2} torr at 140 to 150° for 0.5 hr to give a clear melt. The glassy product is dissolved in 10-mL warm toluene and the solution is filtered through a two-ended glass frit. Removal of the solvent leaves a colorless crystalline substance. Yield: 3.00 g (88%); m.p. 90–96° (with dec).

Anal. Calcd. for $C_{20}H_{18}ClN_3P_2$ (397.8): C, 60.39; H, 4.56; N, 10.56. Found: C, 60.48; H, 4.98; N, 10.34.

³¹P NMR(CH₂Cl₂): AB, $\delta_A = 22.0$ (PPh), $\delta_B = 51.5$ (PMe). ¹H NMR(CH₂Cl₂): $\delta_{CH_3} = 2.06$ (dd, $J_{PCH} = 15.5$, $J_{PNPCH} = 1.7$ Hz).

Properties

The chloro-triazadiphosphinines are readily soluble in a variety of solvents, such as dichloromethane or toluene. Compared to $(NPCl_2)_3$ they are more sensitive to moisture. At high temperature (~250°) they decompose, losing nitrile and forming a polymeric phosphazene. This decomposition may in certain cases be used¹ to initiate the polymerization of a cyclophosphazene. Nucleophilic substitution converts the chloro-triazadiphosphinines to partially or completely amino-, alkoxy-, or aroxysubstituted derivatives.²⁻⁴

References

- 1. A. Schmidpeter and N. Schindler, Z. Anorg. Allg. Chem., 362, 281 (1968).
- 2. A. Schmidpeter and N. Schindler, Z. Anorg. Allg. Chem., 367, 131 (1969).
- 3. A. Schmidpeter and N. Schindler, Chem. Ber., 102, 856 (1969).
- 4. A. Schmidpeter and N. Schindler, Z. Anorg. Allg. Chem., 372, 214 (1970).
- 5. A. Schmidpeter and R. Böhm, Z. Anorg. Allg. Chem., 362, 65 (1968).

30 Main Group Ring Systems and Related Compounds

- 6. A. Schmidpeter and K. Düll, Chem. Ber., 100, 1116 (1967).
- 7. E. Groschuff, Z. Anorg. Allg. Chem., 103, 164 (1918).
- 8. R. F. Weinland and H. Schmid, Z. Anorg. Allg. Chem., 44, 38 (1905).
- 9. N. K. Patel and H. J. Harwood, J. Org. Chem., 32, 2999 (1967).
- I. N. Zhmurova, I. Yu. Voitsekhovskaya and A. V. Kirsanov, Zh. Obshch. Khim., 29, 2083 (1959); J. Gen. Chem. USSR, 29, 2052 (1959); Chem. Abs. 54, 8681 (1960).
- 11. R. Baumgärtner, W. Sawodny, and J. Goubeau, Z. Anorg. Allg. Chem., 333, 171 (1964).
- 12. A. W. Dox and F. C. Whitmore, Org. Synth. Coll. Vol. I, Second Edition, John Wiley, New York 1956, p. 5.
- 13. A. Pinner, Die Imidoäther und ihre Derivate, R. Oppenheim Verlag, Berlin 1892, S. 153.
- 14. E. Fluck and R. M. Reinisch, Chem. Ber., 96, 3085 (1963).

7. BINARY CYCLIC NITROGEN-SULFUR ANIONS

Submitted by J. BOJES,* T. CHIVERS,* and R. T. OAKLEY† Checked by G. WOMERSHÄUSER‡ and M. SCHNAUBER‡

 $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -Tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5tetraenide anion, N₅S₄, was first prepared in 1975 by the methanolysis of (Me₃E)N=S=N(SiMe₃) (E = C, Si).¹ It is also formed in the reaction of sulfur chlorides with anhydrous ammonia² and, in combination with N₃S₃, it is a frequent product of the nucleophilic degradation of N₄S₄.^{3,4} It is conveniently prepared by the reaction of N₄S₄ with piperidine in absolute ethanol.⁴ Oxidation of N₅S₄ with halogens, X₂, produces either N₅S₄Cl (X₂ = Cl₂) or N₆S₅ (X₂ = Br₂ or I₂).⁵ The cage structure⁶ of N₅S₄ breaks down on thermolysis to give the six-membered ring, N₃S₃, and subsequently, the acyclic NS₄ ion.^{7,8}

 $1\lambda^4,3,5,2,4,6$ -Trithiatriazenide anion, $N_3S_3^-$, has attracted considerable theoretical interest as a unique example of a 10 π -electron six-center cyclic system.⁹⁻¹¹ This anion is readily oxidized by molecular oxygen to give the oxyanions $N_3S_3O^-$ and $N_3S_3O_2^-$, in addition to $N_5S_4^-$ and $N_5S_4O^-$.¹² Salts of the type $M^+N_3S_3^-$ are best prepared by the reaction of N_4S_4 with ionic azides $MN_3 [M^+ = Cs^+, R_4N^+, \text{ or } (Ph_3P)_2N^+]$ in ethanol or acetonitrile.^{3,7} With small alkali metal cations $(M^+ = Li^+, Na^+, K^+)$ this procedure produces the $N_5S_4^-$ ion.³

*Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4.

†Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

[‡]Department of Chemistry, University of Kaisenslautern, Kaiserslautern D-6750. Federal Republic of Germany.

A. SALTS OF $N_5S_4^-$ [1 λ^4 , 3 λ^4 , 5 λ^4 ,7-TETRATHIA-2,3,5,8,9-PENTAAZABICYCLO[3.3.1]NONA-1(8),2,3,5-TETRAENIDE]

 $4C_5H_{10}NH + 3N_4S_4 \longrightarrow$

 $2[C_5H_{10}NH_2] [N_5S_4] + (C_5H_{10}N)_2S + \frac{3}{8}S_8 + N_2$

1\1,3\1,5\1,7-Tetrathia-2,4,6,8,9-pentaaza-bicyclo[3.3.1]nona-1(8),2,3,5-tetraenide

Procedure

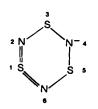
Caution. The recommended precautions for handling N_4S_4 are described in an earlier volume of Inorganic Syntheses.¹³ These syntheses should not be attempted by anyone who lacks the experience or equipment (safety shields, goggles, and gloves) for handling these compounds. The reactions should not be carried out on a large scale. The alkali metal and ammonium salts of the $N_5S_4^-$ ion are very susceptible to explosions under the influence of friction, pressure, or heat and the use of these counter ions should be avoided. The dangers of explosions can be minimized by the use of large cations, for example, Ph_4As^+ or μ -nitrido-bis(triphenylphosphorus) $(1+)(PPN^+)$. Solid samples of these salts should not be removed from a glass frit with a metal spatula.

Tetranitrogen tetrasulfide is prepared by the method of Villena-Blanco and Jolly.¹⁴ Piperidine is stored over 4-Å molecular sieves and pentane over calcium hydride. Absolute ethanol is heated at reflux with magnesium turnings and a few crystals of iodine for 4 hr. The solvents and piperidine are distilled immediately before use. The reaction is conducted under an atmosphere of dry nitrogen in a one-necked flask (200 mL) equipped with a side arm.

Piperidine (1.86 g, 21.7 mmol) is added by syringe to a slurry of S_4N_4 (1.00 g, 5.43 mmol) in absolute ethanol (20 mL) and the solution is stirred (magnetic stirring bar) for ~4 hr at room temperature. Pentane (100 mL) is added to the bright orange solution to precipitate a flocculent yellow solid which, after filtration, is extracted (Soxhlet) with pentane on a fritted glass thimble for 18 hr to remove elemental sulfur. (**Caution.** The solid product should not be removed from the glass frit with a metal spatula. Gentle tapping of the inverted glass frit, for example, with a rubber stopper

attached to a glass rod, is recommended.) The yellow product is then dissolved in absolute ethanol (10 mL) and is reprecipitated by the addition of pentane (60 mL). After filtration, analytically pure $[C_5H_{10}NH_2]$ $[N_5S_4]$ (0.60 g, 2.11 mmol) is obtained by washing with pentane (5 × 10 mL) and drying at 25° (10⁻² torr) for 36 hr.

Anal. Calcd. for C₅H₁₂N₆S₄: C, 21.10; H, 4.26; N, 29.55; S, 45.08. Found: C, 21.07; H, 4.16; N, 29.47; S, 44.94.


 μ -Nitrido-bis(triphenylphosphorus)(1+) $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -tetrathia-2,4,6,8,9pentaazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenide, [PPN] [N₅S₄] and [Ph₄As] [N₅S₄] are prepared in >90% yields by treatment of an aqueous solution of [C₅H₁₀NH₂] [N₅S₄] with equimolar amounts of [PPN]Cl (Aldrich) or [Ph₄As]Cl.

Properties

The compounds [PPN] $[N_5S_4]$ and $[Ph_4As]$ $[N_5S_4]$ are yellow, crystalline solids soluble in dichloromethane and warm acetonitrile or ethanol. Solid [PPN] $[N_5S_4]$ can be stored for years in a glass vial without special precautions. Solutions should be handled in an inert atmosphere to prevent oxidation or hydrolysis.

The characteristic IR absorptions of the $N_5S_4^-$ ion occur at ~950 (vs), 915 (vs), 740 (m), 720 (m), 690 (s), 655 (s), 600 (s), 530 (s), 505 (m), 440 (s) cm^{-1,1,3,4} The UV-vis spectrum of [PPN] [N₅S₄] (in CH₂Cl₂) has a band at 293 nm (ϵ 5.9 × 10³) and a shoulder at 345 nm (ϵ 2.5 × 10³).⁷ The ¹⁵N NMR spectrum of [PPN] [N₅^{*}S₄] (N^{*} = 30% ¹⁵N) in CHCl₃ shows singlets at +138.7(4N) and +53.3 ppm (1N) [ref. NH₃(ℓ)].¹⁵ The presence of the N₃S₃⁻ ion as an impurity can be detected by the characteristic bands in the IR spectrum at ~640 cm⁻¹ or in the UV-vis spectrum at ~365 cm (see below).

B. SALTS OF $N_3S_3^-$ [1 λ^4 ,3,5,2,4,6-TRITHIATRIAZENIDE]

 $MN_3 + N_4S_4 \longrightarrow M[N_3S_3] + \frac{1}{8}S_8 + 2N_2$

1λ⁴,3,5,2,4,6-Trithiatriazenide

Procedure

Caution. The recommended precautions for handling N_4S_4 are described in an earlier volume of Inorganic Syntheses.¹³ These syntheses should not be attempted by anyone who lacks the experience or equipment (safety shields, goggles, and gloves) for handling these compounds. The reactions should not be carried out on a large scale. The alkali metal salts of the $N_3S_3^-$ ion may explode on grinding, scratching, or heating. It is recommended that the PPN⁺ salt be used whenever possible. Solid samples of these salts should not be removed from a glass frit with a metal spatula.

Tetramethylammonium azide is prepared by the neutralization of tetramethylammonium hydroxide (10% in water, Eastman) with a 10% solution of hydrazoic acid generated by passing an aqueous solution of sodium azide over Amberlite IR-120 ion-exchange resin.¹⁶ The crude product is slurried twice with acetonitrile and, after filtration, the white solid residue is dissolved in the minimum amount of absolute ethanol and precipitated with diethyl ether. The white precipitate is dried at $60^{\circ}/10^{-2}$ torr to give analytically pure [Me₄N] [N₃].³ Tetranitrogen tetrasulfide is prepared by the method of Villena-Blanco and Jolly.¹⁴ Absolute ethanol is heated at reflux with magnesium turnings and a few crystals of iodine for 4 hr and then distilled before use. The reaction and purification procedures are conducted under an atmosphere of dry nitrogen in a one-necked flask (200 mL) equipped with a side arm.

A slurry of N₄S₄ (0.84 g, 4.6 mmol) and [Me₄N] [N₃] (0.40 g, 3.4 mmol) in ethanol (40 mL) is stirred at room temperature (magnetic stirring bar). It is preferable to use a slight excess of N_4S_4 in order to avoid contamination of the product by unchanged azide. After 24 hr, the red solution, which contains a vellow precipitate of elemental sulfur and N₄S₄, is filtered and then treated with pentane (100 mL) to give a yellow solid. (
Cau-The solid product should not be removed from a glass frit with a tion. metal spatula. Gentle tapping of the inverted glass frit, for example, with a rubber stopper attached to a glass rod, is recommended.) This solid is removed by filtration and extracted (Soxhlet) with pentane on a fritted glass thimble (2 days) to remove sulfur and unreacted N_4S_4 . The crude product is dissolved in absolute ethanol (20 mL). The solution is filtered and then treated with pentane (100 mL). The bright yellow precipitate is removed by filtration, washed with pentane (20 mL), and dried at $40^{\circ}/10^{-2}$ torr for 24 hr to give $[Me_4N]$ $[N_3S_3]$ (0.39 g, 1.8 mmol).

Anal. Calcd. for C₄H₁₂N₄S₃: C, 22.61; H, 5.71; N, 26.38; S, 45.29. Found: C, 22.55; H, 5.59; N, 26.16; S, 45.23.

 μ -Nitridobis(triphenylphosphorus)(1+) 1 λ^4 ,3,5,2,4,6-trithiatriazenide

is prepared from N_4S_4 and [PPN] $[N_3]^*$,¹⁷ using a similar procedure. After extraction with pentane, the crude product is recrystallized from CH_2Cl_2 -methanol to give lime-green blocks of [PPN] $[N_3S_3]$ in 66% yield.

Properties

Salts of the $N_3S_3^-$ ion are yellow or greenish-yellow solids, soluble in dichloromethane or acetonitrile and slowly oxidized on exposure to air. The PPN⁺ salt is less susceptible to atmospheric oxidation than salts containing R_4N^+ or alkali metal cations. In solution, oxidation of $N_3S_3^-$ occurs more rapidly. It is easily detected by a change in color from yellow to red due to the formation of $N_3S_3O^-$ (λ_{max} 509 nm).¹² Solid samples should be stored at or below 0° in the absence of air and light to avoid oxidation and photochemical decomposition.

The characteristic IR absorptions of the $N_3S_3^-$ ion occur at ~920 (s), 640 (vs), and 380 (s) cm^{-1.9} The UV-vis spectra of $N_3S_3^-$ salts in CH₃CN exhibit a characteristic absorption at 365 nm ($\epsilon 8.2 \times 10^3$)¹⁸ which has been attributed to the HOMO (highest occupied molecular orbital) ($2e'', \pi^*$) \rightarrow LUMO (lowest unoccupied molecular orbital) ($2a_2'', \pi^*$) transition.⁹ This assignment has been confirmed by the MCD (magnetic circular dichroism) spectrum of $N_3S_3^-$, which shows a negative A term for the 360-nm transition.¹¹ The ¹⁵N NMR spectrum of 30% ¹⁵N-enriched $N_3S_3^-$ as the PPN⁺ salt in CHCl₃ shows a singlet at +148.4 ppm [ref. NH₃(*l*)].

References

- 1. O. J. Scherer and G. Wolmershäuser, Angew. Chem. Int. Ed. (Engl.)., 14, 485 (1975).
- 2. O. J. Scherer and G. Wolmershäuser, Chem. Ber., 110, 3241 (1977).
- 3. J. Bojes and T. Chivers, Inorg. Chem., 17, 318 (1978).
- 4. J. Bojes, T. Chivers, I. Drummond, and G. MacLean, Inorg. Chem., 17, 3668 (1978).
- 5. T. Chivers and J. Proctor, Can. J. Chem., 57, 1286 (1978).
- W. Flues, O. J. Scherer, J. Weiss, and G. Wolmershäuser, Angew. Chem. Int. Ed. (Engl.), 15, 379 (1976).
- 7. T. Chivers, W. G. Laidlaw, R. T. Oakley, and M. Trsic, J. Am. Chem. Soc., 102, 5773 (1980).
- 8. J. Bojes, T. Chivers, and R. T. Oakley, Inorg. Synth., 25, 37 (1988).
- 9. J. Bojes, T. Chivers, W. G. Laidlaw, and M. Trsic, J. Am. Chem. Soc., 101, 4517 (1979).
- (a) T. Chivers, W. G. Laidlaw, and R. T. Oakley, *Inorg. Chim. Acta.*, 53, L189 (1981).
 (b) V. H. Smith, Jr., J. R. Sabin, E. Broclawik, and J. Mrozek, *Inorg. Chim. Acta.*, 77, L101 (1983).
 (c) M-T. Nguyen and T-K. Ha, *J. Mol. Struct.*, 105, 129 (1983).
- 11. J. W. Waluk and J. Michl, Inorg. Chem., 20, 963 (1981).
- T. Chivers, A. W. Cordes, R. T. Oakley, and W. T. Pennington, *Inorg. Chem.*, 22, 2429 (1983).
- 13. A. J. Banister, Inorg. Synth., 17, 197 (1977).

*Available from Aldrich.

- 14. M. Villena-Blanco and W. L. Jolly, Inorg. Synth., 9, 98 (1967).
- T. Chivers, R. T. Oakley, O. J. Scherer, and G. Wolmershäuser, *Inorg. Chem.*, 20, 914 (1981).
- 16. V. Gutmann, G. Hampel, and O. Leitmann, Monatsh. Chem., 95, 1034 (1964).
- 17. J. K. Ruff and W. Schlientz, Inorg. Synth., 15, 84 (1974).
- 18. T. Chivers and M. Hojo, Inorg. Chem., 23, 1526 (1984).
- 19. Aldrichimica Acta, 16, 84 (1983). Available from Aldrich.

8. BINARY CATENA-NITROGEN-SULFUR ANIONS

Submitted by J. BOJES,* T. CHIVERS,* and R. T. OAKLEY† Checked by T. B. RAUCHFUSS‡ and S. GAMMON‡

The preparation of $[Bu_4N]$ [NS₄] by the deprotonation of S₇NH with $[Bu_4N]$ [OH] has been described in an earlier volume of Inorganic Syntheses.¹ The thermolysis of the $N_3S_3^-$ ion, which need not be isolated, in acetonitrile represents an improved procedure for the preparation of salts of the NS₄⁻ ion.² The use of large cations, for example, μ -nitrido-bis- $(triphenylphosphorus)(1+)(PPN^+)$ or Ph₄As⁺, facilitates the isolation of crystalline salts suitable for X-ray structural determinations, which show that NS_{4} has an unusual structure in which nitrogen is the central atom of a planar, catenated chain with a cis, trans conformation.^{2.3} The formation of the deep blue NS₄⁻ ion is dramatically apparent in the synthesis of cyclic sulfur imides from disulfur dichloride and ammonia⁴ or sodium azide and sulfur¹ in polar solvents. This ion is also present in solutions of sulfur in liquid ammonia,⁵ which have found application in organic syntheses.⁶ The reaction of [PPN] [NS₄] (or Ph₄As] [NS₄]) with triphenylphosphine produces the corresponding salts of the NS_3^- ion,⁷ which react with transition metal halides, for example, Cu(I), Ni(II), or Co(II), to give complexes of the type $M(NS_3)_2$.^{7,8} The preparation of Ni(NS₃)₂ from N₄S₄ and nickel(II) chloride in methanol is reported in an earlier volume of Inorganic Syntheses.9

A. μ-NITRIDO-BIS(TRIPHENYLPHOSPHORUS)(1+) BIS(DISULFIDO)NITRATE(1-)

 $[PPN]N_3 + 2N_4S_4 \xrightarrow[reflux]{CH_3CN} [PPN] [NS_4] + \frac{1}{2}S_8 + 5N_2$

*Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4.

†Departments of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

\$\$chool of Chemical Sciences, University of Illinois, Urbana, IL 61801.

Procedure

Caution. The cautionary notes that appear before the descriptions of the syntheses of $[PPN] [N_5S_4]$ and $[PPN] [N_3S_3]^{10}$ should be read before proceeding with these syntheses. Salts of the NS_4^- or NS_3^- ions do not undergo explosive thermal decomposition. They can be handled safely without special precautions except for the use of a dry inert atmosphere to prevent hydrolysis or oxidation.

The starting materials and solvent are prepared and purified as described for the preparation of [PPN] $[N_3S_3]$.¹⁰ Toluene, pentane, and diethyl ether are dried over sodium, and the reaction is carried out in a 100-mL onenecked flask fitted with a side arm and under an atmosphere of dry nitrogen.

A slurry of [PPN]N₃ (1.50 g, 2.58 mmol)¹¹ and N₄S₄ (0.476 g, 2.58 mmol) in acetonitrile (45 mL) is stirred vigorously (magnetic stirring bar) for 1.5 hr to give a very dark blue-green solution, which is heated at reflux for a further 2 hr. The hot, royal blue solution is cooled to -20° for ~ 1 hr, filtered at room temperature to remove sulfur, and reduced in volume to ~ 15 mL. The solution is then kept at $\sim -20^{\circ}$ to complete the precipitation of [PPN] [NS₄] (~ 2 hr). The cold slurry is quickly filtered in air on a medium-porosity glass frit, and the purple microcrystalline product is washed with toluene (2 × 80 mL) and pentane (2 × 80 mL) to remove any remaining sulfur, and is stored under nitrogen. The yield of [PPN] [NS₄] is 1.35 g (77% based on S);* mp 155–158° (with decomposition).

Anal. Calcd. for $C_{36}H_{30}N_2P_2S_4$: C, 63.51; H, 4.44; N, 4.11; S, 18.84. Found: C, 63.37; H, 4.39; N, 3.98; S, 19.02.

Properties

The dark blue crystals of [PPN] [NS₄] have a copper-like metallic sheen. They are stable for several hours in air, but should be stored under nitrogen at 0°. The compound [PPN] [NS₄] is soluble in dichloromethane or acetonitrile and, in solution, the NS₄⁻ ion is very sensitive to traces of oxygen and moisture decomposing to give oxoanions of sulfur. The UV-vis spectrum of [PPN] [NS₄] (in CH₃CN) exhibits an intense band at 582 nm (ϵ 16,000).² The characteristic vibrational frequencies of the NS₄⁻ ion are IR (Nujol) 893 (w), 711 (m), 594 (s), 567 (vs), 416 (w); Raman (solid) 892 (w), 710 (vs), 592 (s), 570 (s) cm^{-1.2} The ¹⁵N NMR spectrum of 30% ¹⁵Nenriched NS₄⁻ as the PPN⁺ salt in CHCl₃ shows a singlet at +244.2 ppm [ref. NH₃(*l*)].⁷

*The checkers report a maximum yield of 51% even when the scale is increased by a factor of 2.

B. SALTS OF THE SULFIDO(DISULFIDO)NITRATE(1-) ANION, NS₃

 $M[NS_4] + Ph_3P \xrightarrow{CH_3CN} M[NS_3] + Ph_3PS$

Procedure

Solid triphenylphosphine (0.728 g, 2.78 mmol) is added to a stirred royal blue solution of [PPN] [NS₄] (1.35 g, 1.98 mmol) in acetonitrile (30 mL) in a 100-mL one-necked flask fitted with a side arm and under an atmosphere of dry nitrogen. The optimum molar ratio of $Ph_3P:NS_4^-$ for maximizing the yield of NS₃⁻ is 1.4:1. Within 2 min the solution becomes orange. Slow addition of diethyl ether (~150 mL) precipitates a bright orange, microcrystalline solid, which is washed with acetonitrile-diethyl ether (1:5, 20 mL) and then diethyl ether (25 mL) to give analytically pure [PPN] [NS₃] (0.73 g, 1.13 mmol, 57%).*

Anal. Calcd. for $C_{36}H_{30}N_2P_2S_3$: C, 66.64; H, 4.67; N, 4.32; P, 9.55; S, 14.82. Found: C, 66.50; H, 4.52; N, 4.23; P, 10.06; S, 14.10.

If the orange crystals of [PPN] [NS₃] are redissolved in acetonitrile a blue solution containing NS₄⁻ is formed.⁷ If recrystallization is necessary, acetonitrile *containing Ph*₃*PS* should be used as the solvent. The compound [Ph₄As] [NS₃] is prepared from [Ph₄As] [NS₄]³ and triphenylphosphine using a similar procedure.

Properties

Orange crystals of [PPN] [NS₃] can be handled in the air for 1–2 hr but darken on exposure to light for several days. Solid samples should be stored in the absence of air and light at 0°. The NS₃⁻ ion is readily converted to NS₄⁻ in solution (CH₃CN or CH₂Cl₂) or by the application of heat (>100°) or pressure (>1 ton) to solid samples. The UV-vis spectrum of [PPN] [NS₃], (in CH₃CN) exhibits an intense band at 465 nm accompanied by a weak absorption at 582 nm due to NS₄⁻ The characteristic vibrational frequencies of the NS₃⁻ ion are IR(Nujol) 893 (vs), 666 (s), 574 (s); Raman (solid) 894 (m), 686 (s), 574 (vs) cm^{-1.7} The presence of small amounts of NS₄⁻ in solid samples of NS₃⁻ salts can be detected by the resonance Raman technique since the bands due to NS₄⁻ are greatly enhanced by use of a 600nm exciting line.⁷ The ¹⁵N NMR spectrum of 30% ¹⁵N-enriched NS₃⁻ as the PPN⁺ salt in CHCl₃ shows a singlet at +617.6 ppm [ref. NH₃(*l*)].⁷

*The checkers report a 75% yield if the crystals of [PPN] $[NS_3]$ are not washed with acetonitrile-diethyl ether.

References

- 1. J. Bojes, T. Chivers, and I. Drummond, Inorg. Synth., 18, 203 (1978).
- T. Chivers, W. G. Laidlaw, R. T. Oakley, and M. Trsic, J. Am. Chem. Soc., 102, 5773 (1980).
- N. Burford, T. Chivers, A. W. Cordes, R. T. Oakley, W. T. Pennington, and P. N. Swepston, *Inorg. Chem.*, 20, 4430 (1981).
- 4. H. G. Heal and J. Kane, Inorg. Synth., 11, 184 (1968).
- 5. T. Chivers and C. Lau, Inorg. Chem., 21, 453 (1982).
- R. Sato, T. Sato, K. Segawa, Y. Takikawa, S. Takizawa, and S. Oae, *Phosphorus Sulfur*, 7, 217 (1979) and references cited therein.
- 7. J. Bojes, T. Chivers, W. G. Laidlaw, and M. Trsic, J. Am. Chem. Soc., 104, 4837 (1982).
- 8. J. Bojes, T. Chivers, and P. W. Codding, J. Chem. Soc., Chem. Commun., 1981, 1171.
- 9. D. T. Haworth, J. D. Brown, and Y. Chen, Inorg. Synth., 18, 124 (1978).
- 10. J. Bojes, T. Chivers, and R. T. Oakley, Inorg. Synth., 25, 30 (1988).
- 11. Aldrichimica Acta, 16, 84 (1983). Available from Aldrich.

9. PENTANITROGEN TETRASULFIDE CHLORIDE, $[N_5S_4]CI [1\lambda^4, 3\lambda^4, 5\lambda^4, 7-TETRATHIA-2, 4, 6, 8, 9-$ PENTAAZABICYCLO[3.3.1]NONA-1(8), 2, 3, 5-TETRAENYLIUM CHLORIDE]

11×4,31×4,51×4,7-Tetrathia-2,4,6,8,9-pentaaza-bicyclo[3.3.1]-1(8),2,3,5-tetraenylium

Submitted by T. CHIVERS* and L. FIELDING* Checked by R. MEWS† and R. MAGGIULLI†

 $(NSCl)_3 + (Me_3Si)NSN(SiMe_3) \rightarrow [N_5S_4]Cl + 2Me_3SiCl$

The preparations of the monocyclic S—N cations, $N_3S_4^+$ and $N_5S_5^+$, have been described in earlier volumes of *Inorganic Syntheses*.^{1,2} The $N_5S_4^+$ ion is the only known example of a bicyclic, binary S—N cation. It is present in $[N_5S_4]Cl$, which has a polymeric chain structure with $N_5S_4^+$ cations bridged symmetrically by chloride ions.³ The synthesis of $[N_5S_4]Cl$ is readily achieved by treatment of a carbon tetrachloride solution of trichlorocyclotrithiazene

^{*}Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4.

[†]Institut Für Anorganische Chemie, Der Universität Göttingen, Tammanstrasse 4, D-3400 Göttingen, Federal Republic of Germany.

with bis(trimethylsilyl)sulfur diimide. It has been used to prepare $[N_5S_4]F$,^{3,4} $[N_5S_4]$ [AsF₆],⁵ and covalent derivatives of the N₅S₄ cage.⁶

Procedure

Caution. Samples of $[N_5S_4]Cl$ may explode if subjected to friction, pressure, or sudden heating (e.g., during a melting point determination). This synthesis should not be attempted by anyone who lacks the experience or the necessary equipment (safety screen, goggles, and gloves) to handle this compound. The solid product should be handled with great care. It should not be removed from a glass frit with a metal spatula. The reaction should not be carried out on a large scale.

1,3,5-Trichloro-1*H*,3*H*,5*H*-1,3,5,2,4,6-trithiatriazine is obtained by treatment of N_4S_4 with excess sulfonyl chloride.^{2.7} Bis(trimethylsilyl)sulfur diimide is prepared by the reaction of $Na[N(SiMe_3)_2]$ with sulfinyl chloride by the literature method⁸ with a few modifications as described by Kuyper and Street.⁹ It is particularly important to wash the precipitate of sodium chloride thoroughly with diethyl ether to ensure of high yield of (Me₃Si)NSN(SiMe₃). Carbon tetrachloride is stored over P₄O₁₀ and distilled immediately before use. The reaction and work-up procedures are conducted in a 100-mL one-necked flask fitted with a side arm under an atmosphere of dry nitrogen.

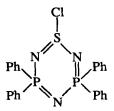
Bis(trimethylsilyl)sulfur diimide (0.83 g, 4.03 mmol) is added dropwise* to a stirred solution (magnetic stirring bar) of (NSCl)₃ (0.95 g, 3.88 mmol) in carbon tetrachloride (50 mL) at 0°. The reaction mixture is allowed to stand at room temperature for ~15 hr, whereupon the supernatant liquid is removed by syringe from the crystalline product. If the solution of reagents is stirred during the reaction, the product is obtained as a yellow powder. Gold crystals are formed if the reaction mixture is not stirred. The product is washed with carbon tetrachloride (3 × 5 mL) and dried at $23^{\circ}-10^{-2}$ torr for 2 hr to give analytically pure [N₅S₄]Cl (0.56 g, 2.40 mmol).

Anal. Calcd. for ClN_5S_4 : Cl, 15.17; N, 29.97; S, 54.86. Found: Cl, 15.23; N, 29.97; S, 54.58.

(**Caution.** The dry solid product should not be removed from the flask or a glass frit with a metal spatula. Gentle tapping of the inverted flask or glass frit, for example, with a rubber stopper attached to a glass rod is recommended.) Removal of solvent, under vacuum, from the combined washings and decanted solution produces additional $[N_5S_4]Cl$ (0.16 g, 0.69 mmol) as a yellow powder, which can be recrystallized from carbon tetrachloride. The total yield of $[N_5S_4]Cl$ is ~80%.

*The checkers preferred to add the $(Me_3SiN)_2S$ as a solution in 10 to 12 mL of CCl₄ in order to improve the accuracy of material transfer.

Properties


 $1\lambda^4, 3\lambda^4, 5\lambda^4$ -Tetrathia-2,4,6,8,9-pentazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenylium chloride is moisture sensitive. It is soluble in dichloromethane or liquid SO₂, slightly soluble in carbon tetrachloride and THF, and insoluble in hydrocarbon solvents. Solid samples should be stored in a dry atmosphere.

The characteristic IR absorptions of $[N_5S_4]Cl$ occur at 1140 (w), 1050 (s), 1023 (m), 966 (s), 800 (w), 720 (w), 697 (s), 628 (m), 584 (s) 560 (sh), 481 (m), 462 (m), 422 (m), 408 (m), 308 (w) cm⁻¹. The UV-vis spectrum (in CH₂Cl₂) exhibits a broad band at 255 mm ($\epsilon 1.5 \times 10^4$) with a shoulder at 365 mm ($\epsilon 2.3 \times 10^3$).

References

- 1. W. L. Jolly and K. D. Maguire, Inorg. Synth., 9, 102 (1967).
- 2. A. J. Banister and H. G. Clarke, Inorg. Synth., 17, 188 (1977).
- 3. T. Chivers, L. Fielding, W. G. Laidlaw, and M. Trsic, Inorg. Chem., 18, 3379 (1979).
- 4. W. Isenberg, R. Mews, G. M. Sheldrick, R. Bartetzko, and R. Gleiter, Z. Naturforsch., 38b, 1563 (1983).
- 5. W. Isenberg and R. Mews, Z. Naturforsch., 37b, 1388 (1982).
- 6. H. W. Roesky, C. Graf, and M. N. S. Rao, Chem. Ber., 113, 3815 (1980).
- 7. G. G. Alange, A. J. Banister, and B. Bell, J. Chem. Soc., Dalton Trans., 1972, 2399.
- 8. O. J. Scherer and R. Wies, Z. Naturforsch., 25b, 1486 (1970).
- 9. J. Kuyper and G. B. Street, J. Am. Chem. Soc., 99, 7848 (1977).

10. $(N_3P_2S)ClPh_4$, 1-Chloro-3,3,5,5-tetraphenyl- $1\lambda^4$,2,4,6, $3\lambda^5$, $5\lambda^5$ -thiatriazadiphosphorine

1-Chloro-3,3,5,5-tetraphenyl-1λ⁴,2,4,6,3λ⁵,5λ⁵-thiatriazadiphosphorine

Submitted by T. CHIVERS* and M. N. S. RAO† Checked by R. T. OAKLEY‡

 $3N_4S_4 + 9Ph_2PCl \longrightarrow 3(N_3P_2S)ClPh_4 + 3Ph_2P(S)Cl + [N_3S_4]Cl + S_2Cl_2$

1-Chloro-3;3,5,5-tetraphenyl- $1\lambda^4$,2,4,6, $3\lambda^5$, $5\lambda^5$ -thiatriazadiphosphorine (N₃P₂S)ClPh₄, a six-membered heterocycle,^{1,2} can be considered as a hybrid of the well-known cyclotriphosphazene, (R₂PN)₃,³ and trichlorocyclotrithiazene, (NSCl)₃,⁴ ring systems. It is conveniently prepared by the reaction of diphenylphosphinous chloride with N₄S₄ in acetonitrile.¹ In addition to simple substitution reactions at the sulfur atom, (N₃P₂S)ClPh₄ readily participates in ring opening reactions via S—N bond cleavage to give 12-membered monocyclic or bicyclic compounds⁵⁻⁷ and heterocycles containing a spirocyclic sulfur center.^{1,7-9}

Procedure

Caution. Tetranitrogen tetrasulfide may explode if it is subjected to percussion, friction, or sudden heating. Procedures for the safe handling of this material are given in ref. 10. This synthesis should not be attempted by anyone who lacks the experience or necessary equipment (safety screen, gloves, and goggles). The reaction of S_4N_4 with Ph_2PCI should not be carried out on a large scale.

Tetranitrogen tetrasulfide is prepared by the method of Villena-Blanco and Jolly¹¹ and is recrystallized from toluene before use. Diphenylphosphinous chloride (Aldrich) is used as received. Acetonitrile is dried over phosphorus pentoxide and then calcium hydride, and distilled from CaH_2 when needed. The reaction is carried out in an oven-dried one-necked 100mL flask fitted with a side arm and under an atmosphere of dry nitrogen, which is also used for the work-up procedure.

Diphenylphosphinous chloride (3.60 g, 16.3 mmol) in acetonitrile (10 mL) is added dropwise (15 min), via a dropping funnel, to a stirred suspension (magnetic stirrer) of tetranitrogen tetrasulfide (1.00 g, 5.4 mmol) in acetonitrile (25 mL). The solution is heated at reflux for 3 hr and the color of the solution changes from deep red to orange and, finally, yellow. The solution is allowed to cool to room temperature and then filtered to remove a yellow precipitate of $[N_3S_4]Cl$ (0.45 g, 2.2 mmol). The filtrate is cooled to -20° for 3–4 hr to give pale yellow crystals of $(N_3P_2S)ClPh_4$ ·CH₃CN (2.20 g, 4.2 mmol), which are collected by filtration at room temperature

^{*}Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4.

[†]*Present address:* Department of Chemistry, Indian Institute of Technology, Madras-36, India.

[‡]Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

and recrystallized from acetonitrile. The product so obtained contains 1 mol of solvated acetonitrile, which is removed on heating at $80^{\circ}/10^{-2}$ torr to give (N₃P₂S)ClPh₄, mp 174-5°.

Anal. Calcd. for $C_{24}H_{20}ClN_3P_2S$: C, 60.06; H, 4.21; N, 8.76; P, 12.91. Found: C, 60.17; H, 4.29; N, 8.98; P, 12.59.

The unsolvated product is less sensitive to moisture then the acetonitrile adduct. The optimum yield of 75–80% (based on Ph₂PCl) is obtained for a 3:1 molar ratio of reactants (Ph₂PCl:N₄S₄). If this ratio is increased, significant amounts of the linear compound [Ph₂P(Cl)N(Cl)PPh₂]Cl are formed.^{1b,12}

Properties

1-Chloro-3,3,5,5-tetraphenyl- $1\lambda^4$,2,4,6, $3\lambda^5$, $5\lambda^5$ -thiatriazadiphosphorine (N₃P₂S)ClPh₄, forms very pale yellow crystals that are readily hydrolyzed to give [Ph₂P(NH₂)N(NH₂)PPh₂]⁺Cl⁻.¹³ It is slightly soluble in acetonitrile and readily dissolves in dichloromethane. In order to avoid hydrolysis, solvents must be scrupulously dried and solid samples of (N₃P₂S)ClPh₄ should not be stored in glass vessels for more than a few days.

The characteristic IR absorption bands of $(N_3P_2S)ClPh_4$ occur at 1439 (s), 1205 (vs), 1183 (s), 1160 (m), 1127 (vs), 1048 (s), 1000 (m), 728 (s), 692 (s), 548 (vs), 513 (s), 482 (m), 430 (m), and 385 (m) cm⁻¹. The purity of samples of $(N_3P_2S)ClPh_4$ is best checked by measurement of the ³¹P NMR spectrum that consists of a singlet, $\delta = +7.8$ ppm (in CDCl₃, relative to external 85% H₃PO₄). The most likely impurity, the hydrolysis product (see above), is readily detected by a characteristic ³¹P NMR signal at $\delta =$ +20.3 ppm. The linear compound [Ph₂P(Cl)N(Cl)PPh₂]Cl (in CH₂Cl₂/ CDCl₃) exhibits a singlet at $\delta = +43.9$ ppm in the ³¹P NMR spectrum.^{1b}

References

- 1. (a) T. Chivers, M. N. S. Rao, and J. F. Richardson, J. Chem. Soc., Chem. Commun., **1982**, 982; (b) T. Chivers and M. N. S. Rao, Inorg. Chem., **23**, 3605 (1984).
- N. Burford, T. Chivers, M. Hojo, W. G. Laidlaw, J. F. Richardson, and M. Trsic, Inorg. Chem., 24, 709 (1985).
- 3. R. Schmutzler, Inorg. Synth., 9, 75 (1967).
- 4. W. L. Jolly and K. D. Maguire, Inorg. Synth., 9, 102 (1967).
- T. Chivers, M. N. S. Rao, and J. F. Richardson, J. Chem. Soc., Chem. Commun., 1983, 186.
- T. Chivers, M. N. S. Rao, and J. F. Richardson, J. Chem. Soc., Chem. Commun., 1983, 702.

- 7. N. Burford, T. Chivers, M. N. S. Rao, and J. F. Richardson, Adv. Chem. Ser., 232, 81 (1983).
- 8. T. Chivers, M. N. S. Rao, and J. F. Richardson, J. Chem. Soc., Chem. Commun., 1983, 700.
- 9. T. Chivers, M. N. S. Rao, and J. F. Richardson, Inorg. Chem., 24, 2237 (1985).
- 10. A. J. Banister, Inorg. Synth. 17, 197 (1977).
- 11. M. Villena-Blanco and W. L. Jolly, Inorg. Synth., 9, 98 (1967).
- 12. W. Haubold, D. Kammel, and M. Becke-Goehring, Z. Anorg. Allg. Chem., 380, 23 (1971).
- 13. I. I. Bezman and J. H. Smalley, Chem. Ind. (London), 1960, 839.

SILICON AND TIN SULFUR-NITROGEN 11. COMPOUNDS, (Me₃Si)₂N₂S, (Me₃Sn)₂N₂S, and (Me₂Sn)S₂N₂

Submitted by CHRISTOPHER P. WARRENS and J. DEREK WOOLLINS* Checked by M. WITT and H. W. ROESKY[†]

Bis(trimethylsilyl)sulfurdiimide has been known for a number of years.¹ It may be obtained from reaction of Na[(Me₃Si)₂] with sulfur dichloride or, in better yield, sulfinyl chloride.² Its synthetic utility has been thoroughly established:³ elimination of Me₃SiCl with insertion of the NSN unit provides many useful syntheses. Its tin analog is also known⁴ and of similar usefulness. The compound $(Me_3Sn)_2N_2S$ has been obtained^{4.5} from the reaction of $(Me_3Sn)_3N$ or Me_3SnNMe_2 with S_4N_4 . An alternative reaction⁶ that does not require the use of explosive S_4N_4 and is easier to work-up is that between $(Me_1Sn)_1N$ and $(NSCl)_3$. The S \rightarrow Sn coordination dimer, $[(Me_2Sn)S_2N_2]_2$, obtained⁴ from the reaction of S_4N_4 with $(Me_3Sn)_3N$, has also found use in the synthesis of SN heterocycles. Despite the utility of these compounds, well documented and foolproof procedures have not been reported and this is limiting the development of their chemistry. In the following sections we provide detailed revised procedures. Each preparation takes ~ 2 days and may be scaled up or down by a factor of 2 although the preparation of (Me₃Si)₂N₂S does become cumbersome and the mixture is difficult to stir if scaled up because of the large quantities of solvent needed.

*School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom. (Work carried out at Imperial College of Science and Technology, London, United Kingdom.

†Institut für Anorganische Chemie, Der Universitat Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany.

Procedure

All procedures should be carried out under an inert atmosphere of nitrogen or argon. Solvents used should be anhydrous. Diethyl ether is dried over sodium, dichloromethane is dried with and distilled from CaH_2 .

A. BIS(TRIMETHYLSILYL)SULFURDIIMIDE (Me₃Si)₂N₂S

 $2(Me_{3}Si)_{2}NNa + SOCl_{2} \longrightarrow (Me_{3}Si)_{2}N_{2}S + (Me_{3}Si)_{2}O + 2NaCl_{2}Na$

Sodium bis(trimethylsilyl)amide⁷ (99.06 g, 0.54 mol) (checkers report that the lithium salt gives slightly better yields) is dissolved in diethyl ether (550 mL) in a 1-L round-bottomed flask equipped with a nitrogen inlet, a 50mL pressure equalizing dropping funnel, and a Teflon covered magnetic stirring bar (if the reaction is to be carried out on a larger scale a mechanical stirrer should be used). The reaction vessel is cooled using a CO₂-acetone bath (-78°). Sulfinyl chloride (33 g, 20.2 mL, 0.277 mol) is added to the stirred solution via the dropping funnel over 30-45 min and with continued stirring the reaction mixture is allowed to warm slowly to room temperature (3-4 hr). At this stage the mixture is yellow-pale orange and contains large quantities of precipitated NaCl, which is removed by filtration through a Schlenk filter (7.5-cm diameter, medium porosity, D #3 frit). The NaCl is thoroughly washed with diethyl ether to remove any product adhering to it. Typically this requires 4×150 mL and washing should be continued until the NaCl is almost white. The filtrate and washings are combined and the diethyl ether removed by distillation at atmospheric pressure under nitrogen. Some further NaCl may be precipitated on removal of the ether and this should be removed by filtration. The product is obtained by fractional distillation via a Vigreux column ($30 \text{ cm} \times 1 \text{ cm}$) at reduced pressure (12 torr-a water pump may be used provided the distillation is protected by a drying tube) as a pale yellow mobile liquid, bp 59-61°, 12 mm; yield: 33.4 g, 60%.

Anal. Calc. for $[(CH_3)_3Si]_2N_2S$: C 34.91, H 8.79, N 13.57, S 15.53%. Found: C 34.74, H 8.95, N 13.36, S 15.61%.

Properties

The compound $(Me_3Si)_2N_2S$ is a pale yellow, moisture sensitive liquid. It should be stored under nitrogen, preferably in a flask equipped with Teflon in glass valves (e.g., Rotaflo or J. F. Youngs type) since it slowly dissolves

grease. It is miscible with, and may be used in, dry organic solvents such as hexane, benzene, and THF, but it reacts with alcohol.⁸ The ¹H NMR (CDCl₃) consists of a singlet at $\delta = 0.26$ ppm IR (cm⁻¹) (thin film) 2970 (m), 2910 (w), 1250 (s, br), 1145 (w), 1062 (w), 942 (w), 850 (s, br), 770 (m), 725 (mw), 705 (sh), 658 (w), 628 (w), 455 (mw). Mass Spectroscopy: [m/e(rel intensity)—major peaks only] 206 (12) M⁺, 191 (100), 177 (20), 146 (45), 138 (25), 120 (30), 73 (95).

B. BIS(TRIMETHYLSTANNYL)SULFURDIIMIDE (Me₃Sn)₂N₂S

 $(Me_3Sn)_3N + \frac{1}{3}(NSCl)_3 \longrightarrow (Me_3Sn)_2N_2S + Me_3SnCl$

■ Caution. The product obtained in this reaction is malodorous and of unknown toxicity. It should be handled in an efficient fume hood. Tris(trimethylstannyl)amine⁹ (5.225 g, 0.0103 mol) dissolved in (sodium dried) toluene (50 mL) is placed in a 500-mL Schlenk flask equipped with a 250-mL pressure equalizing dropping funnel and a Teflon coated magnetic stirring bar. The dropping funnel is charged with a warm (50°) solution of trithiazltrichloride¹⁰ (0.8484 g, 0.00347 mol) in dry toluene (150 mL). Over a period of 1 to 2 hr this solution, maintained at $\sim 50^{\circ}$ (using a hot air blower) to stop precipitation of (NSCl)₃, is added dropwise to the stirred reaction mixture. The reaction mixture is stirred overnight and the toluene evaporated under reduced pressure (15 torr) with no external heating to leave an orange residue. This residue is fractionally sublimed using a cold finger cooled with liquid N₂. At room temperature and 0.05 torr Me₃SnCl is obtained while the product sublimes at 0.05 torr and 50-60°. Yield: 2.091 g, 52%. (Checkers comment: alternatively, Me₃SnCl can be removed by trapping it in liquid N₂ during sublimation of the product onto a water cooled sublimation finger. On a larger scale pumping for 1 hr prior to sublimation is advisable.)

Anal. Calc. for [(CH₃)₃Sn]₂N₂S: C 18.59, H 4.68, N 7.23, S 8.27%. Found: C 18.63, H 4.69, N 7.05, S 8.10%.

Properties

The compound $(Me_3Sn)_2N_2S$ is a pale yellow air- and moisture-sensitive, malodorous solid that must be stored under nitrogen. If kept at 0° it can be stored indefinitely. It is soluble in most organic solvents (e.g., diethyl ether, benzene, THF, CH₂Cl₂). The ¹H NMR (CDCl₃) consists of a singlet at $\delta = 0.43$ ppm with tin satellites [²J_{Sn-H} 57 Hz], whereas in the ¹¹⁹Sn {¹H} NMR (C_6D_6) a broad singlet at $\delta = 40.5$ ppm (rel. to Me₄Sn) is observed. Infrared (Nujol mull), 1200 (vs), 1170 (vs), 1057 (w), 1000 (s, br), 933 (m, br), 770 (vs, br), 645 (s), 540 (s), 522 (s), 509 (s), 403 (s, br). The mass spectrum shows the parent ion at m/e 388 together with the reported fragmentation products.⁶

C. BIS[MERCAPTOSULFURDIIMIDATO(2-)] TETRAMETHYLDITIN, $[Me_2SnS_2N_2]_2$

(**Caution.** Tetranitrogen tetrasulfide used in this procedure is explosive. The greatest of care should be taken in handling S_4N_4 .) Under no circumstances should it be heated suddenly or struck; care should be taken to avoid trapping it in ground glass joints. Refer to the previous safety note.¹¹ The reaction should be carried out in a fume hood since some of the tin compounds formed have unpleasant odors and are of unknown toxicity.

Tetranitrogen tetrasulfide¹² (1.0 g, 0.0054 mol) is suspended in dry CH₂Cl₂ (60 mL) in a 100-mL Schlenk flask (i.e., a 100-mL round-bottomed flask with a single quickfit joint and a stopcock) equipped with a 50-mL pressure equalizing dropping funnel and a Teflon coated magnetic stirrer bar. This suspension is cooled to -20° and a solution of tris(trimethylstannyl)amine⁹ (5.47 g, 0.0108 mol) in CH₂Cl₂ (18 mL) is slowly added dropwise over 1 hr to the stirred suspension. The reaction mixture is allowed to warm to room temperature (~1 hr) and the solvent is removed under reduced pressure with no external heating of the sample to give a sticky orange colored residue. A second 100-mL Schlenk flask is connected to the reaction vessel via an adapter bend and is immersed in a bath at -40° . The receiver flask is connected via a liquid N₂ cooled cold trap to a vacuum line, and at a pressure of 0.01 torr, the reaction flask is heated to 70°. Tetramethyltin (Me₄Sn) is collected in the liquid N₂ cooled trap, while impure (Me₃Sn)₂N₂S distills over into the receiver flask (-40°) leaving a yellow residue in the

reaction flask. The yellow residue is recrystallized from boiling CH_2Cl_2 (~100 mL) to give the product as a yellow powder. The impure $(Me_3Sn)_2N_2S$, which is contaminated with a more volatile compound, may be purified by distillation (15 × 1 cm Vigreux column) at 0.175 mm Hg. The impurity distils at 66 to 68° leaving behind a residue that can be sublimed as described above to give pure $(Me_3Sn)_2N_2S$, 1.95 g, 46%. Yield: $(Me_2Sn)S_2N_2$ 0.572 g, 44%.

Anal. Calc. for (CH₃)₂SnS₂N₂: C 9.97, H 2.51, N 11.63, S 26.62%. Found: C 10.30, H 2.51, N 10.98, S 26.88%.

The checkers prefer a slightly modified procedure. After addition of the amine the solution is refluxed for several hours, the sulfurdiimide is sublimed off at 50–70° *in vacuo* and the residue washed with several portions of CCl_4 . The product thus obtained is sufficiently pure for most purposes.

Properties

The compound $[Me_2SnS_2N_2]_2$ is a slightly air sensitive yellow solid, which is moderately soluble in CHCl₃, CH₂Cl₂, toluene, benzene, and DMF. The ¹H NMR (CDCl₃) consists of a singlet at $\delta = 0.934$ ppm with tin satellites, ²J_{Sn-H} = 66 Hz. Infrared (Nujol mull) 2980 (w), 2900 (w), 1186 (m), 1064 (s, br), 1034 (vs, br), 900 (s), 774 (s, br), 703 (s), 626 (s), 566 (m), 526 (m), 458 (m), 396 (m). Mass spectral measurements show the parent ion of the monomer at *m/e* 242 and peaks due to the expected fragmentation products.

References

- 1. U. Wannagat and H. Kuckertz, Angew. Chem. Int. Ed. (Engl.), 1, 113 (1962).
- 2. O. J. Scherer and R. Wies, Z. Naturforsch., 25B, 1486 (1970).
- 3. H. W. Roesky, Adv. Inorg. Radiochem., 22, 239 (1979).
- 4. H. W. Roesky and H. Wiezer, Angew. Chem. Int. Ed. (Engl.), 12, 674 (1973).
- 5. D. Hanssgen and W. Roelle, J. Organomet. Chem., 56, C14 (1973).
- 6. G. Brands and A. Golloch, Z. Naturforsch., 37B, 568 (1982).
- 7. C. R. Kruger and H. Niederprum, Inorg. Synth., 8, 15 (1966).
- 8. W. Flues, O. J. Scherer, J. Weiss, and G. Wolmershauser, Angew. Chem. Int. Ed. (Eng.), 15, 379 (1976).
- 9. W. L. Lehn, J. Am. Chem. Soc., 86, 305 (1964).
- 10. W. L. Jolly and K. Maguire, Inorg. Synth., 9, 102 (1967).
- 11. A. J. Banister, Inorg. Synth., 17, 197, (1977).
- 12. M. Villena-Blanco and W. L. Jolly, Inorg. Synth., 9, 98 (1967).

12. 1,1,1-TRIMETHYL-N-SULFINYLSILANAMINE, Me₃SiNSO

Submitted by ERICA PARKES and J. DEREK WOOLLINS* Checked by HOWARD B. YOKELSON[†] and ROBERT WEST[†]

1,1,1-Trimethyl-*N*-sulfinylsilanamine, Me₃SiNSO, obtained from the reaction of $(Me_3Si)_3N$ with SOCl₂ was first reported¹ in 1966 but full details of the preparation have not been published. This compound provides a useful source of the NSO function by reactions involving elimination of Me₃SiCl, for example, in the formation² of S(NSO)₂, and it may be converted into a stable mercury salt Hg(NSO)₂ by reaction³ with HgF₂.

The procedure described here can be carried out comfortably in 2 days and may be scaled up twofold provided the reaction time is increased accordingly.

Procedure

All manipulations are performed under an inert atmosphere of nitrogen or argon. Aluminum trichloride is sublimed under vacuum (120°) onto a dry ice-acetone cold finger and should be white in color. Sulfinyl chloride was distilled from sulfur or is freshly opened Aldrich Gold Label.

$$(Me_3Si)_3N + SOCl_2 \xrightarrow{AlCl_3} 2Me_3SiCl + Me_3SiNSO$$

1,1,1-Trimethyl-N,N-bis(trimethylsilyl)silanamine⁴ (20.0 g, 0.086 mol), aluminum trichloride (0.5 g) and a magnetic stirring bar are placed in a two-necked, 100-mL, round-bottomed flask equipped with a pressure equalizing dropping funnel containing sulfinyl chloride (10.23 g, 0.086 mol) and a reflux condenser, which is fitted with an N₂ bubbler. The sulfinyl chloride is added dropwise from the dropping funnel with stirring over a period of 1 hr during which time the reaction mixture changes from white to orange-yellow. The reaction mixture is then stirred and heated to 70° (oil bath) for 24 hr. After this time the reaction is cooled. The dropping funnel and condenser are removed and quickly replaced by a distillation head (a Perkin triangle is most convenient but a simple arrangement with

^{*}School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.

[†]Department of Chemistry, University of Wisconsin, Madison, WI 53706.

a "pig" is satisfactory). Distillation under N_2 gives two low boiling fractions (Me₃SiCl and SOCl₂) followed by the pure product, bp 102–4°, as a yellow liquid. Yield: 5.9 g, 51%. (Checkers report 40% yield for a reaction carried out on half-scale).

Anal. Calc. for (CH₃)₃SiNSO: C 26.66 H 6.66 N 10.37%. Found: C 26.87 H 6.85 N 10.17%.

Properties

1,1,1-Trimethyl-*N*-sulfinylsilanamine is a slightly air-moisture sensitive yellow liquid and is best stored under nitrogen in a greaseless Schlenck flask. It is soluble in most organic solvents but decomposes in alcohols.

¹H NMR (CD₂Cl₂) singlet $\delta = 0.35$ ppm. Infrared (thin film, cm⁻¹) 2960 (m), 2900 (w), 1405 (w), 1295 (vs, br) (NSO), 1125 (s) (NSO), 1050 (w), 845 (vs, br), 760 (s), 695 (w), 640 (s), 570 (m) (NSO), 465 (w).

References

- 1. O. J. Scherer and P. Hornig, Angew. Chem. Int. Ed. (Engl.), 5, 729 (1966).
- 2. D. A. Armitage and A. W. Sinden, Inorg. Chem., 11, 1151 (1972).
- 3. W. Verbeek and W. Sundermeyer, Angew. Chem. Int. Ed. (Engl.), 8, 376 (1969).
- 4. W. L. Lehn, J. Am. Chem. Soc., 86, 305 (1964).

13. SULFUR-NITROGEN RINGS CONTAINING EXOCYCLIC OXYGEN

Submitted by HERBERT W. ROESKY* and MICHAEL WITT* Checked by JOHN BURGESS,† PAUL F. KELLY,† THOMAS G. PURCELL,† and J. DEREK WOOLLINS†

While tetrasulfurtetranitride¹ and sulfur-nitrogen halides² have been established over a century ago, progress in the field of oxygen-containing ring compounds has not been achieved until the last decade. Almost si-

†School of Chemical Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.

^{*}Institute für Anorganische Chemie, der Universitat Göttingen, Tammännstrasse 4, D-3400 Göttingen, Federal Republic of Germany.

multaneously an eight-membered ring³ and a five-membered ring⁴ were synthesized [see eqs. (1) and (2)].⁵

$$4S_{3}N_{2}Cl_{2} + 2SO_{2}(NH_{2})_{2} \longrightarrow$$

$$2S_{4}N_{4}O_{2} + S_{4}N_{3}Cl + NH_{4}Cl + S_{2}Cl_{2} + 4HCl \quad (1)$$

$$S_{3}N_{2}Cl_{2} + HCOOH \longrightarrow S_{3}N_{2}O + 2HCl + CO \quad (2)$$

The synthesis of these two rings, together with the first synthesis of a carbon-containing five-membered ring, are given in detail [see eqs. $(3)^6$ and $(4)^7$].

$$S_2 N_2 Sn(CH_3)_2 + COF_2 \longrightarrow S_2 N_2 CO + 2(CH_3)_2 SnF_2$$
(3)

 $ClCOSCl + (CH_3)_3SiNSNSi(CH_3)_3 \longrightarrow S_2N_2CO + 2(CH_3)_3SiCl \quad (4)$

While the eight-membered ring proved to be an excellent precursor for the synthesis of oxygen-containing sulfur-nitrogen heterocycles with nucleophiles,⁸ as well as electrophiles,⁹ the five-membered rings have shown Lewis basicity on various substrates.^{10,11}

General Procedure

All reactions were carried out in a well-ventilated hood in a dry nitrogen atmosphere. All solvents were dried according to the literature and were stored under nitrogen. The compounds $SO_2(NH_2)_2$ and $(CH_3)_3SnCl$ were commercial products (e.g., Morton Thiokol Inc., Alfa Products), COF_2 can be purchased, for example, from PCR Inc., Gainesville, Florida, HCOOH was dried with boron oxide/anhydrous copper(II)chloride, $S_3N_2Cl_2^{12}$ S_4N_4 ,¹³ and $[(CH_3)_3Sn]^{14}$ were prepared according to the literature methods.

Caution. S_4N_4 should be handled with extreme caution and in small quantities. It is prone to detonate.^{13d}

A. TETRASULFURTETRANITROGEN DIOXIDE, S4N4O2

Tetrasulfurtetranitrogen dioxide is best prepared according to the following equation

 $2SO_2(NH_2)_2 + 4S_3N_2Cl_2 \longrightarrow 2S_4N_4$

 $2S_4N_4O_2 + S_4N_3Cl + NH_4Cl + S_2Cl_2 + 4HCl$

500 mL of dry carbon tetrachloride are heated to reflux in a 1-L threenecked flask equipped with a reflux condenser topped with a CaCl₂ drying tube, a solid addition funnel charged with a mixture of 78 g finely ground $S_3N_2Cl_2$ (0.4 mol) and 19.2 g (0.2 mol) $SO_2(NH_2)_2^*$ and a mechanical stirrer or a strong magnetic stirrer. Through a gas inlet on top of the funnel a slow stream of nitrogen is maintained throughout the whole reaction to avoid blocking of the solid outlet and to expel HCl. The mixture is added to the boiling solvent over a period of 3 hr and the slurry is heated until HCl evolution has ceased (approximately 8 hr). After cooling, the dark vellow precipitate is collected under nitrogen on a sintered glass funnel and dried in vacuo. The filtrate can be discarded; it contains ~1 to 2% of $S_4N_4O_2$. Extraction of the solid with dry, peroxide-free THF, using a soxhlet apparatus with a sintered glass extraction thimble, yields pure $S_4N_4O_2$ after cooling. More product can be obtained by concentrating the solution. The overall yield is strongly dependent on the reaction scale; smaller scales decrease the yield drastically.¹⁵ Thus an optimized yield up to 90% can sometimes be achieved. (The checkers obtained 56-60% yields. In a onetenth scale synthesis, the yield fell to 37%.)

Properties

Tetrasulfurtetranitrogen dioxide $(1\lambda^6, 3\lambda^4, 5, 7\lambda^4$ -tetrathia-2,4,6,8-tetraazocine)⁵ forms orange crystals melting with decomposition at 168°. It crystallizes in the monoclinic space group $P2_1/c$,¹⁶ five ring atoms being essentially planar, with the two nitrogen atoms adjacent to the SO₂ moiety 55 pm and the tetra co-ordinated sulfur 157 pm out of plane. The compound S₄N₄O₂ is soluble in benzene, acetronitrile, THF, and liquid sulfur dioxide, slightly soluble in methylene chloride, and almost insoluble in petroleum and chlorofluorocarbons. Pyridine forms an adduct. In water and alcohols decomposition takes place.^{8b}

The IR spectrum contains the following absorptions: 1330 (vs), 1310 (sh), 1170 (m), 1138 (vs), 1117 (vs), 1060 (m), 982 (m), 719 (m) and 704

*The checkers recommend the use of a "tipper tube" arrangement consisting of a 250mL round-bottomed flask (containing the reactants) and an appropriate ground glass joint connecting adapter. The nitrogen flow is over the top of the reaction mixture (connected at the top of the condenser). They found that heating at reflux and stirring to dispel HCl was required for 10 hr, or for 3 hr followed by 24 hr at 45°. Filtration was accomplished with a sintered filter or the use of steel needle techniques. The Soxhlet extraction used 200 mL of THF and, after filtration to remove the first crop of product, the volume is slowly reduced to give more material. If the volume is reduced too much, however, the product may separate as an oil. cm^{-1} (m). The mass spectrum shows the molecule ion at m/e 216 with an intensity of 4%.

Anal. For S₄N₄O₂: Calcd. N 25.9%, S 59.3%. Found N 25.7%, S 59.5%.

B. TRISULFURDINITROGEN OXIDE, S₃N₂O

 $S_3N_2Cl_2 + HCOOH \longrightarrow S_3N_2O + 2HCl + CO$

■ **Caution.** Avoid skin contact with formic acid. Serious skin damage might occur. Use rubber gloves. If contact has occurred remove contaminated clothes and rinse with plenty of water!

A sample of S₁N₂Cl₂ (7.6 g 40 mmol) is placed in a 250 mL two-neck flask fitted with a reflux condenser topped with a CaCl₂ drying tube and with a glass inlet tube for a gentle nitrogen flow. Dry methylene chloride (150 mL) and 3 mL of formic acid are added under magnetic stirring. The mixture soon turns red and is gently refluxed until evolution of HCl stops. The solution is concentrated to $\frac{1}{4}$ its original volume and filtered under nitrogen through a glass-sintered funnel. The solvent is then evaporated in vacuo. Distillation of the liquid in vacuo affords 4.5 g (81%) of a red oil, bp 50° at $1-10^{-5}$ bar. The checkers provide the following details. Formic acid is dried by refluxing overnight and distillation from phthalic anhydride (equimolar proportions) followed by refluxing (4 hr) over and distillation from anhydrous copper(II) chloride. The reaction works best if CH₂Cl₂ is added first, followed by slow addition (over 2-3 hr) of formic acid. The refluxing was continued for 1 week before the evolution of HCl ceased. At this stage the reaction mixture has a dark red color. Distillation required an oil bath temperature of 60-70°. The yield was 57-70%.

■ **Caution.** Do not distil to complete dryness and avoid bath temperatures above 100°! The solid residue might contain temperature-unstable byproducts that can explode violently.

Properties

1-Oxo- $1\lambda^4$,2,4 λ^4 ,3,5-trithiadiazole is a red, oily liquid, which does not wet glass. In the refrigerator, yellow needles are formed that melt at 18°. It can be stored under nitrogen without decomposition and is soluble in most common organic solvents. The IR spectrum shows absorptions at 1125 (vs), 980 (s), 903 (s), 734 (vs) and 663 cm⁻¹ (s). The mass spectrum contains the molecule ion m/e 140 with an intensity of 11%.

Anal. For S₃N₂O: Calcd. N 20.0%, S 68.6%. Found: N 19.8%, S 69.0%.

C. DITHIADIAZOLONE, S₂N₂CO

$$S_4N_4 + [(CH_3)_3Sn]_3N \longrightarrow 2S_2N_2Sn(CH_3)_2 + Sn(CH_3)_4 + \frac{1}{3}N_2 + \frac{1}{3}(CH_3)_3N \quad (5)$$

$$S_2N_2Sn(CH_3)_2 + COF_2 \longrightarrow S_2N_2CO + (CH_3)_2SnF_2$$
(6)

3.7 g (20 mmol) S_4N_4 is placed in a two-neck flask equipped with reflux cooler topped with a CaCl₂ drying tube and a dropping funnel (preferably with a Teflon valve) filled with 10.2 g (20 mmol) [(CH₃)₃Sn]₃N. The flask is cooled to -15° and the amine slowly added. If solidification (mp 27°) occurs, the amine is gently warmed with a heat gun. After complete addition the resulting red liquid is heated to 90° until a yellow precipitate is formed (approximately 1 day). Volatiles then are removed in vacuo and the compound recrystallized from methylene chloride (200-400 mL). If the scale is increased, it is advisable to add some dry CCl_4 to the S_4N_4 and the amine, because the reaction is extremely exothermic and the S_4N_4 might explode if the temperature rises above 100°. The yield is 8.8 g (91%). (The checkers obtained a 73% yield. They report that the product is sometimes contaminated by S_8 , which can be removed by washing twice with 30-mL portions of carbon disulfide.)

Properties

5,5-Dimethyl-1,3 λ^4 ,2,4,5-dithiadiazastannole forms yellow crystals that are stable up to 198°, soluble only in methylene chloride, and stable toward water, but hydrolyzed by acids.¹⁷ It is monomeric in the gas phase, and dimeric in solution and in the solid state. The single crystal X-ray structure determination shows the dimer having a Sn₂N₂ four-membered ring with C₁ symmetry. The ring skeleton is nearly planar.¹⁸ The ¹H NMR spectrum shows a singlet at $\delta = 0.95$ ppm with satellites $J_{\rm H,117Sn} = 66.3$, $J_{\rm H,119Sn} =$ 69.3 Hz. The IR spectrum exhibits absorptions at 2960 (w), 2880 (w), 1393 (w), 1186 (w), 1064 (s), 1034 (vs), 901 (s), 778 (s), 737 (w), and 702 cm⁻¹ (s). The molecule ion in the mass spectra is observed at m/e 242 (¹²⁰Sn) with an intensity of 60%. No higher peaks assignable to the dimer occur.

Anal. Calcd. for C₂H₄N₂S₂Sn₂: C 10.0%, H 2.5%, N 11.6%, S 26.5%, Sn 49.4%. Found: C 9.8%, H 2.4%, N 11.0%.

7.3 g (30 mmol) $S_2N_2Sn(CH_3)_2$ is suspended in 120-mL dry methylene chloride in a 250-mL two-neck flask with gas inlet tube, CaCl₂ drying tube, and a magnetic stirrer. (
Caution. Carbonyl fluoride is a toxic gas. Reactions should be carried out in a well-ventilated hood.) The COF₂ cyl-

inder is attached directly to the gas inlet tube and an excess of the gas is passed slowly through the solution. After 2 hr the solvent is removed under reduced pressure (>15 mbar). A sublimation finger is attached to the flask, the system cooled down with liquid air, evacuated to 10^{-5} bar, the stopcock closed and the flask warmed to $30-35^{\circ}$. The S₂N₂CO sublimes in yellow cubes in a yield of 1.8 g (50%).

Properties

 $1,3\lambda^4,2,4$ -Dithiadiazol-5-one forms yellow translucent crystals with the space group *Pbca-D*¹⁵ and with all the bond lengths in the usual range.^{11a} It melts at 40.5° and decomposes in contact with water. With moist air it forms a hydrate that can be dehydrated with P₄O₁₀. It is soluble in all organic solvents and in liquid SO₂. The IR spectrum reveals bands at 1727 (vs), 1172 (w), 1158 (w), 1065 (m), 780 (m), 725 (s), 640 (w), 520 (w), and 423 (w) cm⁻¹. The Raman spectrum shows absorptions at 1702 (w), 1500 (w), 1265 (w), 1065 (m), 905 (vs), 785 (s), 610 (w), 598 (s), 570 (w), 525 (s), and 425 (w) cm⁻¹. In the mass spectrum the molecule ion is found at *m/e* 120 with 12% intensity.

Anal. Calcd. for S₂N₂CO: C 10.0%, N 23.3%, S 53.4%. Found: C 10.0%, N 23.4%, S 52.9%.

References

- 1. A. Gregory, J. Pharm., 21, 315 (1935); 22, 301 (1935).
- 2. E. Demarçay, Compt. Rend., 91, 854 (1880); 91, 1066 (1880); 92, 726 (1881).
- 3. H. W. Roesky, W. Grosse Böwing, I. Rayment, and H. M. M. Shearer, J. Chem. Soc. Chem. Commun. 1975, 735.
- H. W. Roesky and H. Wiezer, Angew. Chem., 87, 254 (1975); Angew. Chem. Int. Ed. (Engl.), 14, 258 (1975).
- 5. H. W. Roesky, W. Schaper, O. Petersen, and T. Müller, Chem. Ber., 110, 2695 (1977).
- H. W. Roesky and E. Wehner, Angew. Chem., 87, 521 (1975); Angew. Chem. Int. Ed. (Engl.), 14, 498 (1975).
- 7. R. Neidlein and P. Leinberger, Chem. Ztg., 99, 433 (1975).
- (a) H. W. Roesky, M. Witt, M. Diehl, J. W. Bats, and H. Fuess, Chem. Ber., 112, 1372 (1981).
 (b) H. W. Roesky, M. Witt, B. Krebs, and H. J. Korte, Chem. Ber., 114, 201 (1981).
 (c) H. W. Roesky, M. Witt, W. Clegg, W. Isenberg, M. Noltemeyer, and G. M. Sheldrick, Angew. Chem., 92, 959 (1980); Angew. Chem. Int. Ed. (Engl.), 19, 1943 (1980).
 (d) M. Witt and H.W. Roesky, Z. Anorg. Allg. Chem., 51, 515 (1984).
 (e) T. Chivers, A. W. Cordes, R. T. Oakley, and W. T. Pennington, Inorg. Chem., 22, 2429 (1983).
- (a) H. W. Roesky, W. Clegg, J. Schimkowiak, M. Schmidt, M. Witt, and G. M. Sheldrick, J. Chem. Soc. Dalton Trans., 1982, 2117. (b) H. W. Roesky, M. Witt, J. Schimkowiak,

M. Schmidt, M. Noltemeyer, and G. M. Sheldrick, Angew. Chem., 94, 541 (1982); Angew. Chem. Int. Ed. (Engl.), 21, 536 (1982).

- (a) H. W. Roesky, M. Kuhn, and J. W. Bats, *Chem. Ber.*, **115**, 3025 (1982). (b) H. W. Roesky, M. Thomas, J. Schimkowiak, M. Schmidt, M. Noltemeyer, and G. M. Sheldrick, *J. Chem. Soc. Chem. Commun.*, **1982**, 790. (c) H. W. Roesky, M. Thomas, J. W. Bats, and H. Fuess, *J. Chem. Soc. Dalton Trans.*, **1983**, 1891.
- (a) H. W. Roesky, E. Wehner, E.-J. Zehnder, H.-J. Deiseroth, and A. Simon, *Chem. Ber.*, **111**, 1670 (1978). (b) A. Gieren, B. Dederer, R. Martin, F. Schanda, H. W. Roesky, and M. Eiser, *Chem. Ber.*, **113**, 3904 (1980). (c) H. W. Roesky, M. Thomas, M. Noltemeyer, and G. M. Sheldrick, *Angew. Chem.*, **94**, 861 (1982); *Angew. Chem. Int. Ed. (Engl.)*, **23**, 858 (1982).
- 12. W. L. Jolly and K. D. Maguire, Inorg. Synth., 9, 102, (1967).
- (a) M. Becke-Goehring, *Inorg. Synth.*, 6, 123, (1960). (b) G. Brauer, Handbuch d. präp. anorg. Chem. 403, F. Enke, Stuttgart 1975. (c) M. Villena-Blanco and W. L. Jolly, *Inorg. Synth.*, 9, 98 (1967). (d) A. J. Banister, *Inorg. Synth.*, 17, 197 (1977).
- (a) K. Sisido and S. Kozima, J. Org. Chem., 29, 907 (1964). (b) W. L. Lehn, J. Am. Chem. Soc., 86, 305 (1964).
- M. Witt, Ph.D. Thesis, Frankfurt, Johann Wolfgang Goethe-Universität, Federal Republic of Germany, 1980.
- 16. P. G. Jones, W. Pinkert, and G. M. Sheldrick, Acta Cryst., C39, 827 (1983).
- 17. H. W. Roesky and H. Wiezer, Angew. Chem., 85, 722 (1973); Angew Chem. Int. Ed. (Engl.), 12, 674 (1973).
- 18. H. W. Roesky, Adv. Inorg. Chem. Radiochem., 22, 239 (1979).

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

Chapter Two

INORGANIC POLYMER SYSTEMS

14. ORGANOSILANE HIGH POLYMERS: POLY(METHYLPHENYLSILYLENE)

 $PhMeSiCl_2 \xrightarrow[110^{\circ}]{Na, toluene} (PhMeSi)_n$

Submitted by R. WEST* and P. TREFONAS† Checked by W. P. WEBER‡ and Y.-X. DING‡

The first organosilane polymers based on diphenylsilylene units may have been synthesized by Kipping in 1924,¹ and polydimethylsilylene was first described by Burkhard in 1949.² These polymers were, however, highly crystalline, intractable white powders that decomposed when heated. Recently, with the synthesis of air-stable, soluble, formable organosilane polymers and copolymers, there has been a resurgence of interest in these materials.³ The polysilanes have interesting electronic and conformational properties, and may be useful as precursors for β -SiC,⁴ as impregnating agents for strengthening ceramics,⁵ as photoresists for microelectronics,⁶ as photoinitiators,⁷ and as photoconductors.⁸

The solubility properties of polyorganosilanes are quite dependent on

^{*}Department of Chemistry, University of Wisconsin, Madison, WI 53706.

[†]Monsanto Electronic Materials Co., 800 N. Lindbergh Blvd., St. Louis, MO 63167.

[‡]Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661.

the nature of the substituents bonded to the polymer backbone and on the molecular weight. Polymers with two or more different substituents, such as $(PhMeSi)_n$ or $(n-PrMeSi)_n$, or polymers with highly flexible substituents, such as $(n-HexMeSi)_n$ or $(n-Hex_2Si)_n$, are soluble in a wide variety of common organic solvents. Random copolymers, such as $[(cyclohexyl-MeSi)_x(n-HexMeSi)_y]_n$ are also rather soluble. However, certain homopolymers with identical substituents, such as $(Me_2Si)_n$ or $(Ph_2Si)_n$, are crystalline and tend to be quite insoluble. Soluble copolymers containing units with identical substituents, for example, $[(PhMeSi)_x(Me_2Si)_y]_n$, display greatly enhanced solubility (although in this case some insoluble polymer containing long blocks of insoluble Me_2Si units is also formed). Decreasing the molecular weight of the polymers will also increase solubility; for example, $Me(Me_2Si)_{24}Me$ is somewhat soluble in several solvents.⁹

A. POLY(METHYLPHENYLSILYLENE)

 $PhMeSiCl_2 + 2Na \longrightarrow (PhMeSi)_n + 2NaCl$

Procedure

The reaction is carried out in oven-dried glassware that has been thoroughly purged with dry nitrogen or argon. Pure dichlorosilane monomer is essential to produce a high molecular weight polymer. Because the polyorganosilanes are highly light sensitive, especially in solution, dark glassware or aluminum foil wrap should be used to protect the polymer from light during the reaction and subsequent work-up.

Purify commercially obtained PhMeSiCl₂* by careful fractional distillation through a 15-cm jacketed fractionating column filled with glass helices. Equip a 2-L, three-necked, round-bottom flask with a 250-mL pressure-equalizing dropping funnel, a high-capacity reflux condenser topped with a nitrogen by-pass, a high-speed overhead mechanical stirrer, and a heating mantle. To the flask add 1 L of toluene, dried by refluxing over sodium, and 47.1 g (2.05 mol) of fresh lump Na cut into small pieces. Cannulate (or syringe) into the dropping funnel 161 mL (1.00 mol) of distilled PhMeSiCl₂. Bring the toluene to reflux and stir the reaction at high speed to produce finely divided molten Na. Then add the PhMeSiCl₂ slowly over a 1.5-hr period, maintaining the toluene at gentle reflux throughout the addition by adjusting the heating mantle if necessary.

^{*}Available from Petrarch Systems, Inc., Bartram Road, Bristol PA 19007.

(**Caution.** This reaction is highly exothermic. Do not add the dichlorosilane rapidly!) The reaction mixture should turn a deep purple color. After the addition is complete, reflux for an additional 1.5 hr and then let the reaction cool to room temperature.

Prepare a slurry of 5 g of NaHCO₃ in 50 mL of 2-propanol, and add it *very slowly*, with stirring, to the reaction mixture to destroy the excess Na. (The mixture may foam during the addition; be prepared to collect any foam that rises out of the condenser.) Stir for an additional 2 hr to insure that all the Na was consumed.

Reduce the volume of the reaction mixture to about 500 mL by rotary evaporation. Add the mixture slowly to a large flask containing well-stirred 2-propanol, 12 to 15 times the volume of the reaction mixture. The polymer and most of the NaCl will precipitate, leaving the oligomers dissolved in the 2-propanol-toluene solution. Collect the polymer-NaCl precipitate by filtration and set it aside until it is completely dry. Then redissolve the polymer by stirring for 24 hr in 1 L of toluene. (If the viscosity is too high, more toluene can be added.) Extract this solution with several 1 L volumes of water to remove the salts. After the purple color is discharged, extract twice more with water. If an emulsion forms, it can be broken up with a *wooden stick*, which will penetrate the bubbles. Distill off the toluene using a rotary evaporator and dry the polymer in a vacuum oven at 50° for 48 hr. Yield: 66.5 g (55%).

Anal. Calc. for C₇H₈Si: C, 69.9; H, 6.7; Si, 23.4. Found: C, 69.4; H, 6.7; Si, 23.1.

The oligomers can be isolated by removing the solvent from the 2propanol-toluene solution by rotary evaporation, redissolving in hexane and extracting the hexane solution with water to remove any residual salts. Then dry the solution over MgSO₄ and isolate the pure oligomers by removing the hexane solvent by rotary evaporation. Yield: 48.7 g (41%).

Properties

The poly(methylphenylsilylene) is obtained as a clear, colorless, brittle airstable solid that is soluble in benzene, toluene, THF, and chloroform. (*Note:* Chloroform solutions are especially light sensitive.) Molecular weight distributions can be determined by gel permeation chromatography using THF or toluene as the eluent. Typically, the molecular weight distribution is bimodal, with \overline{M}_w of ~200,000 (relative to polystyrene standards) for the high molecular weight fraction of the bimodal distribution, and \overline{M}_w of ~6000 for the low molecular weight fraction of the distribution.

The IR spectrum contains bands at 1249 cm⁻¹ (Si-methyl), 1101 cm⁻¹

(Si-phenyl), 2960 and 2900 cm⁻¹ (C—H, aliphatic), 3051 and 3065 cm⁻¹ (C—H aromatic). The ¹H NMR spectrum has resonances at $\delta = 0.17$ (broad, CH₃) and $\delta = 7.38$ (broad, C₆H₅). The ¹³C NMR spectrum has broad resonances at $\delta = -6.7$ to -5.4, 127.6 to 129.3, and 135.0 to 136.3. The UV spectrum for high molecular weight poly(methylphenylsilylene) in THF has an absorption maximum at 341 nm.*

B. PREPARATION OF OTHER POLYORGANOSILANES

Other polyorganosilanes can be prepared by a similar procedure. For polymers with *n*-alkyl substituents, hexane can be substituted for toluene in the work-up. For $(cyclo-C_6H_{11}SiCH_3)_n$, which is soluble in only hot toluene or cyclohexane, the work-up is simplified by substituting cyclohexane for toluene when redissolving the polymer. Copolymers can be prepared by the same procedure as homopolymers, by using a mixture of the two monomers in the dropping funnel at the start of the reaction. The yields of alkyl-substituted polyorganosilanes tend to be lower than those for aryl-substituted polymers, often only 10 to 35%, depending on the monomer used. Copolymers with alkyl substituents are usually formed in higher yields, from 30 to 70%.

The use of 25% 1,1'-oxybis(2-methoxyethane) (diglyme)/75% toluene as the solvent mixture for the polymerization has been reported to give increased yields of alkyl-substituted polyorganosilanes, although with lower molecular weight.⁸

References

- 1. F. S. Kipping, J. Chem. Soc., 125, 2291 (1924).
- 2. C. A. Burkhard, J. Am. Chem. Soc., 71, 963 (1949).
- 3. For a review on polysilanes see R. West, J. Organomet. Chem., 300, 327-346 (1986).
- R. West, L. D. David, P. I. Djurovich, Chapter 19 and H. Yu, J. Am. Cer. Soc., 62, 899 (1983);
 R. West, Ultrastructure Processing of Ceramics, Glasses and Composites, L. L. Hench and D. R. Ulrich (eds.), Wiley, New York, 1984, Chapter 19; R. H. Baney, Chap. 20, ibid., C. H. Beatty, ibid., Chap. 22.
- 5. K. S. Mazdyansi, R. West, and L. D. David, J. Am. Cer. Soc., 61, 504 (1978).
- R. D. Miller, D. Hofer, D. R. McKean, C. G. Willson, R. West, and P. Trefonas III, in *Materials for Microlithography*, C. G. Willson and J. M. J. Fréchet (eds.) (ACS Symposium Series), American Chemical Society, Washington, DC, 1984, Chap. 14; J. M. Zeigler, L. A. Harrah, and A. W. Johnson, *SPIE*, *Advances in Resist Technology*, 539, 166 (1985).

*The checkers report λ_{max} 338 nm, and a higher yield of polymer (70%), probably because a small amount of oligomer was precipitated with the polymer.

- R. West, A. R. Wolff, and D. G. Peterson, J. Radiat. Curing. 13, 35 (1986); A. R. Wolff and R. West, Appl. Organomet. Chem., 1, 7 (1987).
- R. G. Kepler, J. M. Zeigler, L. A. Harrah, and S. R. Kurtz, *Phys. Rev. B.* 35, 2818 (1987); M. Stolka, H.-J. Yah, K. McGrane, and D. M. Pai, *J. Polym. Sci.*, *Polym. Chem. Ed.*, 25, 823 (1987); M. Fujino, *Chem. Phys. Lett.*, 136, 451 (1987).
- 9. W. Boberski and A. L. Allred, J. Organomet. Chem., 88, 65 (1975).

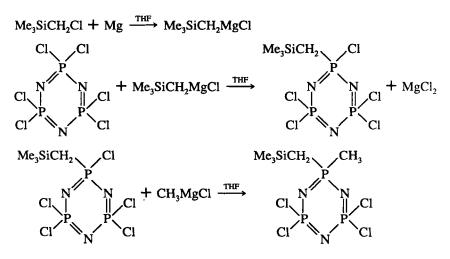
15. ORGANOSILICON DERIVATIVES OF CYCLIC AND HIGH POLYMERIC PHOSPHAZENES

Submitted by DAVID J. BRENNAN,* JAMES M. GRAASKAMP,* BEVERLY S. DUNN,* and HARRY R. ALLCOCK* Checked by MICHAEL SENNETT[†]

Species that combine the properties of organosilicon compounds and phosphazenes are prepared by the linkage of organosilicon side groups to a small molecule cyclic or linear high polymeric phosphazene skeleton. This is particularly important for high polymeric derivatives in which hybrid properties typical of polysiloxanes (silicones) and polyphosphazenes^{1,2} may be obtained.

The synthetic route to such high polymers involves first the linkage of an organosilicon unit to a small molecule cyclic phosphazene (in this case, a cyclotriphosphazene). The linkage is accomplished by the use of an organosilyl Grignard reagent to replace chlorine atoms in a chlorocyclophosphazene. Further structural diversity is accomplished by replacement of a chlorine atom geminal to the organosilicon group by a methyl group, again with the use of the appropriate Grignard reagent. For mechanistic reasons not yet fully understood, the presence of the methyl groups aids the next step, which is the thermal ring-opening polymerization of the cyclotriphosphazene to a high molecular weight linear polymer. The remaining chlorine atoms are then replaced by trifluoroethoxy units to eliminate the hydrolytic sensitivity that accompanies the presence of P-Cl bonds. This chlorine replacement step leaves the organosilicon groups intact if it is carried out in toluene as a solvent. However, if THF is employed as the solvent, attack by trifluoroethoxide ion on a ---CH₂-SiMe₃ group brings about cleavage of a carbon-silicon bond leaving a methyl group attached to phosphorus.

Although a variety of organosilicon groups have been linked to phos-


^{*}Department of Chemistry, The Pennsylvania State University, University Park, PA 16802. †U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001.

phazenes,³⁻⁶ use of the trimethylsilylmethyl unit has been studied in the greatest detail and is described here.

All reactions and manipulations are carried out under a nitrogen atmosphere up to the point at which the trifluoroethoxy groups have been attached to the phosphazene skeleton. The glassware used during Grignard and trifluoroethoxide reactions is dried in an oven at 130° for 24 hr and is cooled under vacuum or nitrogen before use.

A. gem(METHYL-TRIMETHYLSILYLMETHYL) TETRACHLOROCYCLOTRIPHOSPHAZENE*

Procedure

■ **Caution.** An ice bath should be ready at hand to control the exothermic Grignard reaction if necessary.

Magnesium (3.65 g, 0.150 mol) and 200 mL of dry THF (distilled over sodium benzophenone) are added to a 500-mL three-necked round-bottom flask equipped with a magnetic stirring bar, a rubber septum, and a reflux condenser fitted with a nitrogen inlet adapter. To the unstirred reaction mixture 0.5–1.0 mL of 1,2-dibromoethane is added directly to the magnesium via syringe. Within 15–20 min, bubbles of ethylene are evolved to indicate that the magnesium is activated. In a nitrogen filled glove bag, 13.8 mL (0.100 mol) of dry Me₃SiCH₂Cl (dried over activated 3-Å molecular sieves) is drawn into a dry syringe fitted with a Luer lock stopcock

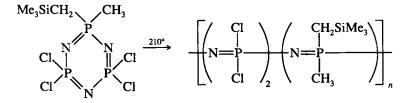
*2,2,4,4-Tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]-1,3,5,2 λ^{5} ,4 λ^{5} ,6 λ^{5} -triazatriphosphorine.

and syringe needle. The Me_3SiCH_2Cl is then added to the magnesium at the bottom of the flask. The mixture is allowed to stand for 10 min and is then stirred. A vigorous reaction will occur within 30 min, causing the solvent to reflux. The reaction mixture is allowed to reflux and should be cooled only if the solvent begins to reflux past the water-cooled condenser. The reaction mixture is then stirred until it cools to room temperature.

A 1-L three-necked, round-bottom flask is equipped with a reflux condenser fitted with a nitrogen inlet adapter, a 250-mL pressure equalizing addition funnel, and a magnetic stirbar. To this reaction vessel is added 30.0 g (0.0865 mol) of $(\text{NPCl}_2)_3$ and 500 mL of dry THF. The THF solution of Me₃SiCH₂MgCl is transferred to the addition funnel via a double-tipped syringe needle. The solution of (NPCl_2) in THF is heated to reflux (66°), and the Grignard reagent is added dropwise over a 1–2 hr period. On completion of addition, the reaction mixture is stirred at 66° for 24 hr, then cooled to room temperature.

In a nitrogen-filled glove bag, 45 mL of 2.9 M CH₃MgCl (0.13 mol) in THF is transferred to an addition funnel, which is then attached to a 1-L flask. The CH₃MgCl solution is then added dropwise to the THF solution of N₃P₃Cl₅(CH₂SiMe₃), which has been cooled to 0° with an ice–water bath. On completion of addition, the solution is allowed to warm to 25° and is stirred for 16 hr.

The solvent is removed from the reaction mixture under reduced pressure on a rotary evaporator in a 1-L recovery flask to yield a white residue. (**Caution.** Washing of the mixture with 5% HCl in water results in the solution of magnesium salts: This is an exothermic process. Care should be taken to prevent the diethyl ether from boiling. Use chilled 5% HCl in water solution.) To the residue is added 500 mL of diethyl ether and 250 mL of 5% HCl, which has been chilled at 0°. Gentle swirling yields a two-phase mixture, which is transferred to a 1-L separatory funnel. The aqueous (lower) phase is separated and the ethereal layer is washed with two 250-mL portions of 5% HCl. The ethereal layer is dried over MgSO₄ and suction filtered through Fuller's Earth to yield a clear filtrate. The diethyl ether is removed under reduced pressure to yield crude gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), as a solid. The white solid is recrystallized twice from hot hexane, and is vacuum sublimed at 100° (0.05 torr) twice to yield pure gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), mp 114–115°. Yield: 19.7 g, 60%.*


Anal. Calcd for *gem*-N₃P₃Cl₄(CH₃)(CH₂SiMe₃): C, 15.84; H, 3.73; N, 11.09. Found: C, 15.87; H, 3.62; N, 10.98.

^{*}The checker reports that considerable loss of material occurred during the purification process and that only a 35% yield of compound melting at 114° was obtained. Use of spectroscopic grade *n*-hexane as a recrystallization solvent improved the yield.

Properties

The trimer, gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), is a white solid that is soluble in THF, diethyl ether, 1,4-dioxane, CH2Cl2, CHCl3, benzene, acetone, ethanol, toluene, and hot hexane. It is insoluble in water. The compound is relatively stable in the solid state in the presence of atmospheric moisture, but hydrolyzes slowly over a period of months or years. For this reason, the compound is stored under an atmosphere of dry nitrogen or in sealed vials under vacuum. The compound readily sublimes at 100° (0.05 torr), which makes it readily purified for polymerization purposes. The ³¹P NMR spectrum (CDCl₃) is an AB₂ spin pattern (ν_A : 38.0 ppm, ν_B : 16.9 ppm, $J_{PNP} = 5.8$ Hz). The ¹H NMR spectrum (CDCl₃) shows resonances for PCH₃ at $\delta = 1.69$ (d) 3H ($J_{PCH} = 14.1$ Hz), PCH₂Si(CH₃)₃ at $\delta = 1.31$ (dt) 2H ($J_{PCH} = 17.2$ Hz, $J_{PNPCH} = 3.9$ Hz), and PCH₂Si(CH₃)₃ at $\delta =$ 0.23 (s) 9H. The ¹³C NMR spectrum (CDCl₃) shows resonances for PCH₃ at $\nu = 23.33$ ppm (dt) ($J_{PC} = 88.9$ Hz, $J_{PNPC} = 2.5$ Hz), PCH₂Si(CH₃)₃ at $\nu = 23.16 \text{ ppm}$ (dt) ($J_{PC} = 88.6 \text{ Hz}$, $J_{PNPC} = 5.1 \text{ Hz}$), and PCH₂Si(CH₃)₃ at $\nu = -0.15$ ppm (d) ($J_{PCSiC} = 3.4$ Hz). The mass spectrum showed a parent ion peak at 379 amu with a Cl₄ isotope pattern. Major fragmentation patterns were loss of methyl (M - 15) and chlorine (M - 35).

B. POLY[gem(METHYLTRIMETHYLSILYLMETHYL)-CHLOROPHOSPHAZENE]*

The trimer, gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), is purified rigorously by three additional vacuum sublimations at 100° (0.05 torr) and is stored in a nitrogen atmosphere before use. Into a clean, dry, Pyrex glass tube (with a length of 200 mm, o.d. of 20 mm, wall thickness of 1 mm, with a constriction 40 mm long and 30 mm from the open end) is added 10.0 g (0.0270 mol) of gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃) under an atmosphere of nitrogen. The tube is evacuated for a period of 30 min at 0.05 torr, then sealed at the constriction. This glass ampule is wrapped in a wire mesh screen and heated at 210° in a thermoregulated oven (with a mechanical tube rocker) until

^{*}Poly[2,2,4,4-tetrachloro-6-methyl-6[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl].

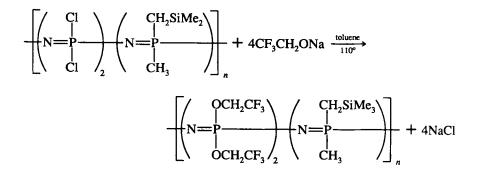
the contents of the tube reach maximum viscosity but are not immobile (2-6 hr).*

Caution. The tube is wrapped in paper towels to prevent ripping of the glove bag when being opened.

The tube is removed from the oven, allowed to cool, then opened (shattered by percussion) in a nitrogen-filled glove bag. The contents of the tube and shattered glass are transferred to a 500-mL airless flask equipped with a magnetic stir bar. The conversion of gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃) to the high polymer is approximately 50-60%.

Properties

The polymer $\{[NPCl_2]_2 - [NP(CH_3)(CH_2SiMe_3)]\}_n$ is readily soluble in dry THF, 1,4-dioxane, benzene, and toluene. It crosslinks readily to an insoluble gel in contact with moisture due to the presence of hydrolytically unstable P-Cl bonds. Extreme care must be taken to avoid contact with moisture during the manipulations of the polymer. Residual cyclic trimer can be separated from the macromolecular species after treatment of the polymer-trimer mixture with sodium trifluoroethoxide as described in the next two sections. The ³¹P NMR spectrum of {[NPCl₂)₂---[NP(CH₃)(CH₂SiMe₃)]}_n (THF, D₂O lock) from the polymertrimer mixture shows two resonances at 18.9 and -28.6 ppm for $P(CH_3)(CH_2SiMe_3)$ and PCl_2 , respectively. The ¹H NMR spectrum of the polymer-trimer mixture (C_6D_6) shows distinct resonances for protons of the trimer and polymer. Resonances for protons in the trimer are detected for PCH₃ at $\delta = 1.20$ (d) 3 H($J_{PCH} = 14.1$ Hz) PCH₂Si(CH₃)₃ at $\delta = 0.70$ (dt) 2H ($J_{PCH} = 17.5 \text{ Hz}$, $J_{PNPCH} = 3.6 \text{ Hz}$), and PCH₂Si(CH₃)₃ at $\delta = (s)$ 9H. Resonances for the protons of the high polymer are detected for PCH₃ at $\delta = 1.60$ (d) 3H ($J_{PCH} = 13.8$ Hz), PCH₂Si(CH₃)₃ at $\delta = 1.20$ (d) 2H $(J_{PCH} = 14.1 \text{ Hz})$, and PCH₂Si(CH₃)₃ at $\delta = 0.21$ (s) 9H.


C. POLY[gem(METHYLTRIMETHYLSILYLMETHYL)-TRIFLUOROETHOXYPHOSPHAZENE][†]

Procedure

 $CF_3CH_2OH + Na \xrightarrow{toluene} CF_3CH_2ONa + \frac{1}{2}H_2$

*The checker comments that this polymerization was somewhat unpredictable and that the viscosity increase was negligible during the first 3-4 hr, but then accelerated rapidly during the next 30 min. Thus, constant monitoring was needed.

[†]Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)-2-[(trimethylsilyl)methyl]-catenatriphosphazene-1,6-diyl].

To the polymer $\{[NPCl_2]_2 - [NP(CH_3)(CH_2SiMe_3)]\}_n$ and the residual cyclic trimer, gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), in an airless flask is added 300 mL of dry toluene (distilled over sodium benzophenone). This mixture is stirred under an atmosphere of dry nitrogen until the contents of the broken tube dissolve (3-4 hr). The toluene solution is then transferred to a 500-mL addition funnel under a nitrogen atmosphere via a double-tipped syringe needle.

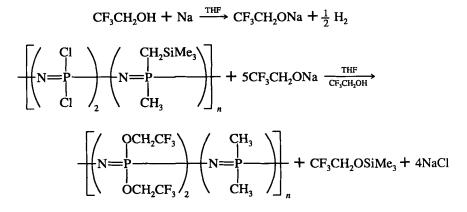
Caution. Under no circumstances should mixtures that contain un-quenched CF_3CH_2ONa be evaporated to dryness and heated, otherwise a potentially violent, exothermic solid state reaction may occur. Addition of Me_3SiCl before removal of solvents brings about deactivation of CF_3CH_2ONa .

To a 2-L, three-necked, round-bottom flask equipped with a condenser and fitted with a nitrogen inlet adapter and a magnetic stir bar is added 7.3 g (0.32 mol) of sodium and 1 L of dry toluene. In a nitrogen-filled glove bag, 26 mL (0.36 mol) of dry CF₃CH₂OH (dried and stored over activated 3-Å molecular sieves) is transferred to a pressure equalizing addition funnel. The addition funnel is attached to the 2-L flask and the CF₃CH₂OH is added dropwise over a 30-min period. On completion of addition, the reaction mixture is stirred at 25° for 1 hr, then refluxed at 110° until foaming ceases (4-5 hr) to ensure that complete formation of CF₃CH₂ONa has occurred (CF₃CH₂ONa is insoluble in toluene at 25° but is soluble in hot toluene). The CF₃CH₂ONa solution is allowed to cool and the addition funnel containing the polymer-trimer mixture is attached to the 2-L flask. The CF₃CH₂ONa-toluene slurry is heated to reflux, which brings about solution of the CF₃CH₂ONa. The polymer-trimer solution is then added dropwise to the hot CF₃CH₂ONa solution. On completion of addition, the reaction mixture is heated at 110° for 10 hr. During this period of time, {[NP(OCH₂CF₃)₂]₂--[NP(CH₃)(CH₂SiMe₃)]}_n precipitates from the hot toluene solution.

The reaction mixture is allowed to cool to 25° and the insoluble materials

65

are allowed to settle. The supernatant toluene solution is removed via double-tipped syringe needle, and a solution of 40 mL (0.24 mol) of Me₃SiCl in 1 L of dry THF is added to the residue (Me₃SiCl reacts with residual CF₃CH₂ONa to form Me₃SiOCH₂CF₃ and NaCl). This mixture is stirred under nitrogen until the polymeric material dissolves (4-5 hr). The THF solution is transferred to a 1-L recovery flask in two portions, and the solvent is removed under reduced pressure by the use of a rotary evaporator in a hood. To the dry polymer-salt residue is added 500 mL of acetone and the mixture is shaken or stirred until the polymeric material dissolves (6–12 hr) to leave a milky solution. The acetone solution is concentrated to approximately 75 mL and the polymer is precipitated from acetone into water. The polymeric material is recovered and dried *in vacuo*. The acetone-water reprecipitation procedure is repeated twice more to remove the residual salts. The polymer is then reprecipitated from a concentrated acetone solution into pentane (twice), followed by Soxhlet extraction with pentane for 48 hr to remove residual cyclic trimers. The polymer is dried in vacuo for 24 hr to yield 4.3 g (25%) (13.6% yield by the checker) of a light brown elastomeric material.


Anal. Calcd: C, 24.64; H, 3.48; N, 6.64, Cl, 0.00. Found: C, 24.20; H, 3.21; N, 6.63, Cl, 0.17.

Properties

The polymer is a light brown, film-forming elastomer, which is soluble in THF, acetone, and methyl ethyl ketone, and is insoluble in H₂O, diethyl ether, 1,4-dioxane, CH₂Cl₂, toluene, benzene, hexane, and ethanol. Its glass transition temperature is -55° , which means that it is an elastomer down to this temperature. The weight average (M_w) and number average (M_n) molecular weights were estimated by gel permeation chromatography (GPC) in THF [with 0.1% (*n*-Bu)₄NBr] using polystyrene standards. The value for M_w is 7.5×10^5 and M_n is 8.6×10^4 . The polymer has a very broad molecular weight distribution with a polydispersity value of 8 to 9. The ³¹P NMR spectrum (THF, D₂O lock) shows resonances for P(CH₃)(CH₂SiMe₃) at +18.5 ppm (m) and P(OCH₂CF₃)₂ at -9.2 ppm (m). The ¹H NMR spectrum (acetone- d_6) shows resonances for PCH₃ at $\delta = 1.71$ (d) $(J_{PCH} = 14.0 \text{ Hz})$, PCH₂Si(CH₃)₃ at $\delta = 1.43$ (d) 2H $(J_{PCH} = 18.0 \text{ Hz})$, PCH₂Si(CH₃)₃ at $\delta = 0.19$ (s) 9H, and P(OCH₂CF₃)₂ at $\delta = 4.48$ (m) 8 H.

D. POLY[gem(DIMETHYL)TRIFLUOROETHOXYPHOS-PHAZENE]*

Procedure

To the polymer { $[NPCl_2]_2$ — $[NP(CH_3)(CH_2SiMe_3)]$, and the residual cyclic species, gem-N₃P₃Cl₄(CH₃)(CH₂SiMe₃), in an airless flask is added 300 mL of dry THF (distilled over sodium benzophenone ketyl). This mixture is stirred under an atmosphere of dry nitrogen until the contents of the broken tube dissolve (3–4 hr). The THF solution is then transferred to a 500-mL addition funnel under an atmosphere of nitrogen via a double-tipped syringe needle.

To a 1-L, three-necked, round-bottom flask equipped with a reflux condenser fitted with a nitrogen inlet adapter and a magnetic stirring bar is added 9.4 g (0.41 mol) of Na and 500 mL of dry THF. In a nitrogen filled glove bag 33 mL (0.45 mol) of dry CF₃CH₂OH is transferred to a pressure equalizing addition funnel. (**Caution.** The reaction between CF₃CH₂OH and sodium in THF is exothermic. A slow dropwise addition of CF₃CH₂OH to the THF-sodium mixture at 0° will prevent a violent reaction.) The addition funnel is attached to the 1-L flask, and the CF₃CH₂OH is added dropwise over a 1-hr period to the sodium-THF mixture that has been cooled to 0°. The reaction mixture is stirred until all of the sodium has reacted and no further evolution of H₂ can be detected.

The addition funnel containing the polymer-trimer mixture in THF is attached to the 1-L flask, and the CF_3CH_2ONa solution is heated to reflux

^{*}Poly[2,2-dimethyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl].

(66°). The polymer-trimer solution is added dropwise to the hot THF solution over a 2-hr period. On completion of addition the reaction mixture is heated at 66° for 24 hr.

■ **Caution.** Under no circumstances should mixtures that contain unquenched CF₃CH₂ONa be evaporated to dryness and heated, otherwise a potentially violent, exothermic solid state reaction may occur. Addition of Me₃SiCl before removal of solvents brings about deactivation of CF₃CH₂ONa.

The reaction mixture is allowed to cool to 25° and Me₃SiCl is added slowly (~50 mL) to the THF solution until the solution is just acidic when tested with wet litmus. The solution is then transferred to a 1-L recovery flask. The solvent and volatile species are removed under reduced pressure by use of a rotary evaporator in a hood. To the dry polymer–salt residue is added 500 mL of acetone and the mixture is shaken or stirred until the polymeric material dissolves (6–12 hr) to yield a milky solution. From this point on, the polymer is purified and isolated as described in the previous section. Yield: 3.8 g (25%) (79% yield by the checker).

Anal. Calcd: C, 21.40; H, 2.52; N, 7.49; Cl, 0.00. Found: C, 21.51; H, 2.65; N, 7.62; Cl, 0.10.

Properties

The polymer is a light brown, film-forming elastomer that is soluble in THF, acetone, and methyl ethyl ketone, and insoluble in H₂O, diethyl ether, 1,4-dioxane, CH₂Cl₂, toluene, benzene, hexane, and ethanol. Its glass transition temperaure is -58° . The $M_{\rm w}$ is 8.8×10^{5} and $M_{\rm n}$ is 5.3×10^{4} . The polymer has a very broad molecular weight distribution with a polydispersity value between 16 and 17. The ³¹P NMR spectrum (THF, D₂O lock) shows resonances for **P**(CH₃)₂ at +15.6 ppm(m) and **P**(OCH₂CF₃)₂ at -7.6 ppm(m). The ¹H NMR spectrum (acetone d_{6}) shows resonances for P(CH₃)₂ at $\delta = 1.67$ (d) δ H ($J_{PCH} = 14.3$ Hz) and P(OCH₂CF₃)₂ at $\delta = 4.48$ (m) 8 H.

References

- 1. H. R. Allcock, Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972.
- 2. H. R. Allcock, R. L. Kugel, and K. J. Valan, Inorg. Chem., 5, 1716 (1966).
- 3. H. R. Allcock, D. J. Brennan, J. M. Graaskamp, and M. Parvez, Organometallics 5, 2434 (1986).
- 4. H. R. Allcock, D. J. Brennan, B. S. Dunn, and M. Parvez, Inorg. Chem. (1988).
- 5. H. R. Allcock, D. J. Brennan, and J. M. Graaskamp, Macromolecules 21, 1 (1988).
- 6. H. R. Allcock, D. J. Brennan, and B. S. Dunn, Macromolecules (in press).

16. POLY(DIMETHYLPHOSPHAZENE) AND POLY(METHYLPHENYLPHOSPHAZENE) {Poly[nitrilo(dimethylphosphoranylidyne)] and Poly[nitrilo(methylphenylphosphoranylidyne)]}

Submitted by P. WISIAN-NEILSON* and R. H. NEILSON[†] Checked by JAMES M. GRAASKAMP[‡] and BEVERLY S. DUNN[‡]

Amino, alkoxy, and aryloxy polyphosphazenes are typically prepared by nucleophilic displacement reactions of poly(dihalophosphazenes).¹ Analogous reactions with organometallic reagents, however, result in chain degradation and cross linking rather than in linear, alkyl, or aryl substituted poly(phosphazenes).² The thermolysis of appropriate silicon-nitrogen-phosphorus compounds^{3,4} can be used to prepare fully P---C bonded poly(organophosphazenes).^{5,6} The synthesis of two of these materials and their Si-N--P precursors is described here.

■ **Caution.** The phosphines and several other reagents have obnoxious odors and are either known to be or are likely to be toxic. All reactions and manipulations should be carried out in efficient hoods.

A. POLY(DIMETHYLPHOSPHAZENE)

Procedure

1. P, P-Dimethyl-N, N-bis(trimethylsilyl)phosphinous Amide

 $(Me_{3}Si)_{2}NH \xrightarrow{(1) n-BuLi}{(2) PCl_{3}} (Me_{3}Si)_{2}NPCl_{2}$ $(Me_{3}Si)_{2}NPCl_{2} \xrightarrow{2MeMgBr} (Me_{3}Si)_{2}NPMe_{2}$

As described in the Wilburn procedure,³ $(Me_3Si)_2NH$ (104.3 mL, 0.50 mol) and Et₂O (500 mL, distilled from CaH₂) are placed in a 2-L, three-necked, round-bottom flask that is equipped with a nitrogen inlet, mechanical stirrer, and a pressure equalizing addition funnel fitted with a rubber septum. Then *n*-butyllithium (*n*-BuLi) (313 mL, 0.50 mol, 1.6 *M* in hexane) is transferred to the addition funnel via a cannula and added slowly (~0.5

^{*}Department of Chemistry, Southern Methodist University, Dallas, TX 75275.

[†]Department of Chemistry, Texas Christian University, Forth Worth, TX 76129.

[‡]Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.

hr) to the stirred $(Me_3Si)_2NH$ solution that is cooled in an ice-water bath. When addition is complete, the mixture is stirred at room temperature for 1 hr and then cooled to -78° . Dry Et₂O (30–50 mL) is added to the mixture via the addition funnel in order to remove residual *n*-BuLi from the funnel. Keeping the solution at -78° , PCl₃ (43.6 mL, 0.50 mol) is added over 15 min, the mixture is stirred for 10 min at -78° , the dry ice-acetone bath is removed, and stirring is continued for 1 hr. This mixture is cooled to 0° and a cannula is used to transfer MeMgBr (333 mL, 1.0 mol, 3.0 M in Et₂O) to the addition funnel after it has been rinsed as just described. The Grignard reagent is added over 1.5 to 2 hr and the mixture is then stirred at room temperature for 2 or 3 hr and allowed to stand overnight. Hexane (~300 mL) is added to facilitate precipitation of the salts. After filtration (Celite® filter aid is recommended by the checkers for all filtrations) under nitrogen and washing the residue with hexane $(3 \times 150 \text{ mL})$, the combined filtrate and washings are concentrated by removal of solvents at reduced pressure. If solids remain in the residue, more hexane should be added and the mixture filtered again. Solvent removal from the filtrate and distillation of the residue at 3.0 torr (bp 55°) affords (Me₃Si)₂NPMe₂ as a pungent, moisture-sensitive liquid. Yield: 75.6 g, 68%. ³¹P NMR δ = 31.7 $(CDCl_3).$

Caution. The salts from this reaction are best destroyed by slow, careful addition of isopropyl alcohol, followed by H_2O , and then dilute bleach to destroy the residual phosphinous amide.

2. P,P-Dimethyl-N-(trimethylsilyl)phosphorimide Bromide

$$(Me_{3}Si)_{2}NPMe_{2} + Br_{2} \longrightarrow Me_{3}SiN = PMe_{2} + Me_{3}SiBn$$

A 1-L, two- or three-necked flask equipped with a nitrogen inlet, addition funnel, and magnetic stir bar is charged with $(Me_3Si)_2NPMe_2$ (75.6 g, 0.34 mol) and benzene (400 mL, distilled from CaH₂). A solution of Br₂ (57.4 g, 0.36 mol) in benzene (200 mL) is added dropwise to the phosphine (phosphinous amide) solution at 0°. Addition of Br₂ is stopped when the solution in the flask is slightly yellow due to the presence of excess Br₂. This mixture is stirred at room temperature for 0.5 hr and more Br₂ is added if the yellow color in the solution disappears. Then solvent is removed under reduced pressure and the residue is distilled to give Me₃SiN=P(Br)Me₂ (bp 55°/5.0 torr) as a very moisture-sensitive liquid that fumes in air and ignites paper. Yield: 69.2 g, 89%. ³¹P NMR $\delta = 6.82$ (C₆H₆).⁴

3. 2,2,2-Trifluoroethyl P,P-Dimethyl-N-(trimethylsilyl)phosphinimidate

$$Me_{3}SiN = PMe_{2} + CF_{3}CH_{2}OH \xrightarrow{Et_{3}N} Me_{3}SiN = PMe_{2}$$

A 1-L, three-necked, round-bottom flask equipped with a nitrogen inlet, mechanical stirrer, and addition funnel is charged with Me₃SiN=P(Br)Me₂ (69.2 g, 0.30 mol), benzene (400 mL), and Et₃N (42.3 mL, 0.30 mol, distilled from CaH₂). After the mixture is cooled to 0°, CF₃CH₂OH (22.1 mL, 0.30 mol, distilled from barium oxide)⁷ is added over 0.5 hr. This reaction mixture is allowed to warm to room temperature, stirred for 16 to 18 hr, and then filtered under nitrogen. The solids are washed with hexane $(3 \times 100 \text{ mL})$ and solvent is removed under reduced pressure. The residue is distilled to give 47.6 g (64%) of Me₃SiN=P(OCH₂CF₃)Me₂ (bp 54°/11 torr). ³¹P NMR δ = 32.32 (CDCl₃).⁴ This slightly moisture-sensitive liquid must be stored at $\sim -10^{\circ}$ in order to prevent thermal decomposition.

4. Poly(dimethylphosphazene)

$$Me_{3}SiN = PMe_{2} \xrightarrow{\Delta} \left(N = P \xrightarrow{He}_{n} + Me_{3}SiOCH_{2}CF_{3} \right)$$

A heavy-walled glass ampule (~20-mL capacity) with a constriction is purged with nitrogen and charged with Me₃SiN=P(OCH₂CF₃)Me₂ (6.46 g, 26.1 mmol). After degassing by the freeze-pump-thaw method, the ampule is sealed with a torch at the constriction and placed in either an oil bath at 189° for 41 hr (behind a safety shield) or in an oven at 160° for 65 hr. The ampule is opened and the volatile component (Me₃SiOCH₂CF₃) is trapped on a vacuum line (4.45 g, 99.0%). The remaining white solid is dissolved in CH₂Cl₂ and precipitated by pouring the solution into hexane. Drying under vacuum yields 1.93 g (99%) of (NPMe₂)_n.

Anal. Calcd. for C₂H₆PN: C, 32.01; H, 8.06; N, 18.66. Found: C, 31.75; H, 8.21; N, 18.32.

Larger quantities of polymer can be prepared by carrying out the thermolysis in a stainless steel reaction bomb fitted with a valve for removal of the volatile by-product. In this manner 31.4 g (0.126 mol) of Me₃SiN=P(OCH₂CF₃)Me₂ was heated at 160° for 65 hr or 127 g (0.51 mol) for 302 hr to give complete thermolysis to $(NPMe_2)_n$.

71

Properties

Poly(dimethylphosphazene) is an air-stable, white, film-forming polymer that is soluble in CH₂Cl₂, CHCl₃, EtOH, and THF-H₂O (50:50), and is insoluble in H₂O, acetone, THF, and Et₂O. Its melting point is 148–149° and the glass transition temperature is -40° .⁵ Molecular weight (M_w) has been determined by light scattering to be ~50,000. Intrinsic viscosities of various samples range from 41 to 80 mL/g (CH₂Cl₂). The ³¹P NMR spectrum is a singlet at 8.26 ppm (CDCl₃) and the ¹H and ¹³C NMR spectra have broad doublets at 1.43 ppm ($J_{PH} = 12.5$ Hz, in CH₂Cl₂) and 22.46 ppm ($J_{PC} = 90.2$ Hz, in CDCl₃).

B. POLY(METHYLPHENYLPHOSPHAZENE)

Procedure⁸

1. P-Methyl-P-phenyl-N, N-bis(trimethylsilyl)phosphinous Amide

$$(Me_{3}Si)_{2}NH \xrightarrow{(1) n \cdot BuLi} (Me_{3}Si)_{2}NP(Ph)Cl$$

$$(Me_{3}Si)_{2}NP(Ph)Cl \xrightarrow{MeMgBr} (Me_{3}Si)_{2}NP(Ph)Me$$

As described in Section A.1, $(Me_3Si)_2NH$ (208.5 mL, 1.0 mol) in 750 mL of dry Et₂O is treated at 0° with *n*-BuLi (1.0 mol, 1.6 *M* in hexane). The resulting solution is cooled to -78° and PhPCl₂ (135.7 mL, 1.0 mol) is added over ~ 10 min. After stirring for 1 hr at ambient temperature, MeMgBr (1.0 mol, 3.0 *M* in Et₂O) is added at 0° over 1.5 to 2 hr. Work up consists of addition of hexane (300 mL), filtration, and washing of solids with hexane (3 × 150 mL); solvent removal from the filtrate at reduced pressure; and distillation of the residue to afford (Me₃Si)₂NP(Ph)Me, bp 78°/0.02 torr. Yield: 229.6 g, 81%. ³¹P NMR $\delta = 37.6$ (CDCl₃).³

2. 2,2,2-Trifluoroethyl *P*-Methyl-*P*-phenyl-*N*-(trimethylsilyl)phosphinimidate

$$(Me_{3}Si)_{2}NP(Ph)Me \xrightarrow{(1) Br_{2}} Me_{3}SiN \stackrel{OCH_{2}CF_{3}}{\stackrel{(2)}{(2)} CF_{3}CH_{2}OH/Ei,N} Me_{3}SiN \stackrel{OCH_{2}CF_{3}}{\stackrel{(1)}{=} Ph}$$

A 1-l, three-necked flask equipped with a nitrogen inlet, a mechanical stirrer, and a pressure equalizing addition funnel is charged with

(Me₃Si)₂NP(Ph)Me (116.9 g, 0.41 mol) and dry benzene (300 mL). A solution of Br₂ (69.2 g, 0.3 mol in 150 mL of benzene) is added dropwise to the 0° solution until a faint yellow color persists. After stirring for 0.5 hr, the solvent and Me₃SiBr are removed under reduced pressure. The last traces of Me₃SiBr must be removed so it is necessary to check the ¹H NMR⁴ spectrum of the crude product at this point. [The P-Br compound $Me_3SiN=P(Br)(Ph)Me$ (³¹P NMR $\delta = 0.08$) obtained in this reaction will decompose if distillation is attempted⁴]. Freshly distilled benzene (400 mL) and Et₁N (63.0 mL, 0.45 mol) are then added to the flask. Over a 15- to 20-min period, CF₃CH₂OH (29.9 mL, 0.41 mol) is added to the solution at 0° and the resulting mixture is stirred overnight after warming to room temperature. Filtration, washing of the solids with hexane $(3 \times 100 \text{ mL})$, solvent removal from the combined filtrate and washings, and distillation affords Me₃SiN= $P(OCH_2CF_3)(Ph)Me$ as a colorless liquid, bp 58°/0.2 torr. Yield: 69.3 g, 55%. (Note: Yields may vary from 50 to 85%.) ³¹P NMR $\delta = 22.24$ (CH₂Cl₂).

3. Poly(methylphenylphosphazene)

$$Me_{3}SiN \stackrel{OCH_{2}CF_{3}}{\underset{Me}{\vdash}} \xrightarrow{\Delta} \underbrace{\left(N \stackrel{Ph}{\underset{Me}{\to}}\right)}_{Me} + Me_{3}SiOCH_{2}CF_{3}$$

A stainless steel bomb fitted with a needle valve is purged with nitrogen and charged with Me₃SiN=P(OCH₂CF₃)(Ph)Me (62.0 g, 0.20 mol). After degassing by evacuating for 10 min at room temperature, the bomb is placed in an oven at 190° for 10 days. The bomb is then attached to a vacuum line and the volatile component is transferred to a preweighed flask. If at least a 90% yield (0.18 mol) of Me₃SiOCH₂CF₃ is not obtained, the bomb and the remaining contents are returned to the oven for another day. The volatile material is again removed and the process is repeated until a 90 to 100% yield of Me₃SiOCH₂CF₃ is obtained. Then the bomb is opened to the atmosphere and [N=P(Ph)(Me)]_n is removed by dissolving in CH₂Cl₂. Pouring this solution into hexane results in precipitation of the polymer.

Anal. Calcd. for C₇H₈PN: 61.32; H, 5.88. Found: C, 61.58; H, 6.13.

Properties

Poly(methylphenylphosphazene) is soluble in CH_2Cl_2 , $CHCl_3$, benzene, and THF, and is insoluble in H_2O , hexane, and acetone. Molecular weight

 (M_w) by gel permeation chromatography is ~54,000. The polymer is a white to light brown, air stable, brittle material that is readily plasticized by solvents. The glass transition temperature is 37° and it does not show a melting point transition by DSC analysis. The ¹H NMR spectrum shows a complex multiplet in the phenyl region and several overlapping doublets centered at 1.42 ppm ($J_{PH} = 12.5$ Hz, in CH₂Cl₂). In addition to a multiplet in the phenyl region, the ¹³C NMR spectrum contains three P—Me doublets centered at 22.29 ppm ($J_{PC} \cong 90$ Hz, in CDCl₃). The ³¹P NMR spectrum shows a broad singlet at 1.69 ppm (CDCl₃).

References

- 1. H. R. Allcock, Phorphorus-Nitrogen Compounds, Academic Press, New York, 1972.
- (a) H. R. Allcock, D. B. Patterson, and T. L. Evans, J. Am. Chem. Soc., 99, 6095 (1977).
 (b) H. R. Allcock, and C. T.-W. Chu, Macromolecules, 12, 551 (1979).
- 3. R. H. Neilson, and P. Wisian-Neilson, Inorg. Chem., 21, 3568 (1982).
- 4. P. Wisian-Neilson, and R. H. Neilson, Inorg. Chem., 19, 1875 (1980).
- 5. R. H. Neilson, R. Hani, P. Wisian-Neilson, J. J. Meister, A. K. Roy, and G. L. Hagnauer, Macromolecules, 20, 910 (1987).
- 6. R. H. Neilson, and P. Wisian-Neilson, Chem. Rev. 88, 541 (1988).
- 7. A better drying procedure for CF_3CH_2OH , recommended by the checkers, is distillation from activated 3-Å molecular sieves into a flask containing 3-Å molecular sieves.
- 8. Unless described otherwise, the procedures from Section A should be used.

17. PENTACHLORO(VINYLOXY)CYCLOTRI-PHOSPHAZENES AND THEIR POLYMERS [2,2,4,4,6-Pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵triazatriphosphorine]

Submitted by CHRISTOPHER W. ALLEN*, KOLIKKARA RAMACHANDRAN,[†] and DOUGLAS E. BROWN* Checked by W. J. BIRDSALL[‡] and J. E. SCHEIRER[‡]

It has recently been found that the variety of new and useful phosphazene derivatives that are available can be expanded dramatically by incorporation of an organofunctional substituent on the phosphazene ring. The reactive center on the side chain can then serve as the site for further tranformations in syntheses. This approach has been most successfully utilized with olefinic,¹ p-lithiophenoxy,² and p-aminophenoxy³ phospha-

^{*}Department of Chemistry, University of Vermont, Burlington, VT 05405. †3M Center, 3M Corporation, St. Paul, MN 55144. ‡Albright College, Reading, PA 19603.

zenes. One such class of organofunctional monomers is the (vinyloxy)cyclophosphazenes that are available from the reaction of the enolate anion of acetaldehyde with halocyclophosphazenes.⁴⁻⁷ The lithium enolate of acetaldehyde is conveniently obtained by metallation of THF,⁸ and the reaction of this material with hexachlorocyclotriphosphazene results in the formation of pentachloro(vinyloxy)cyclotriphosphazene, $N_3P_3Cl_5OC_2H_3$.⁴ This process is described in the next section. The conversion of this monomer to polypentachloro(vinyloxy)cyclotriphosphazene is described in Section B.

A. PENTACHLORO(VINYLOXY)CYCLOTRIPHOSPHAZENE (2-Vinyloxy-2,4,4,6,6-pentachlorocyclotriphosphazatriene; 2,2,4,4,6-Pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵triazaphosphorine)

$$C_4H_8O + n - C_4H_9Li \longrightarrow LiOC_2H_3 + C_2H_4 + C_4H_{10}$$

$$N_3P_3Cl_6 + LiOC_2H_3 \longrightarrow N_3P_3Cl_5OCH = CH_2 + LiCl_3$$

Procedure

The apparatus shown in Figure 1⁹ is fitted with a magnetic stirring bar, a 100-ml pressure-equalizing dropping funnel, and septa on the two side arms. The glassware is assembled hot, the stopcocks are closed, and the system is flushed with nitrogen exiting through the dropping funnel to a mercury bubbler. The nitrogen flow is reduced to a minimal rate and 100 mL of dry THF is placed in the apparatus. Using either a syringe or a double-ended needle, 50 mL of a 1.55 M solution of butyllithium in hexanes (0.078 mol) is placed in the addition funnel and slowly added to the stirred THF. Stirring is continued overnight. A 500-mL three-necked flask is attached to the apparatus in the figure and is charged with 15.0 g (0.043 mol)* of hexachlorocyclotriphosphazene, $N_3P_3Cl_{6,1}$ and a magnetic stirring bar. Septa are fitted to the side arms, and the flask is attached to the appartus containing the lithium enolate. The nitrogen line is removed from the side aim on the apparatus shown in the figure and connected to the flask via a syringe needle. The upper stopcock of the apparatus is opened allowing the system to be flushed with nitrogen. Approximately 100 mL of dry THF is added to the flask, and stirred until the solid dissolves. The phosphazene containing flask is immersed in an ice bath and the enolate

^{*}The high enolate-phosphazene ratio is used to ensure reaction of all of the $N_3P_3Cl_6$, which is difficult to separate completely from the desired product.

[†]Shin Nisso Kako Co., ltd. 3-1.60, Ukima, Kita-ku, Tokyo, Japan 115.

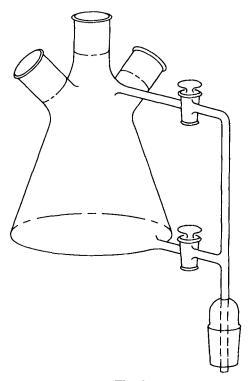


Fig. 1.

solution is slowly added. After complete addition, the stirred reaction mixture is allowed to warm to room temperature. The solvent is removed by means of a rotary evaporator, and the resulting oily mixture is treated with activated charcoal and 200 mL of low boiling (30–60°) petroleum. After filtration through celite or Filter-Aid, the solvent is removed and the process is repeated with 100 mL of petroleum and additional activated charcoal. After removal of the solvent an oily mixture remains. Flash chromatography¹⁰ is an efficient method of separating the monosubstituted derivative from materials with higher degrees of substitution. A 4-cm diameter chromatographic column fitted with a 35/20 ball joint at the top and leading to a nitrogen inlet is filled with 11 cm of flash chromatography grade (~4 μ m average particle diameter) silica gel (Baker) in a slurry with low boiling petroleum. A 5.56-g sample of the crude product is placed on the column, solvent is added, the ball joint is clamped, and the nitrogen pressure is adjusted to provide a slow flow through the column. Fractions

are collected in test tubes and monitored by TLC. The first component to be eluted is the desired product, and all fractions containing this material are combined. The solvent is removed by means of rotary evaporation, kept at 40°. Purification is effected by short path distillation at a bath temperature of 85° (0.02 torr) to yield 2.25 g of a water white liquid, bp 55 to 57°.

Anal. Calcd. for $N_3P_3Cl_5OC_2H_3$: C, 6.75, H, 0.84; mol wt 353. Found: C, 6.74; H, 0.75; M_w 353 (mass spectrum).

Properties

Pentachloro(vinyloxy)cyclotriphosphazene is a colorless liquid stable to atmospheric hydrolysis. It is soluble in common organic solvents. The IR spectrum exhibits a strong phosphorus-nitrogen ring stretching band at 1220 cm^{-1.4} The ³¹P NMR spectrum shows resonances for ==PCl(OC₂H₃) centers at 13.2 ppm and ==PCl₂ centers at 23.4 ppm with ${}^{2}J_{PNP} = 64$ Hz.⁴

B. POLY[PENTACHLORO(VINYLOXY)CYCLOTRI-PHOSPHAZENE] (Poly[2-vinyloxy-2,4,4,6,6pentachlorocyclotriphosphaztriene]; Poly[2,2,4,4,6pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵triaztriphosphorine])

$$N_3P_3Cl_5OC_2H_3 \xrightarrow{Me_2C(CN)N = NC(CN)Me_2} (CHCH_2)_n$$

ON₃P₃Cl₅

Polymerization through the vinyl function in pentachloro(vinyloxy)cyclotriphosphazene can be accomplished under radical initiation conditions. The presence of moisture and (vinyloxy)phosphazenes with degrees of substitution >1 must be avoided because the former can effect chain transfer and the latter results in the formation of cross-linked materials.

Procedure

A 2.25-g sample of pentachloro(vinyloxy)cyclotriphosphazene is distilled at 0.02 torr from P_4O_{10} to a flask containing 0.02 g of 2,2¹-azobis(2-methylpropanenitrile) [azobis(isobutyronitrile)] (AIBN).* After distillation, the

*AIBN is purified by vacuum sublimation at ambient temperature.

stopcock leading to the vacuum system is closed, and the flask (still attached to the distillation apparatus) is placed in a constant temperature bath at 60°. The flask is occasionally swirled to aid in dissolution of AIBN and to recover AIBN, which condenses on the upper walls of the flask. The transition to a very viscous medium occurs in approximately 2 hr. At this point, the mixture is dissolved in 50 mL of dichloromethane and the resulting solution is dropped slowly down the wall of a 400-mL beaker containing 200 mL of stirred methanol. The polymer is allowed to settle, and most of the solvent is decanted. Approximately 200 mL of additional methanol is added and then decanted after the polymer has settled. The polymer is isolated by filtration through coarse filter paper, dried in an oven at 50°, and then placed *in vacuo* (0.02 torr) overnight. A yield of 0.27 g (12% conversion) is obtained. Conversions of 10 to 20% are typically achieved with higher conversions being possible with extended reaction times.

Anal. Calcd. for N₃P₃Cl₅OC₂H₃: C, 6.75; H, 0.84. Found: C, 7.16; H, 0.93.

Properties

Poly[pentachloro(vinyloxy)cyclotriphosphazene] is a white solid that is stable to atmospheric hydrolysis. It is soluble in toluene, dichloromethane, and so on, and can be cast into flexible thin films. Molecular weights will vary with experimental conditions with M_n as high as 2.85×10^5 (membrane osmometry) being observed. Thermal decomposition of the polymer is a complex process, with the first stage being elimination of HCl starting around 120°. Nucleophilic substitution reactions on the cyclophosphazene groups in the polymer allow for the synthesis of a broad range of related polymers.

References

- 1. C. W. Allen, J. Polym. Sci. Polym. Symp., 70, 79 (1983).
- 2. H. R. Allcock, T. L. Evans, and T. J. Fuller, Inorg. Chem., 19, 1026 (1980).
- H. R. Allcock, P. E. Austin, and T. R. Rakowsky, *Macromolecules*, 14, 1622 (1981);
 H. R. Allcock, W. C. Hymer, and P. E. Austin, *ibid*. 16, 1401 (1983).
- 4. C. W. Allen, K. Ramachandran, R. P. Bright, and J. C. Shaw, Inorg. Chim. Acta, 64, L109 (1982).
- 5. K. Ramachandran and C. W. Allen, Inorg. Chem., 22, 1445 (1983).
- 6. P. J. Harris, M. A. Schwalke, V. Liu, and B. L. Fisher, Inorg. Chem., 22, 1812 (1983).
- 7. C. W. Allen and R. P. Bright, Inorg. Chim. Acta, 99, 107 (1985).
- 8. R. B. Bates, L. M. Kroposki, and L. M. Potter, J. Org. Chem., 37, 560 (1972).
- 9. C. W. Allen, R. P. Bright, J. L. Desorcie, J. A. MacKay, and K. Ramachandran, J. Chem. Educ., 57, 564 (1980).
- 10. W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43, 2923 (1978).

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

Chapter Three

COMPOUNDS OF PHARMACOLOGICAL INTEREST

18. BORON ANALOGS OF AMINO ACIDS

Submitted by BERNARD F. SPIELVOGEL,* FAHIM U. AHMED,* and ANDREW T. McPHAIL* Checked by KAREN W. MORSE† and TERRY J. LOFTHOUSE†

Amine carboxyboranes such as $H_3NBH_2CO_2H$ (ref. 1) and $Me_3NBH_2CO_2H$ (ref. 2) are isoelectronic and isosteric (protonated) boron₄ analogs of the α -amino acids glycine, $H_3NCH_2CO_2^-$, and betaine, $Me_3NCH_2CO_2^-$, respectively. Considerable interest may be expected in these boron analogs in view of the profound biological activity of the α -amino acids. Indeed, these and other examples of boron analogs of the α -amino acids, together with their precursors and derivatives have been found to possess interesting pharmacological activity including significant hypolipidemic, antiarthritic, and antitumor activity³⁻⁵ in animal model screens.

Procedures are given for the preparation of trimethylamine-cyano borane, Me_3NBH_2CN , the precursor to trimethylamine-carboxyborane, $Me_3NBH_2CO_2H$, as well as for $Me_3NBH_2CO_2H$ and its *N*-ethylamide and

^{*}Paul M. Gross Chemical Laboratory, Duke University, Durham, NC 27706.

[†]Departments of Chemistry and Biochemistry, Utah State University, Logan, UT 84322.

methyl ester derivatives. These four compounds can serve as the basis for the synthesis of many other interesting derivatives including peptides.

A. TRIMETHYLAMINE-CYANOBORANE

 $NaBH_3CN + Me_3N \cdot HCl \xrightarrow{THF} Me_3NBH_2CN + NaCl + H_2$

Trimethylamine-cyanoborane is prepared by reacting trimethylamine-hydrochloride and NaBH₃CN in refluxing THF.⁶ It also has been prepared by the addition of Me₃N to independently generated species or adducts containing $-BH_2CN$,^{7,8} by the interaction of Me₃NBH₂I and NaCN in ether solvents,⁹ and other routes.¹⁰ The present procedure, however, is a very convenient one step, high yield synthesis using commercially available starting materials.

Procedure

■ **Caution.** NaBH₃CN is a toxic chemical. Considerable care should be exercised not to inhale the powder or to contact the chemical or its solutions. Rubber gloves should be worn and all operations carried out in an efficient hood. Me₃NBH₂CN is also toxic (see Properties) and similar care should be taken in working with the compound. Although Me₃NBH₂CN has shown significant pharmacological activity at doses below toxic levels in animal model studies,⁴⁻⁶ very little toxicological data is available. It should be used only for experimental laboratory use and is not to be used as a drug on humans.

A 2-L three-necked flask is equipped with a nitrogen inlet, reflux condenser (connected to an oil bubbler to monitor H₂ gas evolution) and magnetic stirrer. For more efficient stirring, a mechanical stirrer is better. After flushing with nitrogen, 75.40 g (1.20 mol) of NaBH₃CN* is added followed by 800 mL of dry THF. The mixture is stirred until most of the NaBH₃CN is solubilized. To the stirring solution, 128.06 g (1.34 mol, ~11% excess) of Me₃N·HCl is added slowly followed by an additional 200 mL of dry THF. After the H₂ gas evolution has slowed considerably, the suspension is refluxed for 48 hr. During this period, considerable amounts of foam are produced. The reaction mixture is then cooled and filtered, the solid (NaCl) is washed with THF (2 × 50 mL), and the solvent removed from the filtrate at reduced pressure leaving 104.6 g (89.1%) of crude

^{*}Commercially available from Aldrich Chemical Company and Alpha Inorganics. NaBH₃CN is quite hygroscopic and is preferably weighed out in a dry atmosphere.

 Me_3NBH_2CN , mp 60°. The crude product is readily purified by recrystallization from THF-petroleum or by sublimation under reduced pressure to give an 82% yield (mp 63°).*

Anal. Calcd. for (C₆H₁₇BN₂O): C,H,B,N. Analyses for indicated elements within $\pm 0.3\%$ were obtained.

Properties

Trimethylamine-cyanoborane is a white crystalline slightly hygroscopic solid, soluble in most organic solvents; mp 63°: IR (Nujol) $\nu_{BH}(2400)$, $\nu_{CN}(2200)$ cm⁻¹; ¹H NMR (CDCl₃) $\delta = 2.74$ (s, CH₃N); ¹¹B NMR (CDCl₃, BF₃·Et₂O std) $\delta = -13.16$ (t, $J_{B-H} = 105$ Hz). Its purity can be checked by melting point and ¹H NMR. The compound is quite stable towards hydrolysis. It is toxic with an LD₅₀ of 70 mg/kg in male mice³ although it possesses significant pharmacological activity at doses considerably below this value.³⁻⁵

B. TRIMETHYLAMINE-CARBOXYBORANE (BORON ANALOG OF BETAINE)

 $Me_{3}NBH_{2}CN + Et_{3}O^{+}BF_{4}^{-} \xrightarrow{CH_{2}Cl_{2}} Me_{3}NBH_{2}CNEt^{+}BF_{4}^{-} + Et_{2}O$ $Me_{3}NBH_{2}CNEt^{+}BF_{4}^{-} + 2H_{2}O \xrightarrow{} Me_{3}NBH_{2}CO_{2}H + EtNH_{4}^{+}BF_{4}^{-}$

Trimethylamine-carboxyborane is obtained² by activating the cyano group in Me₃NBH₂CN by ethylation with triethyloxonium tetrafluoroborate, followed by hydrolysis of the resulting nitrilium salt with water. Attempts to prepare Me₃NBH₂CO₂H from Me₃NBH₂CN directly by acid, base hydrolysis, or KMnO₄ oxidation-hydrolysis under various conditions have been unsuccessful resulting instead of B—H hydrolysis (under forcing conditions) to give boric acid or borate salts. Freshly prepared Et₃O⁺BF₄⁻ (ref. 11) always gives better yields of Me₃NBH₂CO₂H than the commercially available material. In some instances, no product is obtained in using commercial sources of Et₃O⁺BF₄⁻, which may reflect the instability of the compound and its solutions and prior handling.

^{*}The checkers reported a crude yield of 89.9% and that some BH₃CN⁻ (¹¹B NMR) remained after the first recrystallization. A pure product (¹¹B NMR) was obtained after the second recrystallization with a yield of 65%.

Procedure

■ **Caution.** Me₃NBH₂CN is a toxic compound (see Properties) and proper care should be exercised in handling it. Although Me₃NBH₂CO₂H is a relatively non toxic compound (see Properties) and has been found to possess significant pharmacological activities in animal model studies, very little toxicological data is available; it should be used only for experimental laboratory use and is not to be used as a drug on humans.

To a 500-mL three-necked flask equipped with reflux condenser, magnetic stirrer, and N₂ inlet, is transferred 32.53 g (0.28 mol) of Me₃NBH₂CN and 240 mL of 2 M Et₃OBF₄ (0.48 mol, ~100% excess) in CH₂Cl₂ under nitrogen. The resulting clear solution is refluxed (45°) for 24 hr. The solution is then cooled and the solvent removed at reduced pressure leaving a white solid material that is vacuum pumped overnight to remove BF₃·Et₂O formed from decomposition of some Et₃O⁺BF₄⁻ during the period of reflux. To this solid (*N*-ethylnitrilium salt, Me₃NBH₂CNEt⁺BF₄⁻), 200 mL of water is added and the solution is stirred at room temperature for 2½ days. The aqueous solution (some solid product forms at this stage) is repeatedly extracted with CH₂Cl₂ (4 × 100 mL). The organic extracts are dried over MgSO₄, filtered and evaporated to dryness. The crude solid Me₃NBH₂COOH is purified by recrystallization from warm water (at least 55°) giving 21.38 g (65.8%) white plates, mp 147° (dec, under vacuum).

If freshly prepared $Et_3O^+BF_4^-$ is used, an excess of 30% is found to give a similar yield of Me₃NBH₂CO₂H.

Anal. Calcd. (C₄H₁₂BNO₂) C,H,B,N: Analyses for indicated elements within $\pm 0.3\%$ were obtained.

Properties

The product is a white crystalline solid, soluble in H₂O and common organic solvents. It melts with decomposition at 147°. It is stable in H₂O and air but will decompose approximately 25% in 1 N HCl after 1 week. The IR (KBr) $\nu_{OH}(3130)$, $\nu_{BH}(2380)$, $\nu_{CO}(1645)$ cm⁻¹. ¹H NMR (D₂O) $\delta = 2.72$ (s, Me₃N), 4.65 (s, HDO); ¹¹B NMR (CDCl₃, BF₃·Et₂O std): $\delta = -9.7$ (t, $J_{B-H} = 98$ Hz). The purity of Me₃NBH₂CO₂H is most easily checked by ¹¹B NMR since its chemical shift (-9.7 ppm) is 3.5-ppm downfield from that of Me₃NBH₂CN, the major impurity. Trimethylamine-carboxyborane is a relatively nontoxic compound having an LD₅₀ of 1800 mg/kg in mice.³

The amine group of $Me_3NBH_2CO_2H$ can be exchanged with other amines, for example, Me_2NH ,¹² MeNH₂,¹² and NH₃,¹ the last giving H₃NBH₂CO₂H, the boron analog of glycine. Me₃NBH₂CO₂H and other amine-carboxy-

boranes are very weak acids¹³ with pK_a for ionization of the carboxyl proton being around 8, some sixfold higher in pK than the analogous amino acid. Me₃NBH₂CO₂H forms a dinuclear complex with Cu(II) similar to dinuclear copper acetate complexes. The complex has enhanced antitumor and hypolipidemic activity.^{14,15}

C. TRIMETHYLAMINE-(ETHYLCARBAMOYL)BORANE

 $Me_{3}NBH_{2}CN + Et_{3}O^{+}BF_{4}^{-} \xrightarrow{CH_{2}Cl_{2}} Me_{3}NBH_{2}CNEt^{+}BF_{4} + Et_{2}O$

 $Me_3NBH_2CNEt^+BF_4^- + NaOH \longrightarrow Me_3NBH_2C(O)NHEt + NaBF_4$

The *N*-ethylamide of $Me_3NBH_2CO_2H$, $Me_3NBH_2C(O)NHEt$, or trimethylamine (ethylcarbamoyl)borane is prepared,^{1,16} by ethylating Me_3NBH_2CN with $Et_3O^+BF_4^-$ in refluxing CH_2Cl_2 (45°) followed by rapid hydrolysis of the resulting nitrilium salt with 1N NaOH at 0°.

Procedure

Caution. Me_3NBH_2CN is a toxic compound (see Properties). $Me_3NBH_2C(O)NHEt$ should be used only for experimental laboratory use and is not to be used as a drug on humans.

A solution of Me₃NBH₂CN (11.9 g, 0.12 mol) and 250 mL of 1 M Et₃OBF₄ (ref. 11) in CH₂Cl₂ (0.25 mol) was refluxed (45°) under N₂ for 24 hr. The reaction mixture is cooled to 0°, and 1 N NaOH is added slowly with vigorous stirring until the solution is quite basic (pH > 13). After stirring (maintaining pH > 13) for 1 hr at room temperature, the organic layer is separated and the aqueous layer extracted three times with CH₂Cl₂. The organic portions are combined and dried over MgSO₄, and the solvent removed *in vacuo*. The remaining viscous liquid is distilled under vacuum with minimum heating (oil bath) to give 13.1 g (75%) of oily amide; bp 80° (0.15 torr).

Anal. Calc. for C₆H₁₇BN₂O: C, 50.10; H, 11.83; N, 19.49; B, 7.45. Found: C, 49.86; H, 11.69; N, 19.59, B, 7.50

Properties

Trimethylamine-(ethylcarbamoyl)borane is a viscous malodorous liquid and undergoes considerable decomposition at temperatures much above 80°. IR (neat): ν_{NH} (3289), ν_{BH} (2330), $\nu_{\text{C(O)NH}}$ (1590, 1480) cm⁻¹; ¹H NMR

(CDCl₃): $\delta = 1.07$ (t, CH₃CH₂), $\delta = 2.75$ (s, Me₃N), $\delta = 3.57$ (m, CH₂CH₃), $\delta = 5.43$ (br. s, NH); ¹¹B NMR (CDCl₃, BF₃·Et₂O std): $\delta = -7.4$ (t, $J_{BH} = 90$ Hz). Its purity can be checked by ¹H and ¹¹B NMR spectral data, which are different from the Me₃NBH₂CO₂H and Me₃NBH₂CN impurities. Bases such as Me₂NH, MeNH₂, and NH₃ in excess can displace Me₃N in Me₃NBH₂C(O)NHEt to give the corresponding (ethylcarbamoyl)boranes.¹⁶ Me₃NBH₂C(O)NHEt is considerably basic and reacts readily with anhydrous HCl to form a novel protonated salt,¹⁷ Me₃NBH₂C(OH)=NHEt⁺ Cl⁻. Trimethylamine-(ethylcarbamoyl)borane has an LD₅₀ of 320 mg/kg in mice.³

D. TRIMETHYLAMINE-CARBOMETHOXYBORANE

$$Me_{3}NBH_{2}CO_{2}H + ClCOCH_{3} + Et_{3}N \xrightarrow{CH_{2}Cl_{2}} Me_{3}NBH_{2}C(O)OMe + Et_{3}N \cdot HCl + CO_{2}$$

Trimethylamine-carbomethoxyborane is prepared¹⁸ in 84% yield by reacting Me₃NBH₂CO₂H with methyl chloroformate for 1 hr at 0°. This ester has also been prepared in 82% yield by condensing Me₃NBH₂CO₂H and CH₃OH with dicyclohexylcarbodiimide at ambient temperature for 1 week.¹⁹

Procedure

The following procedure should be carried out under N₂. To a solution of Me₃NBH₂COOH (1.17 g, 0.01 mol) and Et₃N (1.11 g, 0.011 mol) in CH₂Cl₂ (100 mL) at 0° is added methyl chloroformate (0.945 g, 0.01 mol), followed by dimethylaminopyridine (0.122 g, 0.001 mol). The resulting solution is stirred at 0° for 1 hr, washed with water (2 × 20 mL), dried over MgSO₄ and concentrated to give pure ester; Yield: 1.1 g (84%).*

Anal. Calcd. for $C_5H_{14}BNO_2$: C, 45.85; H, 10.77; N, 10.69. Found: C, 45.95; H, 10.99; N, 10.56%.

Properties

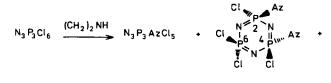
Trimethylamine-carbomethoxyborane is a sweet smelling solid. It can be purified by recrystallization (CH₂Cl₂-pentane) or sublimation at reduced

*The checkers reported yields of 62 and 66% in two attempts, mp 90 to 92°.

pressure; IR (CDCl₃): ν_{BH} (2385), ν_{CO} (1660) cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.72$ (s, Me₃N), $\delta = 3.48$ (s, OCH₃); ¹¹B NMR (CDCl₃, BF₃·Et₂O): $\delta = -9.09$ (t, $J_{BH} = 99$ Hz). Its purity can be determined by mp and ¹H NMR spectral data. H₃NBH₂CO₂Me can be prepared from Me₃NBH₂CO₂Me by reacting it with NH₃ in a displacement reaction.¹⁹ Me₃NBH₂C(O)OMe is a potent hypolipidemic agent in animal model screens.²⁰

References

- 1. B. F. Spielvogel, M. K. Das, A. T. McPhail, K. D. Onan, and I. H. Hall, J. Am. Chem. Soc., 102, 6343 (1980).
- B. F. Spielvogel, L. Wojnowich, M. K. Das, A. T. McPhail, and K. D. Hargrave, J. Am. Chem. Soc., 98, 5702 (1976).
- I. H. Hall, C. O. Starnes, B. F. Spielvogel, P. Wisian-Neilson, M. K. Das, and L. Wojnowich, J. Pharm. Sci., 68, 685 (1979).
- I. H. Hall, C. O. Starnes, A. T. McPhail, P. Wisian-Neilson, M. K. Das, F. Harchelroad, Jr., and B. F. Spielvogel, J. Pharm. Sci., 69, 1024 (1980).
- (a) I. H. Hall, M. K. Das, F. Harchelroad, Jr., P. Wisian-Neilson, A. T. McPhail, and B. F. Spielvogel, J. Pharm. Sci., 70, 339 (1981). (b) I. H. Hall, C. J. Gilbert, A. T. McPhail, K. W. Morse, K. Hassett, and B. F. Spielvogel, J. Pharm. Sci., 74, 755 (1985).
- 6. P. Wisian-Neilson, M. K. Das, and B. F. Spielvogel, Inorg. Chem., 17, 2327 (1978).
- (a) S. S. Uppal and H. C. Kelly, Chem. Commun., 1970, 1619. (b) C. Weidig, S. S. Upal, and H. C. Kelly, Inorg. Chem., 13, 1763 (1974).
- D. R. Martin, M. A. Chiusano, M. L. Denniston, D. J. Dye, E. D. Martin, and B. T. Pennington, J. Inorg. Nucl. Chem., 40, 9 (1978).
- 9. P. J. Bratt, M. P. Brown, and K. R. Seddon, J. Chem. Soc. Dalton Trans., 1974, 2161.
- 10. O. T. Beachley and B. Washburn, Inorg. Chem., 14, 120 (1975).
- 11. H. Meerwein, Org. Synth., 46, 113 (1966).
- B. F. Spielvogel, Boron Chemistry, IUPAC, Inorganic Chemistry Division, R. W. Parry and G. Kodoma (eds.), Pergamon, New York, 1980, pp. 119–129.
- K. H. Scheller, R. B. Martin, B. F. Spielvogel, and A. T. McPhail, *Inorg. Chim. Acta*, 57, 227 (1982).
- 14. I. H. Hall, W. L. Williams, C. J. Gilbert, A. T. McPhail, and B. F. Spielvogel, J. Pharm. Sci., 73, 973 (1984).
- 15. I. H. Hall, B. F. Spielvogel, and A. T. McPhail, J. Pharm. Sci., 73, 222 (1984).
- B. F. Spielvogel, F. U. Ahmed, K. W. Morse, and A. T. McPhail, *Inorg. Chem.*, 23, 1776 (1984).
- B. F. Spielvogel, F. U. Ahmed, and A. T. McPhail, *Abstracts of Papers*, 187th National Meeting of the American Chemical Society, St. Louis, MO, April 8–13, 1984; American Chemical Society, Washington, DC; Paper No. INOR 240.
- 18. B. F. Spielvogel, F. U. Ahmed, and A. T. McPhail, Synthesis, 1986, 833.
- 19. B. F. Spielvogel, F. U. Ahmed, G. L. Silvey, P. Wisian-Neilson, and A. T. McPhail, Inorg. Chem., 23, 4322 (1984).
- I. H. Hall, B. F. Spielvogel, A. Sood, F. Ahmed, and S. Jafri, J. Pharm. Sci., 76, 359 (1987).

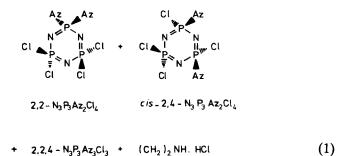

19. 1-AZIRIDINYL-AMINO SUBSTITUTED CYCLOPHOSPHAZENES

Submitted by J. C. VAN DE GRAMPEL,* A. A. VAN DER HUIZEN,* N. H. MULDER,† J. W. RUSCH,* and T. WILTING* Checked by M. A. BAXTER‡ and D. P. MACK‡

It has been shown that 1-aziridinyl derivatives of $(NPCl_2)_3$ and $(NPCl_2)_4$ possess *in vitro* and *in vivo* cytostatic activity, the degree depending on the geometrical arrangements of the 1-aziridinyl groupings and on the nature of the other substituents.¹⁻⁵ In general the aziridinyl-amino substituted cyclophosphazenes exhibit the highest activity both *in vitro* and *in vivo*. Moreover, for compounds $N_3P_3Az_2(NHMe)_4$ and $N_4P_4Az_2(NHMe)_6$ (Az = 1-aziridinyl) it has been demonstrated that the nongeminal isomers are more active than the geminal ones.^{3,5}

Aziridinyl-amino derivatives of $(NPCl_2)_3$ and $(NPCl_2)_4$ can be prepared by the aminolysis of the appropriate 1-aziridinyl-chloro precursors. An alternative possibility is offered by the reaction of compounds $N_3P_3Am_{6-n}Cl_n$ or $N_4P_4Am_{8-n}Cl_n$ (Am = amino) with an excess of aziridine. Both routes provide comparable yields. The choice between them is governed by the accessibility of the precursor.

A. BIS(AZIRIDINYL)TETRAKIS(METHYLAMINO)-CYCLOTRIPHOSPHAZENE [cis- AND trans-2,4,-BIS(1-AZIRIDINYL)-2,4,6,6-TETRAKIS(METHYLAMINO)-1,3,5,2λ⁵,4λ⁵,6λ⁵-TRIAZATRIPHOSPHORINE AND 2,2-BIS(1-AZIRIDINYL)-4,4,6,6-TETRAKIS(METHYLAMINO)-1,3,5,2λ⁵,4λ⁵,6λ⁵-TRIAZATRIPHOSPHORINE]



trans_2,4-N3P3Az2Cl4

*Department of Inorganic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands.

†Division of Medical Oncology, Department of Internal Medicine, University Hospital, Oostersingel 59, 9713 EZ Groningen, The Netherlands.

[‡]Department of Chemistry, Shippensburg University, Shippensburg, PA, 17257.

cis-, trans-2,4-N₃P₃Az₂Cl₄
or 2,2-N₃P₃Az₂Cl₄ + 8MeNH₂
$$\longrightarrow$$
 cis-, trans-2,4-N₃P₃Az₂ (NHMe)₄
or 2,2-N₃P₃Az₂(NHMe)₄ + 4MeNH₂·HCl (2)

Procedure

Caution. Aziridine and benzene are carcinogenic and must be handled in an efficiently ventilated hood. Compounds $N_3P_3Az_{6-n}R_n$ have to be considered as toxic; therefore, direct contact of these solids with the skin must be avoided. Care must also be exercised when cleaning the glassware. Diluted hydrochloric acid is recommended for destroying residual aziridine and aziridinyl derivatives.

The reactions should be carried out in a dry nitrogen atmosphere in order to avoid hydrolysis of partially aminolyzed products.

1. Compounds $N_3P_3Az_{6-n}Cl_n$

A Schlenk flask (200 mL), fitted with a Teflon-coated magnetic stirring bar and a pressure-equalizing dropping funnel topped with a rubber septum, is charged with 10.40 g (29.9 mmol) of $(NPCl_2)_3$ (ref. 6) and 100 mL of benzene, dried over molecular sieves (4 Å). Via a syringe the dropping funnel is charged through the septum with 6.2 mL (120 mmol) of aziridine* (distilled from KOH pellets) and 50 mL of benzene. Under vigorous stirring, the aziridine solution is added dropwise to the solution in the flask, cooled at 6°. After addition, the reaction mixture is slowly warmed to room temperature and stirred during an additional period of 18 hr. Precipitated (polymeric) aziridinium chloride salts are removed by filtration. After thorough washing of the precipitate with benzene, the combined filtrates are

*If aziridine cannot be obtained commercially it can be prepared following Wenker's method⁷ as modified by Leighton et al.⁸ and Reeves et al.⁹

evaporated to dryness *in vacuo*. The resulting crude product, a white, waxy material, is freed from residual polymeric products by chromatography (Silica Woelm 32-63 column, O.D. 20 mm, length 30 cm) applying an hexane-diethyl ether (3:2) mixture as eluent. The separation of the reaction products is performed by HPLC on a Lichrosorb Si 60/10 column (Chrompack, O.D. 22 mm, length 30 cm) using an hexane-diethyl ether (2:1) mixture as eluent.

Fraction 1. 1.50 g of a white solid; recrystallization from hexane yields 1.06 g (2.99 mmol = 10.0%) of N₃P₃AzCl₅, mp 67-68.5°.

Anal. Calcd. for $C_2H_4N_4P_3Cl_5$: C, 6.78; H, 1.14; N, 15.82; Cl, 50.03. Found: C, 6.93; H, 1.12; N, 15.61; Cl, 49.60.

Fraction 2. 1.87 g of a colorless oil; recrystallization from hexane yields 1.49 g (4.13 mmol = 13.8%) of trans-2,4-N₃P₃Az₂Cl₄, mp 66.5-68°.

Anal. Calcd. for $C_4H_8N_5P_3Cl_4$: C, 13.31; H, 2.24; N, 19.41; Cl, 39.29. Found: C, 13.27; H, 2.25; N, 19.53; Cl, 39.01.

Fraction 3. 1.86 g of a white solid; recrystallization from an hexane-diethyl ether mixture yields 1.43 g (3.96 mmol = 13.3%) of 2,2-N₃P₃Az₂Cl₄, mp 105.5-107°.

Anal. Calcd. for $C_4H_8N_5P_3Cl_4$: C, 13.31; H, 2.24; N, 19.41; Cl, 39.29. Found: C, 13.40; H, 2.11; N, 19.30; Cl, 39.53.

Fraction 4. 1.48 g of a colorless oil; recrystallization from hexane yields 1.06 g (2.94 mmol = 9.8%) of cis-2,4-N₃P₃Az₂Cl₄, mp 65.5-67°.

Anal. Calcd. for $C_4H_8N_5P_3Cl_4$: C, 13.31; H, 2.24; N, 19.41; Cl, 39.29. Found: C, 13.35; H, 2.29; N, 19.18; Cl, 39.54.

Fraction 5. 0.84 g of a colorless oil; recrystallization from an hexane-diethyl ether mixture yields 0.63 g (1.71 mmol = 5.7%) of 2,2,4-N₃P₃Az₃Cl₃, mp 61.5-63°.

Anal. Calcd. for $C_6H_{12}N_6P_3Cl_3$: C, 19.61; H, 3.29; N, 22.87; Cl, 28.92. Found: C, 19.59; H, 3.20; N, 22.74; Cl, 28.72.

Properties

Compounds $N_3P_3AzCl_5$, $N_3P_3Az_2Cl_4$, and 2,2,4- $N_3P_3Az_3Cl_3$ are white, crystalline solids. They are slightly sensitive to hydrolysis and should be kept in a dry atmosphere at low temperature (about 0°). ³¹P {¹H} NMR data [80.9 MHz; CDCl₃; (NPCl₂)₃ solution in CDCl₃, 19.9 ppm, as external reference] for the bis(1-aziridinyl) derivatives, including those for $N_3P_3AzCl_5$ and 2,2,4- $N_3P_3Az_3Cl_3$, are given in Table I.

The crystal structure of trans-2,4-N₃P₃Az₂Cl₄ has been published.¹⁰

2. Compounds N₃P₃Az₂(NHMe)₄

A Schlenk flask (100 mL), equipped with a Teflon-coated magnetic stirring bar and a pressure equalizing dropping funnel topped with a rubber septum, is charged with 0.50 g (1.39 mmol) of $N_3P_3Az_2Cl_4$ and 15 mL of benzene, dried over molecular sieves (4 Å).

A 1 to 1.5 M solution of methylamine in benzene is prepared by leading methylamine (from a lecture bottle) through 100 mL of dry benzene during about 30 min. The actual concentration of the amine is determined by acid-base titration, using dilute hydrochloric acid and bromocresol green as indicator.

A quantity of the amine solution, equivalent to 41.7 mmol of methylamine, is transferred to the dropping funnel by syringe. Under vigorous stirring the amine solution is added dropwise to the contents of the flask, cooled at 6° . The mixture is allowed to warm slowly to room temperature. After the mixture has been stirred for 18 hr, the reaction temperature is

Compound	δ_{PAz_2}	δ _{PAzCl}	δ_{PCl_2}	² J _{PP}
N ₃ P ₃ AzCl ₅		31.2	22.2	39.0
trans-2,4-N ₃ P ₃ Az ₂ Cl ₄		34.7	25.0	38.0
$2,2-N_3P_3Az_2Cl_4$	34.2		21.9	30.0
cis-2,4-N ₃ P ₃ Az ₂ Cl ₄		34.1	24.9	38.2
2,2,4-N ₃ P ₃ Az ₃ Cl ₃	35.8	35.8	24.9	AA'X spectrum, multiplet splitting 34.0 Hz

TABLE I	³¹ P { ¹ H}	NMR	Data	for	Some
Compounds	N ₃ P ₃ A ₂	L6-,*			

⁴Chemical shifts (ppm) are positive in low field direction, coupling constants are given in hertz (Hz).

raised to 50° during an additional period of 24 hr (using *trans*-2,4- or 2,2- $N_3P_3Az_2Cl_4$ as the starting material) or 48 hr (using *cis*-2,4- $N_3P_3Az_2Cl_4$ as starting material), while stirring is continued. The amine HCl salt formed is removed by filtration and washed three times with 10-mL portions of benzene. The combined benzene fractions are evaporated to dryness *in vacuo*. The crude product thus obtained is recrystallized from a pentane-benzene mixture. As compounds $N_3P_3Az_2(NHMe)_4$ tend to adsorb solvent molecules, the crystals are kept at 45° and low pressure till free from the solvent used. (Control by means of ¹H NMR.)

*trans-2,4-N*₃*P*₃*Az*₂(*NHMe*)₄. mp 153–155°, yield 0.35 g (1.03 mmol = 74%).

Anal. Calcd. for C₈H₂₄N₉P₃: C, 28.32; H, 7.13; N, 37.16. Found: C, 28.21; H, 7.18; N, 36.67.

 $2,2-N_3P_3Az_2(NHMe)_4$. mp 147–148°, yield 0.30 g (0.88 mmol = 64%).

Anal. Calcd. for C₈H₂₄N₉P₃: C, 28.32; H, 7.13; N, 37.16. Found: C, 28.47; H, 7.20; N, 36.59.

 $cis-2, 4-N_3P_3Az_2(NHMe)_4$. mp 152–153°, yield 0.19 g (0.56 mmol = 40%).

Anal. Calcd. for C₈H₂₄N₉P₃: C, 28.32; H, 7.13; N, 37.16. Found: C, 28.27; H, 7.11; N, 36.61.

Properties

Isomers $N_3P_3Az_2(NHMe)_4$ are white, crystalline solids, stable in air at ambient temperature. They are readily soluble in water; in acidic medium decomposition takes place as a consequence of the opening of the aziridinyl rings. ³¹P {¹H} NMR data (for experimental details see Section A.1.) are given in Table II.

All three isomers exhibit a significant *in vivo* cytostatic activity in the order *trans*-2,4 \approx *cis*-2,4 > 2,2. The 50% lethal dose (LD₅₀) of *trans*-2,4-

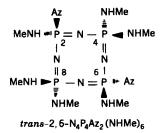

Compound	δ _{Az2}	δ _{PAzNMMe}	δ _{P(NHMe)2}	² <i>Ј</i> _{рр}
$trans-2, 4-N_3P_3Az_2(NHMe)_4$		30.0	22.1	37.4
$2,2-N_3P_3Az_2(NHMe)_4$	38.2		22.8	37.9
$cis-N_3P_3Az_2(NHMe)_4$		29.9	22.0	38.5

TABLE II ³¹P {¹H} NMR Data for Compounds N₁P₁Az₂(NHMe)₄

 $N_3P_3Az_2(NHMe)_4$ for mice amounts to 50 mg kg⁻¹. The antitumor effect of this compound on leukemia L 1210 cells in mice expressed as T/C value (*T* is the mean life span of treated mice; *C* is the mean life span of control mice) is 200% for a dose equal to 30 mg kg⁻¹ with 25% long term survivors.⁵

B. trans-NON-gem-BIS(AZIRIDINYL)-HEXAKIS(METHYLAMINO)-CYCLOTETRAPHOSPHAZENE [trans-2,6-BIS(1-AZIRIDINYL)-2,4,4,6,8,8-HEXAKIS(METHYLAMINO)-1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-TETRAZATETRAPHOSPHOCINE]

 $(\text{NPCl}_{2})_{4} \xrightarrow{(\text{CH}_{2})_{2}\text{NH}} \text{N}_{4}\text{P}_{4}\text{AzCl}_{7} + \text{ isomers } \text{N}_{4}\text{P}_{4}\text{Az}_{2}\text{Cl}_{6} + \text{ isomers } \text{N}_{4}\text{P}_{4}\text{Az}_{3}\text{Cl}_{5} + (\text{CH}_{2})_{2}\text{NH}\cdot\text{HCl} \quad (3)$ $trans-2,6-\text{N}_{4}\text{P}_{4}\text{Az}_{2}\text{Cl}_{6} + 12\text{MeNH}_{2} \longrightarrow trans-2,6-\text{N}_{4}\text{P}_{4}\text{Az}_{2}(\text{NHMe})_{6} + 6\text{MeNH}_{2}\cdot\text{HCl} \quad (4)$

Procedure

Caution. See CAUTION in Section A. Compounds $N_4P_4Az_{8-n}R_n$ are toxic; direct contact of these solids with the skin must be avoided.

The reactions should be carried out in a dry nitrogen atmosphere, in order to avoid hydrolysis of partially aminolyzed products.

1. Compounds N₄P₄Az_{8-n}Cl_n

A similar procedure as described under Section A.1. follows. To a vigorously stirred solution of 9.3 g (20.1 mmol) of $(NPCl_2)_4$ (ref. 6) in 300 mL of hexane, dried over sodium wire, is added dropwise a solution of 4.2 mL (81.1 mmol) of aziridine in 100 mL of hexane, cooled at 0°. The reaction mixture is warmed slowly to room temperature and stirred for an additional

period of 18 hr. The work-up procedure (filtration and washing with hexane) as described under Section A.1. yields a viscous oil. The separation of the reaction products is carried out by HPLC, using a Lichrosorb Si 60/10 column (Chrompack, O.D. 22 mm, length 30 cm) and a 3:1 mixture of hexane-diethyl ether as eluent. Eight fractions are obtained.

Fraction 1. $N_4P_4AzCl_7$, recrystallized from hexane-diethyl ether, mp 68.5-70°, Yield: 1.60 g (3.40 mmol = 16.9%).

Anal. Calcd. for $C_2H_4N_5P_4Cl_7$: C, 5.11; H, 0.86; N, 14.90; Cl, 52.78. Found: C, 5.07; H, 0.84; N, 14.86; Cl, 52.60.

Fraction 2. trans-2,6-N₄P₄Az₂Cl₆, recrystallized from hexane-diethyl ether, mp 103-104°, Yield: 0.57 g (1.20 mmol = 6.0%).

Anal. Calcd. for $C_4H_8N_6P_4Cl_6$: C, 10.08; H, 1.69; N, 17.63; Cl, 44.62. Found: C, 10.11; H, 1.60; N, 17.56; Cl, 44.63.

Fraction 3. cis-2,6-N₄P₄Az₂Cl₆, recrystallized from hexane-diethyl ether, mp 122.5-123.5°, Yield: 0.38 g (0.80 mmol = 4.0%).

Anal. Calcd. for $C_4H_8N_6P_4Cl_6$: C, 10.08; H, 1.69; N, 17.63; Cl, 44.62. Found: C, 10.08; H, 1.61; N, 17.66; Cl, 44.64.

Fraction 4. trans-2,4-N₄P₄Az₂Cl₆, recrystallized from hexane-diethyl ether, mp 91-92°, Yield: 0.76 g (1.59 mmol = 7.9%).

Anal. Calcd. for $C_4H_8N_6P_4Cl_6$: C, 10.08; H, 1.69; N, 17.63; Cl, 44.62. Found: C, 10.21; H, 1.68; N, 17.73; Cl, 44.29.

Fraction 5. 2,2-N₄P₄Az₂Cl₆, recrystallized from hexane, mp 39.5-40.5°, Yield: 0.19 g (0.40 mmol = 2.0%).

Anal. Calcd. for $C_4H_8N_6P_4Cl_6$: C, 10.08; H, 1.69; N, 17.63; Cl, 44.62. Found: C, 10.02; H, 1.62; N, 17.57; Cl, 44.94.

Fraction 6. cis-2,4-N₄P₄Az₂Cl₆, recrystallized from hexane-diethyl ether, mp 68-70°, Yield: 0.57 g (1.20 mmol = 5.9%).

Anal. Calcd. for $C_4H_8N_6P_4Cl_6$: C, 10.08; H, 1.69; N, 17.63; Cl, 44.62. Found: C, 10.43; H, 1.66; N, 17.47; Cl, 44.53. Fraction 7. A mixture of 2,2,6-N₄P₄Az₃Cl₅ and cis-2,6-trans-4-N₄P₄Az₃Cl₅ (1.08 g).

Fraction 8. cis-2,4-trans-6-N₄P₄Az₃Cl₅, recrystallized from hexane-diethyl ether, mp 84.5-86.5°, Yield: 0.87 g (1.80 mmol = 9.0%).

Anal. Calcd. for $C_6H_{12}N_7P_4Cl_5$: C, 14.91; H, 2.50; N, 20.28; Cl, 36.67. Found: C, 14.72; H, 2.57; N, 20.41; Cl, 36.96.

Properties

Compounds $N_4P_4AzCl_7$, $N_4P_4Az_2Cl_6$, and *cis*-2,4-*trans*-6- $N_4P_4Az_3Cl_5$ are white, crystalline solids, which are rather sensitive to hydrolysis and should be kept in a dry atmosphere at low temperature. ³¹P {¹H} NMR data (for experimental details see Section A.1.) are given in Table III.

The crystal structure of cis-2,4-N₄P₄Az₂Cl₆ has been determined.¹⁰

2. Compound trans-2,6-N₄P₄Az₂(NHMe)₆

A similar procedure as described under Section A.2. follows. To a vigorously stirred solution of 0.48 g (1.0 mmol) of *trans*-2,6-N₄P₄Az₂Cl₆ in 15 mL of chloroform (dried over 4 Å molecular sieves), cooled at 0°, is added dropwise a 20-fold excess of methylamine using about a 1 M solution in dry benzene. The reaction mixture is warmed slowly to room temperature and stirred for an additional period of 18 hr at that temperature. The usual work-up procedure (Section A.2.) affords a white solid, which is recrystallized several times from a mixture of diethyl ether and dichloromethane. Yield: 0.25 g (0.56 mmol = 56%), mp 124–126°.

Anal. Calcd. for C₁₀H₃₂N₁₂P₄: C, 27.03; H, 7.26; N, 37.83. Found: C, 26.90; H, 7.26; N, 37.43.

Compound	δ _{P(2)}	δ _{P(4)}	δ _{P(6)}	δ _{P(8)}	J ₂₄	J ₄₆	J ₆₈	J ₂₈
N ₄ P ₄ AzCl ₇	8.6	-4.7	-7.2	-4.7	27.6	30.6	30.6	27.6
trans-2,6-N ₄ P ₄ Az ₂ Cl ₆	8.4	-1.9	8.4	-1.9	27.9	27.9	27.9	27.9
cis-2,6-N ₄ P ₄ Az ₂ Cl ₆	8.7	-2.6	8.7	-2.6	28.4	28.4	28.4	28.4
trans-2,4-N ₄ P ₄ Az ₂ Cl ₆	11.8	11.8	-4.9	-4.9	27.6	25.4	31.1	25.4
2,2-N ₄ P ₄ Az ₂ Cl ₆	18.8	5.9	-6.5	- 5.9	11.6	26.1	26.1	11.6
cis-2,4-N ₄ P ₄ Az ₂ Cl ₆	10.3	10.3	-5.0	-5.0	29.2	27.1	32.7	27.1
cis-2,4-trans-6-N4P4Az3Cl5	10.3	13.7	11.7	-1.8	28.9	27.6	24.7	26.9

TABLE III ³¹P {¹H} NMR Data for Some Compounds N₄P₄Az_{4-x}Cl_x

Properties

The compound *trans*-2,6-N₄P₄Az₂(NHMe)₆ is a white solid, stable in air at ambient temperature. It is readily soluble in water; in acidic medium a rapid decomposition occurs by opening of the aziridinyl rings. The ³¹P {¹H} NMR data (80.9 MHz, CDCl₃) are $\delta_{PAZNHME} = 13.6$, $\delta_{P(NHME)_2} = 9.5$ ppm, ²J_{PP} = 32.3 Hz.

The 50% lethal dose (LD₅₀) for mice amounts to 225 mg kg⁻¹. The antitumor effect on L 1210 in mice, expressed as T/C value is 244% for a dose of 100 mg kg⁻¹ with 40% long term survivors.⁵

References

- 1. A. A. van der Huizen, J. C. van de Grampel, W. Akkerman, P. Lelieveld, A. van der Meer-Kalverkamp, and H. B. Lamberts, *Inorg. Chim. Acta*, **78**, 239 (1983).
- J. C. van de Grampel, A. A. van der Huizen, A. P. Jekel, J. W. Rusch, T. Wilting, W. Akkerman, P. Lelieveld, H. B. Lamberts, A. van der Meer-Kalverkamp, N. H. Mulder, and S. Rodenhuis, *Phosphorus Sulfur*, 18, 337 (1983).
- 3. A. A. van der Huizen, Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 1984.
- 4. Netherlands Patent Application 8300573 (1983); Netherlands Patent Application 8301626 (1983).
- A. A. van der Huizen, T. Wilting, J. C. van de Grampel, P. Lelieveld, A. van der Meer-Kalverkamp, H. B. Lamberts, and N. H. Mulder, J. Med. Chem., 29, 1341 (1986).
- 6. M. L. Nielsen and G. Cranford, Inorg. Synth., 6, 94 (1960).
- 7. H. Wenker, J. Am. Chem. Soc., 57, 2328 (1935).
- 8. P. A. Leighton, W. A. Perkins, and M. L. Renquist, J. Am. Chem. Soc., 69, 1540 (1974).
- 9. W. A. Reeves, G. L. Drake, Jr., and C. L. Hoffpauir, J. Am. Chem. Soc., 73, 3522 (1951).
- 10. A. A. van der Huizen, J. C. van de Grampel, J. W. Rusch, T. Wilting, F. van Bolhuis, and A. Meetsma, J. Chem. Soc. Dalton Trans. 1986, 1317.

20. *cis*-DIAMMINEPLATINUM α-PYRIDONE BLUE

Submitted by PRADIP K. MASCHARAK* and STEPHEN J. LIPPARD[†] Checked by F. ALBERT COTTON[‡] and DANIEL P. BANCROFT[‡]

Although the isolation of the first "blue" platinum compound was reported as early as 1908,¹ the nature of the bonding in the "platinum blues" re-

*Department of Chemistry, University of California, Santa Cruz, CA 95064.

†Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. Address correspondence to this author.

‡Department of Chemistry, Texas A&M University, College Station, TX 77843-3255.

Properties

The compound *trans*-2,6-N₄P₄Az₂(NHMe)₆ is a white solid, stable in air at ambient temperature. It is readily soluble in water; in acidic medium a rapid decomposition occurs by opening of the aziridinyl rings. The ³¹P {¹H} NMR data (80.9 MHz, CDCl₃) are $\delta_{PAZNHME} = 13.6$, $\delta_{P(NHME)_2} = 9.5$ ppm, ²J_{PP} = 32.3 Hz.

The 50% lethal dose (LD₅₀) for mice amounts to 225 mg kg⁻¹. The antitumor effect on L 1210 in mice, expressed as T/C value is 244% for a dose of 100 mg kg⁻¹ with 40% long term survivors.⁵

References

- 1. A. A. van der Huizen, J. C. van de Grampel, W. Akkerman, P. Lelieveld, A. van der Meer-Kalverkamp, and H. B. Lamberts, *Inorg. Chim. Acta*, **78**, 239 (1983).
- J. C. van de Grampel, A. A. van der Huizen, A. P. Jekel, J. W. Rusch, T. Wilting, W. Akkerman, P. Lelieveld, H. B. Lamberts, A. van der Meer-Kalverkamp, N. H. Mulder, and S. Rodenhuis, *Phosphorus Sulfur*, 18, 337 (1983).
- 3. A. A. van der Huizen, Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 1984.
- 4. Netherlands Patent Application 8300573 (1983); Netherlands Patent Application 8301626 (1983).
- 5. A. A. van der Huizen, T. Wilting, J. C. van de Grampel, P. Lelieveld, A. van der Meer-Kalverkamp, H. B. Lamberts, and N. H. Mulder, J. Med. Chem., 29, 1341 (1986).
- 6. M. L. Nielsen and G. Cranford, Inorg. Synth., 6, 94 (1960).
- 7. H. Wenker, J. Am. Chem. Soc., 57, 2328 (1935).
- 8. P. A. Leighton, W. A. Perkins, and M. L. Renquist, J. Am. Chem. Soc., 69, 1540 (1974).
- 9. W. A. Reeves, G. L. Drake, Jr., and C. L. Hoffpauir, J. Am. Chem. Soc., 73, 3522 (1951).
- 10. A. A. van der Huizen, J. C. van de Grampel, J. W. Rusch, T. Wilting, F. van Bolhuis, and A. Meetsma, J. Chem. Soc. Dalton Trans. 1986, 1317.

20. *cis*-DIAMMINEPLATINUM α-PYRIDONE BLUE

Submitted by PRADIP K. MASCHARAK* and STEPHEN J. LIPPARD[†] Checked by F. ALBERT COTTON[‡] and DANIEL P. BANCROFT[‡]

Although the isolation of the first "blue" platinum compound was reported as early as 1908,¹ the nature of the bonding in the "platinum blues" re-

*Department of Chemistry, University of California, Santa Cruz, CA 95064.

†Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. Address correspondence to this author.

‡Department of Chemistry, Texas A&M University, College Station, TX 77843-3255.

mained unknown for many decades. Despite various physical measurements, which indicated polymeric structures with bridging amidate type of linkages for these paramagnetic blue species, definitive structural information was elusive. The report that blue platinum complexes with pyrimidines and substituted amides exhibit a high index of antitumor activity with low nephrotoxicity² further stimulated interest in the structure and chemistry of these intriguing blue species. The major advance came in 1977 when *cis*-diammine platinum α -pyridone blue was crystallized and the structure was solved by X-ray diffraction.³ Subsequently, two more tetranuclear crystalline blues have been characterized, one of which contains 1-methyluracil ligands.⁴ All three crystalline derivatives are comprised of amidate-bridged, tetrameric platinum chains with partial metal-metal bonding and mixed oxidation states. The α -pyridone blue has been investigated most thoroughly⁵ and studies in aqueous solution have led to the isolation of related dimeric and monomeric complexes.⁶ In aqueous solution, one equivalent of reducing agent splits the tetrameric chain into two platinum(II) dimers where the two metals are held by α -pyridone in a headto-head fashion. On the other hand, oxidation with 3 to 5 M nitric acid produces a metal-metal bonded stable diamagnetic Pt(III) dimer. Both of these dimers have been structurally characterized.^{6,7} In spite of their detailed physical characterization, however, reproducible, high yield synthetic procedures for α -pyridone blues were not available. Two synthetic procedures are reported in detail in this paper.

A. BIS[BIS(μ-2-PYRIDONATO-N1,02)BIS(cis-DIAMMINEPLATINUM(2.25+))] PENTANITRATE HYDRATE (cis-DIAMMINEPLATINUM α-PYRIDONE BLUE OR PPB)

Method A

$$cis-[(NH_3)_2Pt(H_2O)_2]^{2+} + C_5H_5NO \xrightarrow[room T]{water. pH 5.5} \text{greenish} \\ blue \\ solution \\ \xrightarrow{7 M \text{ HNO}_3 \text{ pH} \le 1}{NaNO_3} [Pt_2(NH_3)_4(C_5H_4NO)_2]_2(NO_3)_5 \cdot H_2O$$

Procedure

2 g (4 mmol) of cis-[(NH₃)₂PtI₂] (ref. 8) is allowed to react with 1.35 g (8 mmol) of silver nitrate in 35 mL of water at 60° for 1 hr and the mixture is filtered through Celite[®] to remove silver iodide. A 400 mg (4.2 mmol)

sample of α -pyridone, recrystallized from benzene, is then added to the pale yellow filtrate (pH ~ 3) containing cis-[(NH₃)₂Pt(H₂O)₂]²⁺ and the pH is adjusted to 5.5 with 1 M sodium hydroxide solution. The clear yellow solution is stirred in a stoppered flask at room temperature for 20 hr. During this period the color changes to light green. The pH is lowered to 1 with 7 *M* nitric acid and 1 g of sodium nitrate is added. Cooling the deep blue solution to 0° results in dark shiny needles of PPB. The crystals are dichroic and, when immersed in solution, appear magenta under reflected light. They are filtered, washed with small portions (4–5 mL) of cold 0.1 *M* nitric acid solution, and dried over CaSO₄. Yield: 450 mg (27%). Checker's yield (10%).

Method B

$$cis-[(NH_3)_2Pt(C_5H_5NO)_2]^{2+} + cis-[(NH_3)_2Pt(H_2O)_2]^{2+} \xrightarrow{\text{water pH 5.5}}_{\text{room T}}$$

$$greenish \xrightarrow{7 \text{ M HNO_3, pH \le 1}}_{NaNO_3} [Pt_2(NH_3)_4(C_5H_4NO)_2]_2(NO_3)_5 \cdot H_2O$$
blue
solution

Procedure

The filtrate from the reaction of 2 g (4 mmol) of cis-[(NH₃)₂PtI₂] and 1.35 g (8 mmol) of silver nitrate in 35 mL of water at 60° (as above) is allowed to react with 800 mg (8.5 mmol) of α -pyridone at 50° under nitrogen for 24 hr. The pale green reaction mixture is then evaporated to dryness at 50° on a rotary evaporator leaving pale blue needles of $[(NH_3)_2Pt(C_5H_5NO)_2](NO_3)_2$.⁶ To this residue is added the filtrate from another reaction of 2 g of cis-[(NH₃)₂PtI₂] and 1.35 g of silver nitrate in 35 mL of warm water. The pH of the resulting mixture is adjusted to 5.5 with 1 M sodium hydroxide solution and stirred at room temperature for 24 hr. The small amount (\sim 80 mg) of white residue which appears during this period is filtered off and the pH is then adjusted to 1 with 7 M nitric acid. The deep blue solution is cooled at 0° for 20 hr. The first batch of PPB crystals (400 mg) is collected and the filtrate is kept again at 0° after addition of 2 g of sodium nitrate. Crystals (650 mg) of PPB are collected after 24 hr. The two batches are combined and washed with cold 0.1 M nitric acid solution and dried over CaSO₄. Total yield 1.05 g (32%) (checker's vield 31%).

The product obtained from these procedures is pure. However, PPB can be recrystallized from 0.1 M nitric acid solution to produce dark plate-like crystals.

Properties

Crystals of PPB are stable in air and dissolve in water to give a deep blue solution, which slowly bleaches with time. The blue color is enhanced and stabilized in the presence of nitric or perchloric acid (pH \sim 1) and/or 0.1 *M* sodium nitrate or perchlorate. In 0.1 M nitric acid PPB exhibits three optical spectroscopic bands at 680, 480, and 405 nm. The blue color is rapidly discharged in the presence of chloride ion and can be restored by removing chloride with silver nitrate. *cis*-Diammineplatinum α -pyridone blue is paramagnetic and exhibits strong ESR signals at room temperature, with g values of 2.37 and 1.99.

References

- 1. K. A. Hofmann and G. Bugge, Chem. Ber., 41, 312 (1908).
- P. J. Davidson, P. J. Faber, R. G. Fischer, Jr., S. Mansy, H. J. Peresie, B. Rosenberg, and L. van Camp, *Cancer Chemother. Rep.*, **59**, 287 (1975); R. J. Speer, H. Ridgeway, L. M. Hall, D. P. Stewart, K. E. Howe, D. Z. Lieberman, A. D. Newman, and J. M. Hill, *Cancer Chemother. Rep.*, **59**, 629 (1975).
- 3. J. K. Barton, H. N. Rabinowitz, D. J. Szalda, and S. J. Lippard, J. Am. Chem. Soc., 99, 2827 (1977).
- T. V. O'Halloran, M. M. Roberts, and S. J. Lippard, J. Am. Chem. Soc., 106, 6427 (1984);
 P. K. Mascharak, I. D. Williams, and S. J. Lippard, J. Am. Chem. Soc., 106, 6428 (1984);
 T. V. O'Halloran, P. K. Mascharak, I. D. Williams, M. M. Roberts, and S. J. Lippard, Inorg. Chem., 26, 1261 (1987).
- J. K. Barton, S. A. Best, S. J. Lippard, and R. A. Walton, J. Am. Chem. Soc., 100, 3785 (1978); J. K. Barton, D. J. Szalda, H. N. Rabinowitz, J. V. Waszczak, and S. J. Lippard, J. Am. Chem. Soc., 101, 1434 (1979); J. K. Barton, C. Caravana, and S. J. Lippard, J. Am. Chem. Soc., 101, 7269 (1979).
- L. S. Hollis and S. J. Lippard, J. Am. Chem. Soc., 103, 1230 (1981); 105, 3494 (1983); Inorg. Chem., 22, 2708 (1983).
- L. S. Hollis and S. J. Lippard, J. Am. Chem. Soc., 103, 6761 (1981); Inorg. Chem., 21, 2116 (1982).
- 8. S. G. Dhara, Indian J. Chem., 8, 193 (1970).

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

Chapter Four

METAL COMPOUNDS, COMPLEXES, AND LIGANDS

21. DIPOTASSIUM TETRAIODOPLATINATE(II) DIHYDRATE

 $K_2[PtCl_4] + 4KI + 2H_2O \longrightarrow K_2[PtI_4] \cdot 2H_2O + 4KCl$

Submitted by LARS-FRIDE OLSSON* Checked by C. KING† and D. MAX ROUNDHILL†

The potassium tetrachloro^{1,2} and tetrabromo complexes^{2,3} of platinum(II) have been used as starting materials for a large number of platinum(II) complexes. The iodo complex, $K_2[PtI_4]$ is difficult to synthesize⁴ for three reasons: the extremely low solubility of platinum(II) iodide, PtI_2 , the ease of formation⁵ of $[Pt_2I_6]^{2-}$ ($2[PtI_4]^{2-} \rightarrow [Pt_2I_6]^{2-} + 2I^-$), and the low resistance towards oxidation to platinum(IV) by triiodide and iodine. The latter two are formed by air oxidation of iodide. These problems can be circumvented by keeping iodide in large excess over platinum, by continuously working under a nitrogen atmosphere, and by preparing all aqueous

*Inorganic Chemistry 1, Chemical Center, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden.

†Department of Chemistry, Tulane University, New Orleans, LA 70118.

solutions from deoxygenated water. The title compound is separated from the excess KI by slow crystallization.

Procedure

Into a 125-mL Erlenmeyer flask, which is continuously flushed with nitrogen, place a magnetic stirring bar, 1.0 g (2.4 mmol) of finely divided $K_2[PtCl_4]$ and 5.0 mL of deoxygenated water. Prepare about 10 mL of a saturated aqueous solution of KI (flush with nitrogen). When all $K_2[PtCl_4]$ has dissolved, add 4 mL of KI (aq, sat). The solution becomes dark and a small amount of material precipitates. The flask is stored under nitrogen for 15 hr.

Upon addition of 50 mL of acetone, with stirring, KCl is precipitated quantitatively. The solution is decanted to a 250 mL round-bottom flask. The precipitate is washed with 4×25 mL portions of acetone, which are decanted to the flask. The last washing solution should be slightly yellow and the precipitate white. The solution is evaporated on a rotary evaporator with the aid of a water bath kept at 25°, until the volume is 5 to 15 mL.

The solution is transferred with a disposable pipet to a 200-mL conical beaker, aided by a few drops of water. The beaker is placed in a nitrogen filled desiccator. The desiccator lid is fitted with two glass tubes in a two-hole stopper. The nitrogen inlet tube extends to the bottom of the desiccator. The outlet tube is flush with the bottom of the stopper. After purging the desiccator with nitrogen for 15 min, the flow is reduced to one bubble every 2 sec from an oil bubbler. The desiccator is left at room temperature for 1 to 4 weeks.

When the flask contents are dry, excess KI, together with some $K_2[PtI_4] \cdot 2H_2O$ has crept up the wall of the beaker. A few large, thin, black, rhombic crystals of the title compound are formed on the bottom.

It may be necessary to mechanically remove solid KI from the crystal surface. The yield is 1.2-1.4 g (60-71%).

Anal. Calcd. for $H_4I_4K_2O_2Pt$: I, 62.1; K, 9.6; Pt, 23.9%. Found: I, 62.1; K, 9.1; Pt, 23.5%.

Properties

The compound (MW = 816.9 g mol^{-1}) is moderately stable and can be handled in air for some hours. It should be stored under a dry, inert

atmosphere and protected from light. It is soluble in alcohol, acetone, and acetonitrile, but at room temperature it undergoes rapid conversion⁵ to $[Pt_2I_6]^{2-}$. In aqueous solution it is slowly precipitated as PtI_2 . The electronic spectrum in aqueous solution^{4.5} containing a large excess of iodide is characterized by λ_{max} 387 nm, $\epsilon 5.04 \times 10^3 M^{-1}$ cm; λ_{max} 331, $\epsilon 8.3 \times 10^3$ and λ_{min} 299, $\epsilon 4.5 \times 10^2$. The platinum -195 NMR spectrum in D₂O with added KI shows a single resonance at $\delta = -5448$ ppm (H₂PtCl₆ reference, $\delta = 0$) and with a relaxation time $T_1 = 0.55(2)$ sec at 4.7 tesla.⁶

Note: It is advisable to check for PtI_6^{-} , either by electronic absorption or by the platinum-195 NMR spectrum. The molar absorbtivity at 495 nm, where PtI_6^{-} has a maximum with $\epsilon 1.1 \times 10^4 M^{-1} \text{ cm}^{-1}$, should not exceed 200 $M^{-1} \text{ cm}^{-1}$. The absence of PtI_6^{-} can also be verified by the absence of its peak at $\delta = -6291 \text{ ppm.}^6$

References

- 1. G. B. Kauffman and D. O. Cowan, Inorg. Synth., 7, 240 (1963).
- 2. S. E. Livingstone, Synth. Inorg. Metal Org. Chem., 1, 1 (1971).
- 3. J. A. Abys, N. P. Enright, H. M. Gerdes, T. L. Hall, and J. M. Williams, *Inorg. Synth.*, 19, 2 (1979).
- 4. B. Corain and A. J. Poë, J. Chem. Soc., 1967(A), 1318.
- 5. L. F. Olsson, Inorg. Chem., 25, 1697 (1986).
- 6. The NMR data are reported by the checkers.

22. ALKYL OR ARYL BIS(TERTIARY PHOSPHINE) HYDROXO COMPLEXES OF PLATINUM(II)

Submitted by M. A. BENNETT* and A. ROKICKI* Checked by R. J. PUDDEPHATT†

Complexes of the type $[Pt(OH)RL_2]$ (R = alkyl or aryl; L₂ = two monodentate tertiary phosphines or a bidentate ditertiary phosphine) are rare examples of monomeric, uncharged hydroxo complexes of platinum(II). Their interesting chemical properties arise from the presence of typical

†Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.

^{*}Research School of Chemistry, The Australian National University, Canberra, A.C.T., Australia 2601.

covalently binding ligands together with the electronegative ligand OH in the coordination sphere of a soft or class B metal ion. The ready substitution of the hydroxo ligand in the presence of a variety of strong and weak acids, both organic and inorganic, provides a useful synthesis of a range of platinum(II) complexes, including those containing functionalized alkyl groups.¹⁻⁷ The Pt—OH bond also undergoes insertion with many simple molecules (e.g., CO, isocyanides, CO₂, COS, CS₂, and SO₂),^{68.9} and its reaction with nitriles to form *N*-amidoplatinum(II) complexes enables hydroxoplatinum(II) complexes to catalyze homogeneously the hydration of nitriles to carboxamides.^{3,7,10}

Some hydroxoplatinum(II) complexes have been made by hydrolysis of the corresponding chloroplatinum(II) compounds $[PtClRL_2]$ with alkali metal hydroxides,² and the presence of a crown ether may be beneficial.¹¹ The most general procedure, however, is first to abstract chloride ion from the precursor with Ag[BF₄] in a suitable solvent and then to treat the resulting solvent species $[PtR(solvent)L_2]$ [BF₄] with aqueous NaOH or KOH. The choice of solvent is limited by the reactivity of the product hydroxo complex. Thus, although acetone is generally a convenient solvent for chloride abstraction, it cannot be used in the second step for making $[Pt(OH)(CH_3)(dppp)]^*$ because this hydroxo complex reacts rapidly with acetone to give $[Pt(CH_2COCH_3)(CH_3)(dppp)]$.⁷ Likewise, methanol cannot be used in the synthesis of *trans*- $[Pt(OH)RL_2]$ complexes because of rapid reaction to give *trans*- $[PtH(R)L_2]$, among other products.¹²

Two general precautions should be observed in the four representative syntheses described here. First, the chloride abstraction step is best carried out with exclusion of light to prevent decomposition of the precipitated AgCl; this is done by wrapping the flask with aluminum foil. Second, the temperature of reaction mixtures should not be allowed to exceed $\sim 35^\circ$, especially during the removal of solvents under reduced pressure, otherwise poorly soluble solids of unknown composition are formed and the yields of desired hydroxo complexes are greatly reduced. All the reactions have been carried out under nitrogen with use of standard Schlenk techniques and degassed solvents. Of the compounds described, however, only *trans*-[Pt(OH)(C₆H₅)(PEt₃)₂] is appreciably air sensitive, as a result of its rapid absorption of CO₂ to form a bicarbonato complex. The precursor complexes [PtClRL₂] are well-established compounds that are most conveniently synthesized by displacement of 1,5-cyclooctadiene from [PtClR(cod).]^{7,13}

*Abbreviations: dppp = 1,3-propanediylbis(diphenylphosphine), $Ph_2P[CH_2]_3PPh_2$; cy = cyclohexyl, C_6H_{11} ; cod = cyclooctadiene; THF = tetrahydrofuran, solvent; thf = tetrahydrofuran, ligand.

A. trans-HYDROXO(PHENYL)BIS(TRIETHYL-PHOSPHINE)PLATINUM(II)

 $trans-[PtCl(CH_3)(Pcy_3)_2] + Ag[BF_4] \xrightarrow{THF/acetone} trans-[Pt(CH_3)(solvent)(Pcy_3)_2][BF_4] + AgCl$ $trans-[Pt(CH_3)(solvent)(Pcy_3)_2][BF_4] + KOH \longrightarrow trans-[Pt(OH)(CH_3)(Pcy_3)_2] + K[BF_4].$

Procedure

A mixture of $[PtCl(C_6H_5)(PEt_3)_2]$ (1.36 g, 2.5 mmol) and Ag[BF₄](0.49 g, 2.5 mmol) is placed in a 100-mL Schlenk flask or round-bottom flask fitted with a nitrogen inlet and a magnetic stirring bar and THF (50 mL) is added. The mixture is stirred for 1 hr at room temperature and the precipitated AgCl is removed by centrifugation. The resulting colorless solution is stirred vigorously for 0.5 hr with a solution of KOH(0.16 g, 2.85 mmol) in water (10 mL). The solution is again centrifuged to remove a small amount of gray solid, and the supernatant liquid is evaporated *in vacuo* to give a pale olive oil, which is extracted with diethyl ether (3 × 10 mL). The extracts are evaporated *in vacuo* to yield a colorless, viscous oil that is crystallized from isopentane (~10 mL) at -78° . The mother liquor is decanted and the product is dried *in vacuo* at room temperature, yielding a white solid (1.05 g, 2.0 mmol, 80%).

Anal. Calcd. for C₁₈H₃₆OP₂Pt: C, 41.1; H, 6.9; P, 11.8. Found: C, 40.8; H, 6.6; P, 10.7.

Properties

Prepared as just described, *trans*-[Pt(OH)(C₆H₅)(PEt₃)₂] remains solid under dry nitrogen, but depending on the temperature of the surroundings it readily softens and melts at about 30°. The complex liquefies rapidly in moist air and is very soluble in most organic solvents. The IR spectrum shows a weak ν_{OH} band at ~3670 cm⁻¹ in CH₂Cl₂, but this cannot be seen in Nujol mull or KBr disk spectra. The OH resonance cannot be located in the ¹H NMR spectrum, which does not differ much from that of *trans*-[PtCl(C₆H₅)(PEt₃)₂]. In C₆D₆ there is a multiplet in the region $\delta = 7.50-7.01$ ppm due to the phenyl protons and overlapping multiplets at $\delta = 1.51$ and 0.97 ppm due to the ethyl protons; the last two appear at $\delta = 1.46$ and 0.96 ppm in toluene-*d*₈. The ³¹P {¹H} NMR spectrum of an ap-

proximately 0.03 *M* solution in CD₂Cl₂ at 21°, measured at 80.98 MHz on a Bruker CXP200 instrument, shows a singlet at $\delta = 16.0$ ppm (to high frequency of external 85% H₃PO₄) with ¹⁹⁵Pt satellites (¹J_{PtP} = 2884 Hz); in toluene-*d*₈ these values are $\delta = 15.9$ ppm (¹J_{PtP} = 2912 Hz). Both the chemical shift and the coupling constant may vary somewhat with solvent, concentration, and temperature.

B. trans-HYDROXO(PHENYL)BIS(TRIPHENYL-PHOSPHINE)PLATINUM(II)

$$trans-[PtCl(C_6H_5)(PPh_3)_2] + Ag[BF_4] \xrightarrow{acetone} trans-[Pt(C_6H_5)(acetone)(PPh_3)_2][BF_4] + AgCl$$

$$trans-[Pt(C_6H_5)(acetone)(PPh_3)_2][BF_4] + KOH \longrightarrow trans-[Pt(OH)(C_6H_5)(PPh_3)_2] + K[BF_4]$$

Procedure

A 50-mL Schlenk flask fitted with a magnetic stirring bar is charged with trans-[PtCl(C_6H_5)(PPh₃)₂] (0.16 g, 0.20 mmol) and acetone (15 mL). The suspension is treated with a solution of Ag[BF₄](0.039 g, 0.20 mmol) in acetone (5 mL) and the mixture is stirred at room temperature for 3 hr. The precipitated AgCl is removed by centrifugation and washed with acetone (10 mL). The combined acetone solutions are stirred with a solution of KOH (0.014 g, 0.24 mmol) in water (1 mL) for 2 hr at room temperature, during which time the color turns pale yellow and a small amount of colorless precipitate is formed. The mixture is evaporated to dryness under reduced pressure and the pale yellow solid residue is extracted with benzene (3 × 10 mL). Concentration of the benzene extract and addition of hexane (~10 mL) gives the product as a white, microcrystalline solid (0.12 g, 0.148 mmol, 74%).

Anal. Calcd. for C42H36OP2Pt: C, 62.0; H, 4.5. Found: C, 62.0; H, 4.5.

Properties

The complex *trans*-[Pt(OH)(C₆H₃)(PPh₃)₂] is an air-stable, colorless solid that is readily soluble in CH₂Cl₂, CHCl₃, THF, and benzene. No band due to ν_{OH} could be identified in the IR spectrum in a KBr disk, although Otsuka *et al.*² report that the ν_{OH} band appears at 3613 cm⁻¹ (Nujol) and at 3619 cm⁻¹ (CH₂Cl₂). The ¹H NMR spectrum in CD₂Cl₂ shows the OH

resonance as a triplet at $\delta = 2.16$ ppm (${}^{3}J_{PH} = 2.5$ Hz) flanked by 195 Pt satellites (${}^{2}J_{PtH} = 19.5$ Hz) and the 31 P { 1 H} NMR spectrum in CD₂Cl₂, measured on a Jeol FX60 instrument at 24.29 Hz, shows a singlet at $\delta = 11.4$ ppm (to high frequency of external 85% H₃PO₄) with 195 Pt satellites (${}^{1}J_{PtP} = 3252$ Hz).

C. trans-HYDROXO(METHYL)BIS(TRICYCLOHEXYL-PHOSPHINE)PLATINUM(II)

 $trans-[PtCl(CH_3)(Pcy_3)_2] + Ag[BF_4] \xrightarrow{THF/acetone} trans-[Pt(CH_3)(solvent)(Pcy_3)_2][BF_4] + AgCl$ $trans-[Pt(CH_3)(solvent)(Pcy_3)_2][BF_4] + KOH \longrightarrow trans-[Pt(OH)(CH_3)(Pcy_3)_2] + K[BF_4].$

Procedure

This is similar to that described in the literature for *trans*- $[Pt(OH)(C_6H_5)(Pcy_3)_2]$.⁷

A suspension of *trans*-[PtCl(CH₃)(Pcy₃)₂] (0.242 g, 0.30 mmol) in THF (15 mL) is placed in a 50-mL Schlenk flask and treated with Ag[BF₄] (0.058 g, 0.30 mmol) dissolved in acetone (2 mL). The mixture is stirred for 0.5 hr. The precipitated AgCl is removed by centrifugation and washed with acetone (5 mL). The combined solutions are stirred at room temperature for 0.5 hr with a solution of KOH (0.019 g, 0.36 mmol) in water (1.5 mL), during which time a small amount of colorless solid is formed. The solution is evaporated to dryness under reduced pressure and the residue is extracted successively with a 20-mL and a 10-mL portion of benzene. The extract is evaporated to ~5-mL volume and hexane is added to give the product as a white, crystalline solid (0.15 g, 0.19 mmol, 63%).

Anal. Calcd. for C₃₇H₇₀OP₂Pt: C, 56.4; H, 8.95; P, 7.9. Found: C, 56.4; H, 9.1; P, 7.2.

Properties

The complex $[Pt(OH)(CH_3)(Pcy_3)_2]$ is an air-stable, colorless, microcrystalline solid that is soluble in CH_2Cl_2 and benzene. We have been unable to locate the ν_{OH} band in the IR spectrum, either in CH_2Cl_2 solution or in a KBr disk. The ³¹P {¹H} NMR spectrum in benzene-d₆, measured at 80.98 MHz on a Bruker CXP200 instrument, shows a singlet at $\delta = 23.9$ ppm (to high frequency of external 85% H₃PO₄) with ¹⁹⁵Pt satellites (¹J_{PtP} = 2927 Hz).

D. trans-HYDROXO(METHYL)[1,3-PROPANEDIYLBIS (DIPHENYLPHOSPHINE)]PLATINUM(II)

 $[PtCl(CH_3)(dppp)] + Ag[BF_4] \xrightarrow{THF}$

 $[Pt(CH_3)(thf)(dppp)][BF_4] + AgCl$

 $[Pt(CH_3)(THF)(dppp)][BF_4] + KOH \longrightarrow$

 $[Pt(OH)(CH_3)(dppp)] + K[BF_4]$

Procedure

This is a modified version of that given in the literature.⁷

A solution of [PtCl(CH₃)(dppp)](0.33 g, 0.50 mmol) in THF (30 mL) is added to solid Ag[BF₄] (0.11 g, 0.55 mmol) in a 50-mL Schlenk flask; a white precipitate is formed immediately. The mixture is stirred at room temperature for 2 hr and the precipitated AgCl is removed by centrifugation. The precipitate is washed with chloroform (10 mL) and the chloroform solution immediately taken to dryness under reduced pressure, yielding a glassy white solid (the chloroform solution should not be allowed to stand overnight, because the hydroxo complex reacts with CHCl₃ to reform [PtCl(CH₃)(dppp)]). The THF solution is added to the glassy solid and to the resulting suspension is added with stirring a solution of KOH(0.056 g, 1.00 mmol) in water (2 mL). This immediately gives a colorless solution but within a few minutes a gray solid precipitates. The mixture is stirred for 2 hr, the solid is removed by centrifugation, and the solution is evaporated to dryness under reduced pressure to give a gray solid. Most of this dissolves when it is extracted with benzene $(3 \times 20 \text{ mL})$. The filtered extract is concentrated to ~ 10 mL under reduced pressure and hexane is added to give the product as a white solid (0.27 g, 0.42 mmol), 84%).

Anal. Calcd. for C₂₈H₃₀OP₂Pt: C, 52.6; H, 4.7; Found: C, 52.6; H, 4.7.

Properties

The complex $[Pt(OH)(CH_3)(dppp)]$ is an air-stable, colorless solid that is very soluble in CH_2Cl_2 , $CHCl_3$, and THF, fairly soluble in benzene, and

Solvent	$\delta_{(\mathbf{P}^1)}({}^1\!J_{\mathbf{PtP}^1})$	$\delta_{(P^2)}({}^1J_{PtP^2})$	² <i>J</i> _{PP}	
C ₆ D ₆	-0.86(3324)	-3.6(1727)	~21	
CDCl ₃	-0.91(3511)	+3.4(1636)	19.6	
CD_2Cl_2	-1.1(3403)	+2.1(1688)	~21	

TABLE I ³¹P {¹H} NMR Data for [Pt(OH)(CH₃)(dppp)]^{e,b}

*Chemical shifts are relative to external 85% H₃PO₄, positive to high frequency; coupling constants are in hertz.

^bP¹ trans to OH, P² trans to CH₃.

insoluble in alkanes or diethyl ether. Its ¹H NMR spectrum in CD₂Cl₂ exhibits a doublet of doublets due to PtCH₃ at $\delta = 0.16$ ppm [³J_{PH}(cis) = 3.9 Hz, ³J_{PH}(trans) = 7.3 Hz] flanked by ¹⁹⁵Pt satellites [²J_{PtH} = 60.8 Hz], but the signal due to the hydroxyl proton cannot be located. The IR spectrum in CH₂Cl₂ shows a sharp ν_{OH} band at 3601 cm⁻¹, and this appears in a KBr disk as a weak band at ~3650 cm⁻¹ on the high frequency side of the band due to water in the disk. The ³¹P {¹H} NMR spectrum of [Pt(OH)(CH₃)(dppp)], measured on a Bruker CXP200 instrument at 80.98 MHz, shows a doublet of doublets with ¹⁹⁵Pt satellites; the chemical shifts and coupling constants are given in Table I.

References

- 1. M. A. Bennett, G. B. Robertson, P. O. Whimp, and T. Yoshida, J. Am. Chem. Soc., 95, 3028 (1973).
- 2. T. Yoshida, T. Okano, and S. Otsuka, J. Chem. Soc., Dalton Trans., 1976, 993.
- 3. M. A. Bennett and T. Yoshida, J. Am. Chem. Soc., 100, 1750 (1978).
- 4. T. G. Appleton and M. A. Bennett, Inorg. Chem., 17, 738 (1978).
- 5. R. Ros, R. A. Michelin. R. Bataillard, and R. Roulet, J. Organomet. Chem., 161, 75 (1978).
- 6. R. A. Michelin, M. Napoli, and R. Ros, J. Organomet. Chem., 175, 239 (1979).
- 7. D. P. Arnold and M. A. Bennett, J. Organomet. Chem., 199, 119 (1980).
- 8. R. A. Michelin and R. Ros, J. Organomet. Chem., 169, C42 (1979).
- 9. M. A. Bennett and A. Rokicki, Organometallics, 4, 180 (1985).
- 10. M. A. Bennett and T. Yoshida, J. Am. Chem. Soc., 95, 3030 (1973).
- 11. M. E. Fakley and A. Pidcock, J. Chem. Soc., Dalton Trans., 1977, 1444.
- 12. D. P. Arnold and M. A. Bennett, Inorg. Chem., 23, 2110 (1984).
- H. C. Clark and L. E. Manzer, J. Organomet. Chem., 59, 411 (1973); M. A. Bennett, R. Bramley, and I. B. Tomkins, J. Chem. Soc., Dalton Trans., 1973, 166; H. C. Clark and C. R. Jablonski, Inorg. Chem., 14, 1518 (1975); T. G. Appleton, M. A. Bennett, and I. B. Tomkins, J. Chem. Soc., Dalton Trans., 1976, 439; C. Eaborn, K. J. Odell, and A. Pidcock, J. Chem. Soc., Dalton Trans., 1978, 357.

23. Tris(bidentate)ruthenium(II) Bis[hexafluorophosphate] Complexes 107

23. TRIS(BIDENTATE)RUTHENIUM(II) BIS[HEXAFLUOROPHOSPHATE] COMPLEXES

Submitted by NICHOLAS C. THOMAS* and GLEN B. DEACON† Checked by ANTONIO LLOBET‡ and THOMAS J. MEYER‡

The tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of ruthenium(II) have generated considerable interest due to their luminescence properties and capacity for electron- and energy-transfer processes. Studies of the related mixed-ligand complexes such as $[Ru(bpy)_2L]^{2+}$ and $[Ru(bpy)L_2]^{2+}$ (L = substituted bpy§ or phen§) have demonstrated that the redox properties of these complexes can be varied by altering the ligands and their substituents. Preparative routes to these mixed-ligand species generally involve the reactions of complexes containing labile ligands such as $[Ru(bpy)_2(acetone)]^{2+}$, $[Ru(bpy)_2(1,2-dimethoxyethane)]^{2+}$, 2 or $Ru(bpy)_2Cl_2$ (refs. 3, 4) with the desired ligand in water. The best synthesis of $[Ru(bpy)_3]Cl_2$ in aqueouis media involves the reaction of dried RuCl₃ (obtained from commercial RuCl₃·xH₂O by careful pretreatment) with 2,2'bipyridine and freshly prepared sodium phosphinate.⁵

The method described here uses the polymeric dicarbonyldichlororuthenium(II), $[Ru(CO)_2Cl_2]_n$, obtained quantitatively by heating at reflux a mixture of commercial RuCl₃·xH₂O in formic acid,⁶ which in methanol⁷ or 2-methoxyethanol (this work) reacts with 2,2'-bipyridine to give Ru(CO)₂Cl₂(bpy) in high yield. Treatment of the latter compound with 1,10-phenanthroline and excess trimethylamine-*N*-oxide (Me₃NO) in 2methoxyethanol gives [Ru(bpy)(phen)₂]Cl₂, which is conveniently isolated as the hexafluorophosphate salt.⁸ By a similar procedure [Ru(bpy)₃] [PF₆]₂ can be prepared directly from [Ru(CO)₂Cl₂]_n. This synthesis provides an alternative nonaqueous route to tris(bidentate)ruthenium(II) compounds with the advantages of good yields and short overall reaction times.

Procedure

■ **Caution.** Anhydrous trimethylamine-N-oxide is obtained by vacuum sublimation of the commercial dihydrate (Aldrich Chemical Company)

^{*}Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36193. †Department of Chemistry, Monash University, Clayton, Victoria 3168 Australia. ‡Department of Chemistry, The University of North Carolina, Chapel Hill, NC 27514. \$bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline.

at about 120°. Only small quantities of Me_3NO (~0.5–1.0 g) should be sublimed at one time and the sublimation should be conducted behind protective shielding.* All reactions employing Me_3NO should be performed in a well-ventilated fumehood since trimethylamine (Me_3N) is formed in these reactions and is inflammable, corrosive, and has the smell of rotten fish.

A. (2,2'-BIPYRIDINE)BIS(1,10-PHENANTHROLINE)-RUTHENIUIM(II) BIS(HEXAFLUOROPHOSPHATE)

 $[\operatorname{Ru}(\operatorname{CO})_2\operatorname{Cl}_2]_n + n(\operatorname{bpy}) \xrightarrow{2\operatorname{-methoxyethanol}} n[\operatorname{Ru}(\operatorname{CO})_2\operatorname{Cl}_2(\operatorname{bpy})]$ $[\operatorname{Ru}(\operatorname{CO})_2\operatorname{Cl}_2(\operatorname{bpy})] + 2(\operatorname{phen}) + 2\operatorname{Me}_3\operatorname{NO} \xrightarrow{2\operatorname{-methoxyethanol}} [\operatorname{Ru}(\operatorname{bpy})(\operatorname{phen})_2]\operatorname{Cl}_2 + 2\operatorname{Me}_3\operatorname{N} + 2\operatorname{CO}_2$ $[\operatorname{Ru}(\operatorname{bpy})(\operatorname{phen})_2]\operatorname{Cl}_2 + 2\operatorname{NH}_4\operatorname{PF}_6 \longrightarrow [\operatorname{Ru}(\operatorname{bpy})(\operatorname{phen})_2][\operatorname{PF}_6]_2 + 2\operatorname{NH}_4\operatorname{Cl}_2$

A suspension of polymeric dicarbonyldichlororuthenium(II) (1.00 g, 4.4 mmol) in 2-methoxyethanol (80 mL) is heated in a 125-mL Erlenmeyer flask for several minutes until the solid dissolves. The solution is then filtered, 2,2'-bipyridine (0.80 g, 5.1 mmol) in 2-methoxyethanol (20 mL) is added, and the resulting mixture boiled in air for 5 min. After cooling the flask to 0° the contents are filtered to give crude [Ru(CO)₂Cl₂(bpy)]. A further portion of crude material can be obtained by concentration of the filtrate. Recrystallization from MeOH–CH₂CH₂ gives yellow needles. Yield: 1.32 g (80%), mp > 250°.

Anal. Calcd. for $C_{12}H_8Cl_2N_2O_2Ru$: C, 37.5; H, 2.1; Cl, 18.5; N, 7.3. Found: C, 37.9; H, 2.2; Cl, 18.5; N, 7.4%.

The ¹H NMR,⁷ IR,⁷ mass,⁷ and UV/vis⁹ spectra have been reported. This procedure may be used to prepare analogous complexes containing related bidentate ligands (e.g., 1,10-phenanthroline, 2,2'-biquinoline, 2,2'iminodipyridine, 1,2-ethanediamine).^{7,10}

A mixture of Ru(CO)₂Cl₂(bpy) (0.20 g, 0.52 mmol), 1,10-phenanthroline (0.20 g, 1.1 mmol), and anhydrous trimethylamine-N-oxide (~0.2 g, 2.5 mmol) is heated under reflux in degassed 2-methoxyethanol (25 mL) for 2 hr under nitrogen. During this period the solution darkens and finally remains a deep red color. At this point, if the dichloride complex is desired, the solution is cooled to 0° and [Ru(bpy)(phen)₂]Cl₂ collected by filtration.

^{*}The sublimation has been carried out over a dozen times without any adverse effects. However, one of the referees experienced an explosion while drying Me_3NO in diethyl ether.

To obtain the hexafluorophosphate salt aqueous NH_4PF_6 or KPF_6 (0.4 g in 10 mL water) is added prior to cooling. The solution is then evaporated to dryness under reduced pressure at ~90° and the residue is recrystallized from ethanol to give orange-red crystals. The yield is 0.36 g (75%).

Anal. Calc. for C₃₂H₂₄F₁₂N₆P₂Ru: C, 45.0; H, 2.7; N, 9.3. Found: C, 44.8; H, 2.7; N, 9.2%.

This method may also be used to prepare $[Ru(bpy)_2(phen)][PF_6]_2$ from $[Ru(CO)_2Cl_2(phen)]$ and 2,2'-bipyridine.⁸

B. TRIS(2,2'-BIPYRIDINE)RUTHENIUIM(II) BIS(HEXAFLUOROPHOSPHATE)

 $[\operatorname{Ru}(\operatorname{CO})_2\operatorname{Cl}_2]_n + 3n(\operatorname{bpy}) + 2n(\operatorname{Me}_3\operatorname{NO}) \xrightarrow{2\operatorname{-methoxyethanol}} n[\operatorname{Ru}(\operatorname{bpy})_3]\operatorname{Cl}_2 + 2n(\operatorname{Me}_3\operatorname{N}) + 2n(\operatorname{CO}_2)$

A mixture of polymeric dicarbonyldichlororuthenium(II) (0.15 g, 0.64 mmol), 2,2'-bipyridine (0.35 g, 2.2 mmol) and anhydrous trimethylamine-N-oxide (\sim 0.2 g, 2.5 mmol) is heated under reflux in degassed 2-methoxyethanol for 2 h under nitrogen. Work-up as described above gives [Ru(bpy)₃] [PF₆]₂. Yield: 0.44 g (70%).

Properties

The absorption spectrum of $[Ru(bpy)(phen)_2]^{2+}$ in acetonitrile shows a maxima at 448 nm ($\epsilon 1.65 \times 10^4$) and 262 nm ($\epsilon 9.17 \times 10^4$), which have been assigned to metal-to-ligand charge transfer and $\pi \rightarrow \pi^*$ transitions, respectively.^{11*} In addition shoulders at 430 and 284 nm are observed. The luminescence spectrum¹² and emission life time¹³ in aqueous solution at 298 K have also been determined. Electrochemical studies estimate $E_{1/2}$ for the Ru³⁺/Ru²⁺ couple in acetonitrile at 1.30 V.¹¹ The characteristic ¹H NMR spectrum has also been recorded.¹³ The spectroscopic properties of [Ru(bpy)₃]²⁺ have been summarized recently in this series.⁵

References

- 1. B. P. Sullivan, D. J. Salmon, and T. J. Meyer, Inorg. Chem., 17, 3334 (1978).
- 2. J. A. Connor, T. J. Meyer, and B. P. Sullivan, Inorg. Chem., 18, 1388 (1979).
- 3. P. Belser and A. von Zelewsky, Helv. Chim. Acta, 63, 1675 (1980).

*The checkers report the following absorption spectrum: 453, 430 (sh), 294 (sh), and 273 nm.

- 4. B. Bosnich, Inorg. Chem., 7, 2379 (1968).
- 5. J. A. Broomhead and C. G. Young, Inorg. Synth., 21, 127 (1982).
- 6. M. J. Cleare and W. P. Griffith, J. Chem. Soc. (A), 1969, 372.
- 7. D. St. C. Black, G. B. Deacon, and N. C. Thomas, Aust. J. Chem., 35, 2445 (1982).
- 8. D. St. C. Black, G. B. Deacon, and N. C. Thomas, Inorg. Chim. Acta., 65, L75 (1982).
- 9. J. M. Kelly, C. M. O'Connell, and J. G. Vos, Inorg. Chim. Acta, 64, L75 (1982).
- 10. N. C. Thomas and G. B. Deacon, Synth. React. Metal Org. Inorg. Chem., 16, 85 (1986).
- 11. R. J. Staniewicz, R. F. Sympson, and D. C. Hendricker, Inorg. Chem., 16, 2166 (1977).
- 12. G. A. Crosby and W. H. Elfring, J. Phys. Chem., 80, 2206 (1976).
- J. E. Baggot, G. K. Gregory, M. J. Pilling, S. Anderson, and K. R. Sneddon, J. Chem. Soc. Faraday, 2, 79, 195 (1983).

24. POTASSIUM TRIALKYL- AND TRIARYLSTANNATES: PREPARATION BY THE DEPROTONATION OF STANNANES WITH POTASSIUM HYDRIDE

 $R_{3}SnH + KH \longrightarrow K[SnR_{3}] + H_{2}$ (R = n - Bu, Ph)

 $K[SnR_3] + D_2O \longrightarrow R_3SnD + KOD$

 $K[SnR_3] + n-BuBr \longrightarrow R_3Sn(n-Bu) + KBr$ (R=n-Bu)

Submitted by R. CORRIU,* C. GUERIN,* and B. KOLANI* Checked by M. NEWCOMB[†] and M. T. BLANDA[†]

The reaction of alkyl halides with alkali trialkyl- and triarylstannates (Li, Na) has received great attention¹ as a method of formation of the Sn—C bond. However, debated data were reported in the literature²; they apparently depend on the nature of the anionic species and on the experimental conditions (temperature, solvent, additives). Moreover, it was reported that the decomposition of stannate anions is very sensitive to additives and accelerated by R_3Sn —Sn R_3 .³

As the presence of salts and by-products is a factor of importance, we report here a clean preparation of potassium stannate reagents by the

*Institut de Chimie Fine, U.A. CNRS 1097, U.S.T.L., Place E. Bataillon, 34060 Montpellier Cedex, France.

†Department of Chemistry, Texas A&M, College Station, TX 77843.

deprotonation of trialkyl- or triarylstannanes, R₃SnH, with potassium hydride [eq. (1)].

$$R_3SnH + KH \longrightarrow K[SnR_3] + H_2$$
(1)

This method can be applied either to aryl (R = Ph) or alkyl (R = n-Bu) stannanes in a solvent (S) such as diethyl ether (Et_2O) , tetrahydrofuran (THF), 1,2-dimethoxyethane (DME), or hexane.

A. POTASSIUM TRIPHENYLSTANNATE

$$\frac{Ph_3SnH + KH \xrightarrow{S} K[SnPh_3] + H_2}{(S=hexane, Et_2O, THF, DME)}$$
(2)

Materials

Triphenylstannane is prepared by reduction of the triphenyltin chloride with LiAlH₄ in diethyl ether at room temperature, as described previously.⁴

Diethyl ether or hexane are dried by heating them, refluxing, and subsequent distillation over sodium wire; THF over CaH_2 and DME over LiAlH₄ immediately before use. Solvents are degassified under vacuum. Potassium hydride (20% in oil)* is cautiously washed before use by shaking it three times with anhydrous hexane. The resulting solid residue is subjected to pumping under vacuum to remove any residual solvent.

Schlenck-type glassware is used in all procedures.⁵ All manipulations are carried out under dry and oxygen-free nitrogen, using conventional vacuum line techniques.⁵

■ **Caution.** Dry potassium hydride is a dangerous compound from which water and air must be excluded. All manipulations of this compound must be carried out in a dry oxygen-free nitrogen-purged atmosphere.

Stannanes are toxic and must be handled in an efficient hood at all times.⁶

Procedure

The procedure is described only for the case of 1,2-dimethoxyethane as solvent; similar experimental conditions are used in the case of THF (1 hr, rt), diethyl ether (6 hr, rt), and hexane (6 hr, 60°).

*Potassium hydride is purchased from Fluka A.G., CH-9470 Buchs (20 wt% in oil) or from Aldrich Chemical Company, Milwaukee, WI 53233 (35 wt% in oil).

A suspension of 400 mg (10 mmol) of potassium hydride, cautiously washed with dry hexane, in 10 mL of 1,2-dimethoxyethane is stirred magnetically at room temperature under a nitrogen atmosphere in a 50-mL Schlenck tube. A solution of 3.5 g (10 mmol) of triphenylstannane in 15 mL of 1,2-dimethoxyethane is then added dropwise via a pressure-equalized dropping funnel. Evolution of hydrogen is observed, and a green-yellow color develops immediately. The reaction is monitored either by IR or ¹H NMR spectroscopy using deuterolyzed aliquots of the reaction mixture obtained as follows: a 1.0- to 2.0-mL sample of the solution to be tested is cautiously added via a syringe to 5.0 mL of cooled D₂O. After a few minutes, the organic layer is extracted with 10 mL of ether, dried over anhydrous magnesium sulfate, and freed of solvent under vacuum. The IR spectrum in benzene of the residue shows the gradual disappearance of a strong band at 1825 cm⁻¹ (ν_{sn-H}), while a characteristic absorption at 1323 cm⁻¹ (ν_{sn-D}) appears. The ¹H NMR spectrum shows the gradual disappearance of the Sn—H singlet at $\delta = 5.3$ ppm (C₆D₆). After ~25 min at room temperature, the reaction is complete; no v_{Sn-H} can be detected and hence Ph₃SnH is <0.5%. The deprotonation of Ph₃SnH was run for 1 hr in THF, 6 hr in Et₂O, and 6 hr in hexane (46% yield determined by ¹H NMR spectroscopy). The potassium triphenylstannate was characterized as its corresponding triphenyltin deuteride⁷ [Ph₃SnD: 90% yield, bp 152-156° (0.002 torr)].

B. POTASSIUM TRIBUTYLSTANNATE

$$(n-Bu)_{3}SnH + KH \xrightarrow{S} K[Sn(n-Bu)_{3}] + H_{2}$$
(3)
(S=THF, DME)

Materials

Tributylstannane is prepared according to a published method, via an exchange between bis(tributyl)oxide and a polysiloxane containing Si—H bonds.⁸

Procedure

The procedure is described in dimethoxyethane as solvent: similar experimental conditions are used in THF.

A suspension of 400 mg (10 mmol) of potassium hydride, cautiously washed with dry hexane, in 10 mL of dimethoxyethane is stirred magnetically at room temperature under a nitrogen atmosphere in a 50-ml Schlenck tube. A solution of 2.9 g (10 mmol) of tributylstannane in 15 mL of dimethoxyethane is added dropwise via a pressure-equalized dropping funnel. Evolution of hydrogen is observed and a yellow-green color develops after 10 min. The reaction mixture is then stirred at room temperature. The reaction can be monitored either by $IR[(n-Bu)_3SnH$: benzene, $\nu_{Sn-H} = 1807 \text{ cm}^{-1}]$ or ¹H NMR spectroscopy $[(n-Bu)_3Sn-H$: C_6D_6 , $\delta =$ 4.78, m, 1 H (Sn-H)] as described in the case of potassium triphenylstannate. After ~30 min at room temperature, the reaction is complete. The deprotonation of $(n-Bu)_3SnH$ was run in THF for 1 hr.* The potassium tributylstannate was characterized as its corresponding tributyltin deuteride⁹ $[n-Bu_3SnD$: 85% yield, bp 50-55° (0.001 torr)].

C. PROPERTIES[†]

Potassium trialkyl- and triarylstannates are air and moisture sensitive. They are thermally instable, leading to R_3Sn — SnR_3 , which is known to catalyse the decomposition of stannyl anions.³ They must be handled and stored in an inert atmosphere (nitrogen or argon) by normal vacuum line techniques. For a prolonged storage, it is desirable to store the substance at low temperatures (below -40°).

Water and alcohol react quantitatively with potassium stannates, leading to the corresponding triaryl- or trialkylstannanes [Ph₃SnH: 95% yield, bp 165–168° (0.3 torr), mp 28°; (*n*-Bu)₃SnH: 90% yield, bp 68–74° (0.3 torr)]. Deuterolysis is well suited for determination of stannyl anion content.

References

- J. P. Quintard and M. Pereyre, Rev. Silicon, Germanium, Tin and Lead Compounds, 4, 153 (1980); M. Pereyre, J. P. Quintard, and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987.
- For instance: G. F. Smith, H. Kuivila, R. Simon, and L. J. Sultan, J. Am. Chem. Soc., 103, 833 (1981); J. San Filippo Jr., and J. Silbermann, *ibid.*, 104, 2831 (1982); W. Kitching, H. Olszowy, and K. J. Hawey, J. Org. Chem., 47, 1893 (1982); M. Newscomb and A. R. Courtney, J. Org. Chem., 45, 1807 (1980); M. Newcomb and H. G. Smith, J. Organometal.

*The checkers report a longer reaction time, that is, 2 hr, for the deprotonation of Bu_3SnH in THF.

†The checkers report experiments in which they alkylated the potassium tributylstannate and isolated and characterized the products as a measure of the yield of the reactions: (a) Ph₃SnK was alkylated at 25° by addition of BuBr (1.37 g, 10 mmol). After 4 hr at 25°, the reaction mixture was diluted with 20 mL of THF and filtered. Distillation of the solvent at reduced pressure gave a solid, which was recrystallized from hexane to give 3.37 g (83% yield of Ph₃SnBu, mp 61-63°). (b) Bu₃SnK was alkylated at 25° by addition of BuBr (1.37 g, 10 mmol). After 4 hr at 25°, the reaction mixture was diluted with 20 mL of THF and filtered. Distillation of the solvent at reduced pressure gave a liquid that was distilled to give 2.67 g (77% yield) of Bu₄Sn, bp 108-110° (5 torr). Chem., 228, 61 (1982); E. C. Ashby and R. N. De Priest, J. Am. Chem. Soc., 104, 6144 (1982); K. W. Lee and J. San Filippo Jr., Organometallics, 2, 906 (1983); E. C. Ashby, R. N. De Priest, and W. Y. Su, Organometallics, 3, 1718 (1984), and references therein.

- 3. K. Kobayashi, H. Kawanisi, T. Hitomi and S. Kozima, J. Organometal. Chem., 233, 299 (1982).
- 4. H. Gilman and J. Eisch, J. Org. Chem., 20, 763 (1955); H. G. Kuivila and O. F. Beumel Jr., J. Am. Chem. Soc., 83, 1246 (1961); H. G. Kuivila, Synthesis, 1970, 499; J. J. Eisch, Organometallic Synthesis, Vol. 2, J. J. Eisch and R. B. King (eds.), Academic Press, New York, 1981. p. 173.
- 5. D. F. Shriver, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
- 6. R. C. Poller, Chemistry of Organotin Compounds, Logos Press, London, 1970.
- 7. W. P. Neumann and R. Sommer, Angew Chem. Int. Ed. (Engl.), 2, 547 (1963).
- 8. K. Hayashi, J. Iyoda, and I. Shiihara, J. Organometal. Chem., 10, 81 (1967).
- 9. H. J. Albert and W. P. Neumann, Synthesis, 1980, 942.

25. (BENZENETHIOLATO)TRIBUTYLTIN

$[(n-C_4H_9)_3Sn]_2O + 2C_6H_5SH \longrightarrow 2Sn(SC_6H_5)(n-C_4H_9)_3 + H_2O$

Submitted by PAUL M. TREICHEL* and MARVIN H. TEGEN* Checked by STEPHEN A. KOCH[†]

Organotin thiolate complexes such as the title compound are useful reagents for the synthesis of transition metal complexes with RS⁻ ligands.¹ Examples of this use are given in the procedures that follow this synthesis.

It is possible to prepare compounds of the general formula $Sn(SR')R_3$ from reactions of a mercaptan (R'SH) and either $Sn(hal)R_3$ (hal = Cl, Br, I), $Sn(OH)R_3$, or $(R_3Sn)_2O(R,R' = alkyl, aryl groups)$.^{2,3} The example given here uses μ -oxo-bis(tributyltin) as the organotin precursor because this is one of the least expensive tin compounds available.

Procedure

■ **Caution.** Organotin compounds are very toxic and should be handled accordingly.

A 29.8 g (0.050 mol) sample of $[(n-C_4H_9)_3Sn]_2O^{\ddagger}$ is placed in a 100 mL, three-neck, round-bottom flask equipped with magnetic stirrer, condenser, dropping funnel, and nitrogen inlet. From the dropping funnel, 11.0 mL (0.107 mol) of C₆H₃SH is added slowly. A reaction occurs immediately as

^{*}Department of Chemistry, University of Wisconsin, Madison, WI 53706. †Department of Chemistry, State University of New York, Stony Brook, NY 11794. ‡Aldrich Chemical Co., P. O. Box 355, Milwaukee, WI 53201.

evidenced by heat evolution and formation of a white emulsion. The reaction flask is attached to a short distillation column and the mixture heated to boiling. Over a period of about 15 min the water formed in the reaction is distilled from the system, and the solution becomes clear. After water has ceased to distill, the system is cooled and then distillation resumed *in* vacuo. A small amount of benzenethiol distills first at a relatively low temperature. The product then distills at 172 to $174^{\circ}/2.5$ torr. Isolated yield: ~36 g, >90% yield. It can be further purified by redistillation if desired.

Properties

(Benzenethiolato)tributyltin is a clear, viscous liquid. It is thermally stable and unreactive toward either oxygen or water under ambient conditions. This procedure can be used to prepare many other similar compounds including $Sn(SCH_3)(n-C_4H_9)_3$ (bp 118–122°, 0.8 torr) and $Sn[SC(CH_3)_3](n-C_4H_9)_3$ (bp 138–143°, 0.8 torr).

It is reported that $(R_3Sn)_2O$ compounds react with acids (HX) that have ionization costants between 10^{-1} and 10^{-10} to produce SnXR₃ species.² Thus, the preparation of Sn(SPh) $(n-C_4H_9)_3$ is an example of a more general synthetic procedure.

References

- 1. The first report of this type of reaction is E. W. Abel, B. C. Crosse, and D. B. Brady, J. Am. Chem. Soc., 87, 4395 (1965). Additional references are included in the following article.
- 2. G. S. Sasin, J. Org. Chem., 18, 1142 (1953).
- 3. E. W. Abel and D. B. Brady, J. Chem. Soc., 1965, 1192.

26. USE OF (BENZENETHIOLATO)TRIBUTYLTIN TO PREPARE COMPLEXES OF MANGANESE CARBONYL HAVING BRIDGING THIOLATE LIGANDS

Submitted by PAUL M. TREICHEL* and MARVIN H. TEGEN* Checked by STEPHEN A. KOCH[†]

Thiolate anions, RS^- (R = alkyl, aryl groups), may coordinate to a single metal atom as a monodentate ligand but, more commonly, these species function as bridging ligands between two or three metal atoms. Many

^{*}Department of Chemistry, University of Wisconsin, Madison, WI 53706.

[†]Department of Chemistry, State University of New York, Stony Brook, NY 11794.

organometallic species with such ligands are known including several whose preparations are reported in previous volumes of *Inorganic Syntheses*.¹ Interest in metal complexes with thiolate ligands has increased in recent years because of the involvement of such species in biological processes and in the area of catalysis.²

Preparations of three manganese carbonyl thiolate complexes are described here. The procedures use (benzenethiolato)tributyltin, $Sn(SC_6H_5)(n-C_4H_9)_3$, whose preparation was given in the previous example, as a source of the thiolate ligand. The reactions are simple to carry out and provide a high yield of the desired product. The given procedures are also generally applicable to preparations of manganese complexes with other thiolate groups. Preparations of thiolate derivatives of other metals using organotin thiolate reagents are known.³

A. BIS-µ-(BENZENETHIOLATO)-OCTACARBONYLDIMANGANESE(I)

$$2MnBr(CO)_5 + 2Sn(SC_6H_5)(n-C_4H_9)_3 \longrightarrow Mn_2(\mu-SC_6H_5)_2(CO)_8 + 2SnBr(n-C_4H_9)_3 + 2CO$$

Procedure

■ **Caution.** Carbon monoxide and metal carbonyl compounds are toxic and all reactions must be carried out in an efficient fume hood. The organotin compound is also toxic.

A 1.2-mL sample of $Sn(SC_6H_5)(n-C_4H_9)_3$ (1.40 g, 3.5 mmol) is added to a suspension of 0.81 g (1.64 mmol) $Mn_2(\mu-Br)_2(CO)_8$ (ref. 4)* in 30 mL of freshly distilled THF in a 100-mL flask equipped with N₂ inlet, stirrer, and dropping funnel. This mixture is stirred at ambient temperature under nitrogen for 1 hr; then the volume of solvent is reduced by evaporation in vacuum to ~3 mL. Cooling this solution to -15° causes orange crystals of the product to precipitate. These crystals are collected by filtration, washed twice with cold (0°) hexane, and allowed to dry in air. Yield: 0.85 g, 94%. Recrystallization of the material can be carried out using hexane as a solvent.

*The use of $Mn_2(\mu-Br)_2(CO)_8$ rather than $MnBr(CO)_5$ in this reaction is recommended. Bromomanganese pentacarbonyl also reacts with $Sn(SC_6H_3)(n-C_4H_9)_3$ to give the desired product; however, more forcing conditions are required, which result in concurrent formation of $Mn_4(\mu-SC_6H_3)_4(CO)_{12}$.

Properties

Orange, crystalline $Mn_2(\mu$ -SC₆H₅)₂(CO)₈ decomposes without melting at 154°. The compound may be stored, as a solid, for prolonged periods without substantial thermal decomposition. It is not particularly sensitive to either atmospheric oxygen or to water. Facile conversion to $Mn_4(\mu$ -SC₆H₅)₄(CO)₁₂ occurs upon heating; a convenient procedure involves heating a solution of $Mn_2(\mu$ -SC₆H₅)₂(CO)₈ in THF at reflux for several hours. Because of the ease of conversion of dimer to tetramer, the latter species may appear as a contaminant in synthesis of various $Mn_2(\mu$ -SR)₂(CO)₈ compounds. It is easy to detect the presence of the tetramer using IR spectroscopy by the appearance of ν_{CO} absorptions at about 2020 (s) and 1950 (m)cm⁻¹ [2021 (s) and 1951 (m)cm⁻¹ for $Mn_4(\mu$ -SC₆H₅)₄(CO)₁₂ in hexane]. Infrared absorptions (ν_{CO}) for $Mn_2(\mu$ -SC₆H₅)₂(CO)₈ occur at 2084 (m), 2028 (s), 2022 (s), 2005 (m), 1980 (s), 1965 (m)cm⁻¹ (hexane).

Conversion of several $Mn_2(\mu-SR)_2(CO)_8$ complexes $[R = CH_3, H, Sn(CH_3)_3]$ to the $Mn(SR)(CO)_5$ species is known to occur under pressure of CO.⁸ These monomeric species are unstable, rapidly reverting back to $Mn_2(\mu-SR)_2(CO)_8$ when the CO pressure is released.

Preparation of analogous complexes of $Mn_2(\mu-SR)_2(CO)_8$ [e.g., R = C(CH₃)₃, mp 146°(dec); R = CH₃, mp 123°(dec)] can be carried out by this procedure. When the given procedure is applied to other systems, however, it is advisable to monitor ν_{CO} values for the reaction mixture to ascertain optimum conditions for the specific product. Both duration of time and temperature of the reaction are influential in determining the ratio of $Mn_2(\mu-SR)_2(CO)_8$ to $Mn_4(\mu-SR)_4(CO)_{12}$ in these reactions.

This compound has also been prepared by the reaction of $MnX(CO)_5$ (X = Cl, Br) and C₆H₅SH;^{5,6} related complexes $Mn_2(\mu$ -SR)₂(CO)₈ (R = CH₃, C₂H₅, *n*-C₄H₉) have been made by reaction of $MnH(CO)_5$ and RSSR.⁷ The yield of product by the former route is not good (and the procedure has not been widely used) because it is difficult to set conditions so that $Mn_4(\mu$ -SPh)₄(CO)₁₂ is not obtained concurrently. The latter procedure requires a reagent, $MnH(CO)_5$, which is air sensitive and less easily handled.

B. TETRA-µ₃-(BENZENETHIOLATO)-DODECACARBONYLTETRAMANGANESE(I)

 $4MnBr(CO)_{5} + 4Sn(SC_{6}H_{5})(C_{4}H_{9})_{3} \longrightarrow Mn_{4}(\mu - SC_{6}H_{5})_{4}(CO)_{12} + 4SnBr(n - C_{4}H_{9})_{3} + 8CO$

Procedure

■ **Caution.** Carbon monoxide and metal carbonyl compounds are toxic and all reactions must be carried out in an efficient fume hood. The organotin compound is also toxic.

A solution of 2.9 g (7.3 mmol) $MnBr(CO)_5$ and 2.9 mL (3.4 g, 8.4 mmol) $Sn(SC_6H_5)(n-C_4H_9)_3$ in 40 mL of THF in a 100-mL round-bottom flask (N₂ inlet, reflux condenser) is heated at reflux for 6 hr. The solution is allowed to cool. Solvent volume is reduced to 5 mL in vacuum; cooling at -15° causes the orange crystalline product to precipitate from solution. This species is separated by filtration and air dried, yield 1.7 g, 93%. Recrystallization can be carried out using hexane.

Properties

The product is thermally stable and does not react with atmospheric oxygen or water. It decomposes without melting at 228° and it has ν_{CO} absorptions at 2021 (s), 1951 (m) cm⁻¹. This tetrameric species has metal and sulfur atoms at alternate corners of a cube.⁹

Related compounds [e.g., $Mn_4(\mu$ -SR)_4(CO)_{12} (R = CH₃, mp 207° dec.)] may be prepared in similar reactions. As noted, it is possible to convert the $Mn_2(\mu$ -SR)_2(CO)_8 species to these compounds by heating in THF, carbon monoxide being evolved. Preparation of the title compound has also been accomplished by reaction of $MnBr(CO)_5$ and C_6H_5SH ; a low yield was reported.¹⁰

C. TETRAETHYLAMMONIUM TRIS-(µ-BENZENETHIOLATO)-HEXACARBONYLDIMANGANATE(I)¹¹

 $\begin{array}{rcl} (C_2H_5)_4N[Mn_2(\mu-Br)_3(CO)_6] &+& 3Sn(SC_6H_5)(n-C_4H_9)_3 \longrightarrow \\ & & (C_2H_5)_4N[Mn_2(\mu-SC_6H_5)_3(CO)_6] &+& 3SnBr(n-C_4H_9)_3 \end{array}$

Procedure

■ **Caution.** Carbon monoxide and metal carbonyl compounds are toxic and all reactions must be carried out in an efficient fume hood. The organotin compound is also toxic.

Samples of $(C_2H_5N)_4N[Mn_2(\mu-Br)_3(CO)_6]$ (ref. 12) (1.60 g, 2.5 mmol) and $Sn(SC_6H_5)(n-C_4H_9)_3$ (3.4 mL, 4.0 g, 10.0 mmol) are dissolved in 40 mL of

anhydrous methanol contained in a 100-mL round-bottom flask (N₂ inlet, reflux condenser). The solution is heated at reflux for 1 hr, then allowed to cool. The volume of solvent is reduced to about 10 mL *in vacuo*. This solution is then cooled at -20° for several hours, an orange solid precipitating during this time. This solid is collected by filtration and dried *in vacuo*. It is then dissolved in a minimum volume of CH₂Cl₂, and following filtration an equal volume of diethyl ether is added. Cooling this solution causes precipitation of the crystalline product that is collected by filtration and dried *in vacuo*; Yield: 1.70 g (92%).

Anal. Calcd. for $C_{32}H_{35}NO_6S_3Mn_2$: C, 52.24; H, 4.80%. Found: C 52.52; H, 4.77%.

Properties

The compound is an orange crystalline species, mp 192°, which may be stored in a screw-cap vial for a prolonged period of time without decomposition or reaction with air or moisture. It has a characteristic IR absorption pattern; ν_{CO} at 1997 (s), 1918 (s), 1908 (sh) cm⁻¹ in CH₂Cl₂. It is known to react with electrophiles (CF₃CO₂H, [(CH₃)₃O]BF₄) in the absence of additional ligands to give Mn₄(μ_3 -SC₆H₅)₄(CO)₁₂. In the presence of additional ligands, either Mn₂(μ -SC₆H₅)₂(CO)₆(L)₂ [L = CO, P(CH₃)₃] or Mn₂(μ -SC₆H₅)₂(μ -CO)(CO)₄(L)₂ [L = P(C₆H₅)₃] is formed.¹¹

References

- 1. Ir₂(μ -S-t-C₄H₉)₂(CO)₄: D. de Montauzon and R. Poilblanc, *Inorg. Synth.*, **20**, 237 (1980); Fe₂(μ -SC₂H₅)₂(CO)₂(η -C₅H₅)₂: G. J. Kubas and P. J. Vergamini, *Inorg. Synth.*, **21**, 37 (1982).
- G. C. Kuehn and S. S. Isied, Progress in Inorganic Chemistry, Vol. 27 S. J. Lippard, (ed.), Wiley-Interscience, New York, 1980, p. 154.
- 3. See examples in W. Ehrl and H. Vahrenkamp, Chem. Ber., 105, 1471 (1972).
- 4. F. Calderazzo, R. Poli, and D. Vitale, Inorg. Synth., 23, 32 (1985).
- 5. W. Hieber and W. K. Schropp, Z. Naturforsch., 14B, 460 (1959).
- 6. M. Ahmad, G. R. Knox, F. J. Preston, and R. I. Reed, Chem. Commun., 1967, 138.
- 7. P. M. Treichel, J. H. Morris, and F. G. A. Stone, J. Chem. Soc., 1963, 720.
- 8. V. Kullmer and H. Vahrenkamp, Chem. Ber., 109, 1569 (1976).
- 9. B. F. G. Johnson, P. J. Pollick, I. G. Williams, and A. Wojcicki, *Inorg. Chem.*, 7, 831 (1968).
- 10. A. G. Osborne and F. G. A. Stone, J. Chem. Soc., 1966, 1143.
- 11. P. M. Treichel and M. H. Tegen, J. Organomet. Chem., 242, 385 (1985).
- 12. B. J. Brisdon, D. A. Edwards, and J. W. White, J. Organomet. Chem., 161, 233 (1978).

27. METHYLENEBIS[DICHLOROPHOSPHINE],* CHLOROBIS[(DICHLOROPHOSPHINO)METHYL]-PHOSPHINE,† AND METHYLENEBIS[DIMETHYL PHOSPHINE]

Submitted by S. HIETKAMP,[‡] H. SOMMER,[‡] and O. STELZER[‡] Checked by A. L. BALCH,[§] J. C. LINEHAN,[§] and D. E. ORAM[§]

Phosphine ligands with the P-C-P donor sequence are of interest since they may bridge metal-metal bonds and thus stabilize oligometallic or cluster compounds.^{1,2}

Methylenebis[dichlorophosphine] has been used in the syntheses of a variety of bidentate ligands with a P—C—P skeleton.^{3,4}

Methylenebis[dichlorophosphine], $Cl_2P--CH_2--PCl_2$, has originally been reported by Sommer⁵ and Fild et al.^{5a} Later, Novikova et al.,⁶ published its synthesis using CH_2Cl_2 , Al, and PCl_3 as starting materials. Aluminum and dichloromethane react to give organoaluminum compounds, $Cl_2Al--CH_2--AlCl_2^7$ or $Cl_2Al--[CH_2--AlCl]_n--CH_2--AlCl_2,^7$ which with phosphorus trichloride yield the methylenebis[dichlorophosphine]. While studying this reaction in order to increase the yield for $Cl_2P--CH_2--PCl_2$ we found that, in addition to the desired product, a tridentate chlorophosphine, $Cl_2P--CH_2--PCl_-CH_2--PCl_2$ had been formed.⁸ The compounds $Cl_2P--CH_2--PCl_2$ and $Cl_2P--CH_2--PCl_2$ are suitable starting materials for the preparation of $Me_2P--CH_2--PMe_2$ and $Me_2P--CH_2--PMe--CH_2--PMe_2,^9$ respectively.

A. PREPARATION OF THE ORGANOALUMINUM INTERMEDIATES

In a 2000-mL three-necked flask fitted with a reflux condenser, a 500-mL pressure equalizing dropping funnel, and a mechanical stirrer, 107.9 g (4 mol) aluminum granules were heated with 20 mL of dibromomethane and 120 mL of dichloromethane to 40° until reflux begins. After the reaction begins, a further 880 mL of dichloromethane are added within 1 hr. The

^{*}Methylenebis[phosphorous dichloride]

[†]Chlorophosphinidenebis(methylene)bis[phosphorous dichloride]

[‡]Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gaussstrasse 20, D-5600 Wuppertal 1, Federal Republic of Germany.

^{\$}Department of Chemistry, University of California, Davis, CA 95616.

^{||}The aluminum granules (purchased from Riedel de Haen) were heated in vacuo at 100 to 150° for 12 hr.

reaction mixture is heated at reflux until all the aluminum has dissolved (~90 hr). The ^{1}H – NMR spectrum of this solution shows a sharp signal at -0.37 ppm and a broad band at -0.2 ppm.

B. METHYLENEBIS[DICHLOROPHOSPHINE] AND CHLOROBIS[(DICHLOROPHOSPHINO)-METHYL]PHOSPHINE

To the solution of the organoaluminum compounds, 549.3 g (4 mol) of phosphorus trichloride, diluted with 0.8 L of dichloromethane, is added dropwise over a period of 3 hr at a rate that keeps the reaction mixture at reflux. Thereafter, 613.3 g (4 mol) of phosphoryl chloride and 298.2 g (4 mol) of potassium chloride (ground and dried at 100°) are added within 1 hr. The reaction mixture is heated at reflux for an additional hour. Most of the dichloromethane is removed by distillation at normal pressure,* and the waxy residue is extracted with four 500-mL volumes dry petroleum (bp 40/60). The petroleum is removed by distillation at normal pressure. Fractional distillation of the oily residue at 1.0 mbar, using a 20-cm Vigreux column affords methylenebis[dichlorophosphine]. Yield: 134-160 g (32-38%), bp 54°/1 mbar.

Methylenebis[dichlorophosphine] is a colorless air- and moisture- sensitive liquid. It may be characterized by its NMR spectral data: ¹H NMR: $\delta_{\rm H} = 2.5$ ppm [triplet, ²J_{PH} = 16.0 Hz]; ¹³C {¹H} NMR: $\delta_{\rm C} = 63.9$ ppm [triplet, ¹J_{PC} = 66.3 Hz]; ³¹P {¹H} NMR: $\delta_{\rm P} = 175.2$ ppm.

From the remaining residue all volatile products are removed *in vacuo* at 50°/0.04 mbar followed by extraction with 4 × 100 mL of petroleum (bp 40/60). The petroleum and other volatile materials are stripped off *in vacuo* (0.04 mbar) at 20–50°. Almost pure (95%) chlorobis-[(dichlorophosphino)methyl]phosphine is left behind. Yield: 21–30 g (5.4–7.7%). Chlorobis[(dichlorophosphino)methyl]phosphine is a viscous airand moisture-sensitive liquid that may be characterized by its NMR spectral data: ¹³C {¹H}–NMR: $\delta_{\rm P}$ = 48.6 ppm; ¹J_{31p-13C} = 52.7 Hz; ¹J_{31p-13C} = 62.3 Hz (ABCX-type spin system; A, B, C = ³¹P; X = ¹³C); ³¹P {¹H} NMR: $\delta_{\rm P}$ = 84.3 ppm (PCl); 181.2 ppm (PCl₂); ²J_{31p-31P} = 69.4 Hz.

C. METHYLENEBIS[DIMETHYLPHOSPHINE]

In a 2-L three-necked flask fitted with a mechanical stirrer, reflux condenser, and a 250-mL pressure equalizing dropping funnel 67.2 g (0.31 mol) of Cl_2P — CH_2 — PCl_2 (dissolved in 500 mL dry diethyl ether) is added

^{*}The temperature in the reaction mixture should not exceed 80°.

gradually to 0.95 L of a 1.37 *M* solution of chloromethylmagnesium in diethyl ether at -30° over a period of 3 hr with stirring. After the reaction mixture has been warmed to room temperature, it is stirred for 2 hr. Oxygen-free water ($\sim 100 \text{ mL}$) is added until the magnesium chloride is precipitated. The clear etheral solution is decanted and dried with Na₂SO₄, and the diethyl ether is removed by distilling off at normal pressure. Fractionated distillation of the residue at 18 mbar affords methylenebis[dimethylphosphine]. Yield: 29.0 g (69%), bp 53-54°/18 mbar.

Methylenebis[dimethylphosphine] is a colorless, very air-sensitive liquid that spontaneously burns in contact with air. NMR-spectral data: ¹H NMR: $\delta_{\rm H} = 1.4$ ppm [triplet, ${}^{3}J_{\rm PH} = 1.0$ Hz CH₂ groups]; 1.3 ppm (multiplet, CH₃ groups); ¹³C {¹H} NMR: $\delta_{\rm C} = 36.3$ ppm [triplet, CH₂ group, ${}^{1}J_{{}^{31}\rm{P}^{-13}\rm{C}}$]; 16.7 ppm (CH₃ groups); ³¹P {¹H} NMR: $\delta_{\rm P} = -55.8$ ppm.

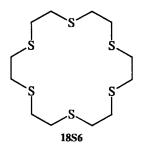
References

- 1. R. J. Puddephatt, Chem. Soc. Rev., 12, 99 (1983).
- 2. D. J. Brauer, S. Hietkamp, H. Sommer, and O. Stelzer, Angew. Chem., 96, 696 (1984).
- 3. S. Hietkamp, H. Sommer, and O. Stelzer, Chem. Ber., 117, 3400 (1984).
- 4. H. H. Karsch, Z. Naturforsch., 38b, 1027 (1983).
- 5. K. Sommer, Z. Anorg. Allg. Chem., 376, 37 (1970). (a) M. Fild, J. Heinze, and W. Krüger, Chemiker Ztg., 101, 259 (1977).
- 6. Z. S. Novikova, A. A. Prishchenko, and I. F. Lutsenko, Zh. Obshch. Khim., 47, 775 (1977).
- 7. H. Lehmkuhl and R. Schäfer, Tetrahedron Lett., 21, 2315 (1966).
- D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller, M. J. Romao, and C. Krüger, J. Organomet. Chem., 296, 411 (1985); S. Hietkamp, H. Sommer, and O. Stelzer, Angew. Chem., 94, 368 (1982).
- 9. H. H. Karsch, Z. Naturforsch., 37b, 284 (1982); H. H. Karsch and H. Schmidbaur, Z. Naturforsch., 32b, 762 (1977).

28. 1,4,7,10,13,16-HEXATHIACYCLOOCTADECANE (HEXATHIA-18-CROWN-6) AND RELATED CROWN THIOETHERS

 $HS(CH_2)_2S(CH_2)_2SH + 2NaOEt + 2Cl(CH_2)_2OH \longrightarrow$

HOCH₂(CH₂SCH₂)₃CH₂OH


 $HOCH_2(CH_2SCH_2)_3CH_2OH + 2SOCl_2 \longrightarrow$

 $ClCH_2(CH_2SCH_2)_3CH_2Cl + 2SO_2 + 2HCl$

 $ClCH_{2}(CH_{2}SCH_{2})_{3}CH_{2}Cl + HS(CH_{2})_{2}S(CH_{2})_{2}SH + Cs_{2}CO_{3} \longrightarrow$ hexathia-18-crown-6 + 2CsCl + H₂O + CO₂

Submitted by ROBERT E. WOLF, JR.,* JUDITH ANN R. HARTMAN,* LEO A. OCHRYMOWYCZ,† and STEPHEN R. COOPER* Checked by MAHMOOD SABAHI‡ and RICHARD S. GLASS‡

Crown thioethers such as hexathia-18-crown-6 (1,4,7,10,13,16-hexathiacyclooctadecane, $18S6)^{1-6}$ and related ligands⁷⁻¹¹ form complexes with a

variety of transition metal ions. They have found extensive use in the synthesis of model systems for the blue copper proteins.¹²⁻¹⁵ Previously hexathia-18-crown-6 was prepared by the reaction of ethanedithiol¹⁶ or 2,2'-thiobis(ethanethiol)¹⁷⁻¹⁸ with ethylene bromide, but both of these reactions give only low yields and require tedious work-up procedures owing to extensive formation of polymeric materials. Recent advances in the chemistry of macrocyclic sulfides by Kellogg and co-workers¹⁹ and Ochrymowycz et al.²⁰ now make hexathia-18-crown-6 and related ligands readily available.

Procedure

2,2'-[Thiobis(2,1-ethanediylthio)]bis(ethanol). A 1-L three-necked flask equipped with an additional funnel, condenser, and magnetically activated stirring bar is placed in a fume hood and purged with nitrogen. Then 0.5 L of absolute ethanol is placed into it, and sodium metal (11.8 g, 0.513 mol) is slowly added in small pieces. (**Caution.** The hydrogen evolved poses an explosion hazard.) When all the sodium has undergone reaction, vacuum distilled 2,2'-thiobis(ethanethiol) (Aldrich; 39.5 g, 0.256 mol) is added under nitrogen with stirring. The resulting solution is brought to

*Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom, and Department of Chemistry, Harvard University Cambridge, MA 02138.

†Department of Chemistry, University of Wisconsin, Eau Claire, WI 54701.

‡Department of Chemistry, University of Arizona, Tucson, AZ 85721.

reflux in an oil bath and 2-chloroethanol (34.4 mL, 0.513 mol), taken from a freshly opened bottle, is carefully added dropwise from the addition funnel at a rate sufficient to maintain reflux. During this time a white precipitate of NaCl forms. After the addition is complete, the reaction mixture is heated to maintain reflux for 10 hr, allowed to cool, and then dried on a rotary evaporator. The product is dissolved in 500 mL of hot acetone and the suspension filtered with suction on a medium frit to remove NaCl. (It may be necessary to wash the filter funnel with 0.5 L of hot acetone if the precipitate clogs it.) Slow cooling of the acetone solution gives white needles that are collected by filtration and dried *in vacuo* to yield the product (52.0 g, 84%). Alternatively, the acetone solution may be evaporated to dryness, dissolved as much as possible in hot chloroform (~0.5 L), filtered, and the solution allowed to crystallize. Thin layer chromatography (TLC) (silica gel, EtOAc): $R_f = 0.42$; ¹H NMR (300 MHz, δ , CDCl₃, TMS) 3.77 (t, 4H), 2.79 (m, 12H), 2.27 (s, 2H).

Anal. Calcd. for C₈H₁₈S₃O₂: C 39.64; H 7.48%. Found: C 39.69; H 8.06%.

1,1'-[Thiobis(2,1-ethanediylthio)]bis[2-chloroethane]. **Danger!** This and other 2-halo-ethyl sulfides (sulfur mustards) are powerful vesicants (blister-causing agents). The preparation must be carried out in an efficient fume hood, gloves (preferably two pairs) must be worn, and the utmost care must be taken to avoid contact with these compounds.

To a 500-mL round-bottomed flask with a magnetic stirring bar are added dry CH₂Cl₂ (200 mL; distilled from CaH₂) and 2,2'-[thiobis(2,1-ethanediylthio)]bis(ethanol) (8.0 g, 33.0 mmol). Freshly distilled thionyl chloride (8.0 mL, 0.11 mol) dissolved in 25 mL of dry CH₂Cl₂ is placed in a 50 mL, pressure-equalizing addition funnel that is connected to the flask by means of a double-necked adapter. The other arm of the adapter bears a Drierite® drying tube. Upon careful dropwise addition of the thionyl chloride to the stirred suspension, vigorous gas evolution occurs and the diol dissolves to give a colorless solution. After being stirred for 6 hr, the solution is treated with 5 mL of MeOH to quench excess SOCl₂ (**Caution**: *further gas evolution*) and is then rotary evaporated to dryness. Finally, it is pumped (0.5 mm) overnight to remove residual HCl. To minimize the risk of exposure to this hazardous compound, its yield is not determined but is assumed to be quantitative. TLC (CH₂Cl₂, silica gel) $R_f 0.77$.

Hexathia-18-crown-6. To the 1,1'-[thiobis(2,1-ethanediylthio)]bis(2-chloroethane) obtained in the previous step is added 150 mL of spectrograde

DMF from a freshly opened bottle (with gentle warming if necessary to dissolve the dichloride), followed by 2,2'-thiobis(ethanethiol) (5.09 g, 33.0 mmol). This solution is placed in a 250-mL Hirschberg constant addition funnel (Note 1) and is added under a nitrogen atmosphere over a 36-hr period to a suspension of cesium carbonate (Note 2) (13.0 g, 39.9 mmol) in 350 mL of DMF at 50-55° (Note 3). After the addition is complete, stirring at 50° is continued for an additional hour. The solvent is removed by vacuum distillation (at 1-mm pressure) and the residue is stirred with 300 mL of CH₂Cl₂ for 15 min, and the suspension is filtered through Celite®. The filtrate is washed three times with 80 mL of a 1 M aqueous NaOH solution, and once with 100 mL of H₂O, and then dried over anhydrous Na₂SO₄. The dried solution is evaporated in vacuo and the residue is recrystallized from hexane-acetone (4:1 v/v) by allowing a hot saturated solution to cool slowly to give the product. If necessary, the product can be purified further by flash chromatography²¹ on silica gel with CH₂Cl₂ as eluant. Yield: 9.0 g (76%; 64% overall). An analogous procedure with appropriate modifications affords other crown thioethers in high yield.

Properties

Hexathia-18-crown-6 melts at 90-91°, yields a parent ion peak at m/e 360, and has $R_f 0.35$ on silica gel with CH₂Cl₂ as eluant. Its ¹H NMR in CDCl₃ shows a singlet at S = 2.82.

Anal. Calc. for $C_{12}H_{24}S_6$: C 39.96; H 6.71; S 53.34%. Found: C 40.04; H 6.60; S 53.35%.

The IR 3400 (w,b), 2900 m, 1428 s, 1410 sh, 1310 (sh), 1269 (m), 1230 (w), 1202 (s), 1159 (m), 1130 (sh), 1030 (w,b), 962 (m), 878 (w,b), 842 (s), 738 (w), 709 (m), 694 (w), 676 (m). The ligand has also been structurally characterized.^{5,6}

Note 1. Hirschberg funnels deliver solution through the gap between a tapered piston and cylindrical barrel, and include a pressure-equalizing arm. They are available from Kontes Scientific Glassware/Instruments, Spruce Street, P. O. Box 729, Vineland, NJ 08360, catalog No. K-634620.

Note 2. Finely milled potassium carbonate can be substituted for cesium carbonate with approximate halving of the yield.

Note 3. The addition funnel requires periodic checking as the DMF causes the valve to swell and thereby reduces the flow rate.

References

- 1. E. J. Hintsa, J. R. Hartman, and S. R. Cooper, J. Am. Chem. Soc., 105, 3738-8 (1983).
- J. R. Hartman, E. J. Hintsa, and S. R. Cooper, J. Chem. Soc. Chem. Commun., 1984, 386-387.
- 3. J. R. Hartman, and S. R. Cooper, J. Am. Chem. Soc., 108, 1202-1208 (1986).
- 4. J. R. Hartman, E. J. Hintsa, and S. R. Cooper, J. Am. Chem. Soc., 108, 1208-1214 (1986).
- J. R. Hartman, R. E. Wolf, Jr., B. R. Foxman, and S. R. Cooper, J. Am. Chem. Soc., 105, 131-132 (1983).
- R. E. Wolf, Jr., J. R. Hartman, J. M. E. Storey, B. M. Foxman, and S. R. Cooper, J. Am. Chem. Soc. 109, 4328-35 (1987).
- W. N. Setzer, C. A. Ogle, G. S. Wilson, and R. S. Glass, *Inorg. Chem.*, 22, 266-271 (1983).
- S. C. Rawle, J. R. Hartman, D. J. Watkin, and S. R. Cooper, J. Chem. Soc. Chem. Commun., 1986, 1083-1084.
- 9. S. C. Rawle, and S. R. Cooper, J. Chem. Soc. Chem. Commun. 1987, 308-9.
- J. Clarkson, R. Yagbasan, P. J. Blower, S. C. Rawle, and S. R. Cooper, J. Chem. Soc. Chem. Commun. 1987, 950-1.
- S. C. Rawle, R. Yagbasan, K. Prout, and S. R. Cooper, J. Am. Chem. Soc. 109, 6181-2 (1987).
- P. W. R. Corfield, C. Ceccarelli, M. D. Glick, I. W.-Y. Moy, L. A. Ochrymowycz, and D. B. Rorabacher, J. Am. Chem. Soc., 107, 2399-2404 (1985).
- L. L. Diaddario, Jr., E. R. Dockal, M. D. Glick, L. A. Ochrymowycz, and D. B. Rorabacher, *Inorg. Chem.*, 24, 356-363 (1985).
- V. B. Pett, L. L. Diaddario, Jr., E. R. Dockal, P. W. Corfield, C. Ceccarelli, M. D. Glick, L. A. Ochrymowycz, and D. B. Rorabacher, *Inorg. Chem.*, 22, 3661–3670 (1983).
- 15. D. B. Rorabacher, M. J. Martin, M. J. Koenigbauer, M. Malik, R. R. Schroeder, J. F. Endicott, and L. A. Ochrymowycz, *Copper Coordination Chemistry: Biochemical and Inorganic Perspectives*, K. D. Karlin and J. Zubieta (eds.), Adenine Press, Guilderland NY, 1983 pp. 167-202 and references therein.
- 16. J. R. Meadow, and E. E. Reid, J. Am. Chem. Soc., 56, 2177-2180 (1934).
- 17. D. St. C. Black and I. A. McLean, Tetrahedron Lett., 1969, 3961-3964.
- 18. D. St. C. Black and I. A. McLean, Aust. J. Chem., 24, 1401-1411 (1971).
- 19. J. Buter, and R. M. Kellogg, J. Chem. Soc. Chem. Commun., 1980, 466-467.
- 20. L. A. Ochrymowycz, C.-P. Mak, and J. D. Michna, J. Org. Chem., 39, 2079-2084 (1974).
- 21. W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43, 2923-2925 (1978).

29. ([18]CROWN-6)POTASSIUM DICYANOPHOSPHIDE(1-)

Submitted by ALFRED SCHMIDPETER* and GÜNTHER BURGET* Checked by DON J. CHANDLER† and RICHARD A. JONES†

 $4P_4 + 2MCN \longrightarrow MP(CN)_2 + MP_{15}$

$$M^{+} = (1,4,7,10,13,16-\text{hexaoxacyclooctadecane})\text{potassium}(1+)$$
$$= ([18]\text{crown-6})K(1+)$$

The dicyanophosphide(1-)* ion $P(CN)_2^-$ may be viewed as a homolog of the dicyanoamide(1-) ion $N(CN)_2^-$ and related to the thiocyanate ion SCN^- in the series of (pseudo)halide ions $E(CN)_{7-n}$ (n = group number of element E).¹ In this sense it can be used in reactions with various kinds of electrophiles to introduce the $P(CN)_2$ group.¹⁻⁶ It may also be viewed as a cyanide complex of cyanophosphinidene PCN or of the phosphorus(I) cation P⁺, thus, strong nucleophiles replace one or both cyanide ions.⁶⁻⁸

The dicyanophosphide(1-) ion was first prepared by reduction of P(CN)₃.¹ It is more conveniently obtained from white phosphorus in a nucleophilic disproportionation by an ammonium, phosphonium, or crown ether alkali metal cyanide.⁹

Crystalline [([18]crown-6)K][P(CN)₂] is the preferred material for further reactions. In the P_4 -disproportionation reaction, crown ether potassium polyphosphides are formed as the second product. Their composition and solubility depend on the stoichiometry used. The intense red color of the solution in early stages of the reaction is caused by an intermediate high concentration of soluble polyphosphides. The final equilibrium concentration of these phosphides can contaminate and color the isolated dicyanophosphide. To avoid this contamination, the remaining soluble polyphosphides are converted to insoluble ones by an excess of white phosphorus.

■ Caution. All the reagents used and the product are toxic. White phosphorus must be kept under water. It ignites on contact with air; the fumes generated are irritating and extremely poisonous. Contact of white phosphorus with the skin causes severe burns. Absorption in any form may be lethal. Even small amounts of potassium cyanide are lethal. For [18]-crown-6 (oral) an LD 50 of 705 mg/kg is reported. Crown ethers are skin and eye irritants. All used and emptied equipment is immediately rinsed with a dilute solution of bromine in methanol under a well-ventilated hood.

Procedure

A dry 250-mL, two-necked, round-bottomed flask with an inert-gas inlet is equipped with a magnetic stirring bar and a reflux condenser topped by a paraffin oil filled pressure relief valve. The reaction is performed under dry and oxygen-free argon.[†] Traces of oxygen are removed from the inert

*Also known as dicyanophosphate.

†Oxygen-free nitrogen can be used instead but is less convenient.

^{*}Institut für Anorganische Chemie, Universität München D-8000 München 2, Federal Republic of Germany.

[†]Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.

gas by passing it over a chromium(II) contact.¹⁰ Acetonitrile is dried by passing it through a column of 3-Å molecular sieve. To free them from water, bars of white phosphorus in a Schlenk tube are washed twice with dry THF, vacuum dried for 10 min and, without air contact, directly transferred into the reaction solution.

To a solution of 13.22 g (50 mmol) of [18]crown-6 [Aldrich] and 3.26 g (50 mmol) of potassium cyanide in 100 mL of dry acetonitrile, 12.4 g (100 mmol) of white phosphorus are added. The yellow solution is stirred and heated to reflux. While the phosphorus melts, the solution turns dark red. After boiling for some 2 hr, a black precipitate settles from the solution and after approximately 24 hr the red color of the solution fades somewhat. After 1 day at room temperature excess white phosphorus (3.0 g, 24 mmol) is added. During 24 hr of further boiling the solution becomes yellow and some phosphorus deposits in the condenser. The black precipitate is separated by filtering through a Schlenk-type glass frit and washed three times with 20 mL of acetonitrile. The solid residue, left after completely evaporating the filtrate, is washed three times with 50 mL of toluene and then vacuum dried, giving 7.60 to 8.00 g [([18]crown-6)K] [P(CN)₂] as a pale yellow to pink powder (79–83% of the theoretical yield based on KCN or crown ether).

Alternatively, the black precipitate formed after the first 24 hr is separated, and the excess phosphorus is added to the clear red filtrate. During the second 24 hr period of boiling some more of the black polyphosphide precipitate forms. [([18]crown-6)K] [P(CN)₂] is obtained in colorless and analytically pure form but in a somewhat reduced yield, 6.2 g (64%).

Anal. Calcd. for $[C_{12}H_{24}O_6K]C_2N_2P$ (386.4): C, 43.51; H, 6.26; N, 7.25. Found: C, 43.26; H, 6.55; N, 7.25.

The yield based on the (expensive) crown ether may on the other hand be increased to 85% if a 20% excess of KCN is used (60 mmol instead of 50 mmol).

Properties

The salt [([18]crown-6)K] [P(CN)₂] melts at 130 to 133°. It is soluble in THF, acetonitrile, chloroform, dichloromethane, 1,2-dichloroethane, but insoluble in benzene, toluene, and diethyl ether. It is stable in boiling solvents such as acetonitrile or THF. It may be handled in air for a short time, but hydrolyzes with water or wet solvents. IR: 2113 (ν_s CN), 2090 (ν_{as} CN), 634 (ν_s PC), 620 cm⁻¹ (ν_{as} PC). ³¹P NMR (MeCN)¹¹: δ = 193.9. ¹³C NMR (MeCN): δ = 130.7, J_{PC} = 105.5 Hz.

References

- A. Schmidpeter and F. Zwaschka, Angew. Chem., 89, 747 (1977); Angew. Chem. Int. Ed. (Engl.), 16, 704 (1977).
- A. Schmidpeter and F. Zwaschka, Angew. Chem., 91, 441 (1979); Angew. Chem. Int. Ed. (Engl.), 18, 411 (1979).
- A. Schmidpeter, W. Gebler, F. Zwaschka, and W. S. Sheldrick, Angew. Chem., 92, 767 (1980); Angew. Chem. Int. Ed. (Engl.), 19, 722 (1980).
- A. Schmidpeter, F. Zwaschka, and W. S. Sheldrick, In *Phosphorus Chemistry: Proceedings of the 1981 International Conference* (ACS Symposium Series 171) American Chemical Society, Washington, DC, 1981, p. 419.
- 5. A. Schmidpeter and F. Zwaschka, Z. Chem., 24, 376 (1984).
- 6. A. Schmidpeter and G. Burget, Z. Naturforsch., B 40, 1306 (1985).
- 7. A. Schmidpeter, S. Lochschmidt, G. Burget, and W. S. Sheldrick, *Phosphorus Sulfur*, 18, 23 (1983).
- 8. A. Schmidpeter, K.-H. Zirzow, G. Burget, G. Huttner, and I. Jibril, Chem. Ber., 117, 1695 (1984).
- 9. A. Schmidpeter, G. Burget, F. Zwaschka, and W. S. Sheldrick, Z. Anorg. Allg. Chem., 527, 17 (1985).
- 10. Reduced Phillips catalyst: H. L. Krauss and H. Stach, Z. Anorg. Allg. Chem., 366, 34 (1969).
- 11. S. Lochschmidt and A. Schmidpeter, Phosphorus Sulfur, 29, 73 (1987).

30. (2-DIPHENYLPHOSPHINO)BENZENAMINE

Submitted by MERVYN K. COOPER,* J. MICHAEL DOWNES,* and PAUL A. DUCKWORTH[†] Checked by MICHAEL C. KERBY,[‡] RONALD J. POWELL,[‡] and MARK D. SOUCEK[‡]

The preparation of tertiary phosphine ligands is most commonly achieved by standard addition reactions between alkali metal phosphides and organohalides, or between chlorophosphines and organolithium or Grignard reagents.¹ Such syntheses, however, are often unsuitable for 2-substituted phenylphosphines due to the reactivity or steric requirements of the nonphosphine functionality. This was the case with the bidentate ligand (2-diphenylphosphino)benzenamine, H₂L, where the previously reported synthesis² was based on the high temperature reduction of the phosphine oxide with polymethylhydrosiloxane. The method of preparation described

^{*}School of Chemistry, University of Sydney, Sydney N.S.W. 2006, Australia.

[†]Now at the Research School of Chemistry, The Australian National University, Canberra A.C.T. 2601, Australia.

[‡]Department of Chemistry, University of Texas, Austin, TX 78712-1167.

here makes use of low-cost starting materials, is less time consuming $(4-5 \text{ days as opposed to up to 10 days for the original method) and is suitable, with only minor modification,³ for the synthesis of (2-diphenylphosphino)-$ *N*-methylbenzenamine and (2-diphenylphosphino)phenol.^{4,5}

The title ligand, H_2L , forms complexes with the later transition metals, which can be deprotonated^{2,6} to produce compounds containing the little studied phenylamido donor group. Its complexes with platinum and rhodium have been shown to be of mechanistic significance.^{7,8}

$$\underbrace{\bigcirc}_{\text{NH}_2}^{\text{Cl}} + \text{PPh}_3 + \frac{1}{2}\text{NiCl}_2 \xrightarrow{200^\circ} \left[\underbrace{\bigcirc}_{\text{NH}_2}^{\text{PPh}_3} \right] \cdot \frac{1}{2}[\text{NiCl}_4] \quad (1)$$

$$\begin{bmatrix} & & & PPh_3 \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & &$$

$$\left[\underbrace{\bigcirc}_{\mathrm{NH}_{2}}^{\mathrm{PPh}_{3}}\right]Cl + 2[C_{10}H_{8}]^{\overline{*}} \xrightarrow{\mathrm{H}^{+}} \underbrace{\bigcirc}_{\mathrm{NH}_{2}}^{\mathrm{PPh}_{2}} + \mathrm{PhH} + 2C_{10}H_{8} (3)$$

■ **Caution.** The vapor of 2-chlorobenzenamine is highly toxic, the liquid can also be absorbed through the skin. In addition, both anhydrous nickel chloride and dry (2-aminophenyl)triphenylphosphonium chloride tend to produce a fine dust when handled. It is recommended that procedures involving these materials be conducted in an efficient hood.

Procedure for Reactions 1 and 2

A round-bottomed, 500-mL flask equipped with a Teflon-coated magnetic stirring bar, still-head and condenser is charged with 2-chlorobenzenamine, 128 g (1.00 mol), and triphenylphosphine, 262 g (1.00 mol). Next, 65 g (0.50 mol) of powdered, anhydrous nickel chloride (dried by heating the hexahydrate at 130° for at least 48 hr) is added and the mixture is heated to 200° with stirring. A small amount of residual water distills over. The temperature is maintained at 200-220° for 4 hr. The resulting dark blue melt is cooled to $180-160^\circ$ then poured (CARE!) into 600 mL of hot (60°) water previously acidified with a few drops of concentrated HCl. Boiling acidified water (400 mL) is added to the reaction vessel to extract any

remaining material. The combined extracts are stirred while hot until the blue color of the melt is completely discharged. After cooling and washing with diethyl ether (1 \times 300, 2 \times 200 mL), to remove unreacted starting materials, the aqueous phases are extracted with dichloromethane (3 \times 300 mL). The combined dichloromethane extracts are dried over anhydrous Na₂SO₄ and evaporated to an orange oil (about 300 mL). (If all of the dichloromethane is evaporated or if the mixture is allowed to cool after evaporation then the resulting oil may be so viscous as to prevent efficient stirring in the next step.) Tetrahydrofuran (about 500 mL) is added with vigorous stirring until white crystals begin to form. The mixture is stored at about 5° for several hours. The white crystalline mass is collected by filtration, washed with THF then diethyl ether and dried (120°, about 15 torr) overnight to remove solvent of crystallization to yield 222 g (57%) of the analytically pure product as a white powder, mp 293–295°.

Anal. Calcd. for $C_{24}H_{21}CINP$: C, 73.9; H, 5.4; Cl, 9.1; N, 3.6; P, 8.0. Found: C, 73.6; H, 5.5; Cl, 9.3; N, 3.6; P, 8.0.

Procedure for Reaction 3

An oven dried, three-necked, round-bottomed 1-L flask is charged with 500 mL of anhydrous THF (freshly distilled from sodium benzophenone ketyl), 51 g (0.39 mol) of naphthalene and a Teflon-coated, magnetic stirring bar. Sodium wire, 8.3 g (0.36 mol) is extruded into the vessel, which is then quickly fitted with a condenser and nitrogen inlet. The mixture is stirred in a dry nitrogen atmosphere until the sodium has completely dissolved (about 1 hr). The resulting very dark green solution is cooled in a solid CO₂-acetone bath until it is almost completely solid (inadequate cooling of the naphthalenide solution leads to reduced vields in the subsequent reduction). (2-Aminophenyl)triphenylphosphonium chloride, 64.0 g (0.164 mol), obtained in the previous reaction, is added and the mixture allowed to warm slowly, with occasional shaking, to room temperature, then stirred for 1 hr. Acetic acid, about 2 g (0.03 mol), is added dropwise to discharge the last of the green color. The orange-red mixture is treated slowly with 100 mL of a 20% ammonium chloride solution and sufficient water is added to dissolve any remaining solid (no further precautions to exclude atmospheric oxygen need be taken from this point). The two resulting phases are separated and the aqueous layer is extracted with diethyl ether $(1 \times 100 \text{ mL})$. The combined organic phases are dried over anhydrous Na₂SO₄ and evaporated. The residue is taken up in 500 mL of boiling 90% ethanol and treated with a solution of nickel nitrate hexahydrate, 26 g (0.09) mol) in 100 mL of boiling 90% ethanol. The resulting brown solution is treated with 2 mL of trifluoroacetic acid to ensure that deprotonation of the amino group does not occur. After storing overnight at 5° the mixture of metal complex and crystallized naphthalene is filtered off and washed first with ethanol and then with diethyl ether to remove the naphthalene. A yield of 55.4 g (89%) of orange crystals, $[Ni(H_2L)_2](NO_3)_2 \cdot H_2O^2$, is obtained.

The nickel complex obtained is suspended in a mixture of benzene (300 mL) and water (300 mL) to which a few drops of concentrated HCl are added. The mixture is refluxed until the crystals dissolve (several hours). The two resulting phases are separated and the aqueous layer is extracted with benzene (50 mL). The combined organic extracts are washed with brine (100 mL), dried over anhydrous Na₂SO₄ then passed down a short alumina column (2.5×10 cm) eluting with benzene. The now colorless solution is evaporated to an oil, which is taken up in 180 mL of boiling 90% ethanol. Fluffy white crystals of the analytically pure ligand, mp 82 to 83°, form on cooling. The yield is 35.6 g (88% from the nickel complex). The mother liquor may be evaporated, the residue taken up in boiling 90% ethanol and treated with nickel nitrate solution as above to give 2.5 g (5%) of recovered nickel complex.

Anal. Calcd. for C₁₈H₁₆NP: C, 78.0; H, 5.8; N, 5.1; P, 11.2. Found: C, 78.1; H, 5.8; N, 5.0; P, 11.0.

Properties

The title ligand, H₂L, is an air-stable, crystalline solid soluble in most organic solvents. Both it and its phenylphosphonium salt are slightly light sensitive and should be stored in dark containers. The IR spectrum (Nujol mull) exhibits bands at 3455 and 3365 cm⁻¹ attributable to ν_{N-H} . The phosphorus nucleus resonates at $\delta_{CH_2Cl_2} = -21.0$ (relative to 85% H₃PO₄) in the ³¹P {¹H} NMR spectrum. Treatment of H₂L with benzoyl chloride gives the N-benzoyl derivative, the iridium(I) complex of which undergoes oxidative addition across the N--H bond.^{9,10}

References

- 1. C. A. McAuliffe and W. Levason, Studies in Inorganic Chemistry 1: Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.
- 2. M. K. Cooper and J. M. Downes, Inorg. Chem., 17, 880 (1978).

- 3. M. K. Cooper, J. M. Downes, and P.A. Duckworth, Aust. J. Chem., submitted for publication.
- 4. H. D. Empsall, B. L. Shaw, and B. L. Turtle, J. Chem. Soc. Dalton Trans., 1976, 1500.
- 5. T. B. Rauchfauss, Inorg. Chem., 16, 2966 (1977).
- 6. C. W. G. Ansell, M. McPartlin, P. A. Tasker, M. K. Cooper, and P. A. Duckworth, Inorg. Chim. Acta, 76, L135 (1983).
- 7. M. K. Cooper and J. M. Downes, J. Chem. Soc. Chem. Commun., 1981, 381.
- 8. G. J. Organ, M. K. Cooper, K. Henrick, and M. McPartlin, J. Chem. Soc. Dalton Trans., 1984, 2377.
- D. Hedden, D. M. Roundhill, W. C. Fultz, and A. L. Rheingold, J. Am. Chem. Soc., 106, 5014 (1984).
- 10. D. Hedden and D. M. Roundhill, Inorg. Chem., 25, 9 (1986).

31. SODIUM SALT OF (1*R*)-3-NITROBORNAN-2-ONE (SODIUM d- α -CAMPHORNITRONATE)*

 $C_{10}H_{15}OBr + HNO_3 \longrightarrow C_{10}H_{14}BrNO_3 + H_2O$

 $2Na + 2C_2H_5OH \longrightarrow 2NaOC_2H_5 + H_2\uparrow$

 $C_{10}H_{14}BrNO_3 + 2NaOC_2H_5 \longrightarrow$

 $NaC_{10}H_{14}NO_3 + NaBr + C_2H_5OH + CH_3CHO$

The last equation is not certain.

Submitted by JONATHAN W. STOCKER[†] and JOHN C. BAILAR, JR.[†] Checked by GEORGE B. KAUFFMAN,[‡] PHILIP CHU,[‡] and RONALD L. MARHENKE[‡]

The sodium salt of (1R)-3-nitrobornan-2-one (sodium-d- α -camphornitronate) has been used as a resolving agent for inorganic complex cations on several occasions.¹ It is best prepared by a two-step synthesis. First, crude (1R)-3-endo-bromo-3-exo-nitrobornan-2-one (d- α , α -nitrobromocamphor) is prepared by reaction of (1R)-3-endo-bromobornan-2-one (d-bromocamphor) with concentrated nitric acid. The crude d- α , α -nitrobromocamphor is then treated with sodium ethoxide to form Na(d-C₁₀H₁₄NO₃). The following procedure is a modification of the methods given by Lowry and Steele^{2,3} and by Clapp.⁴

*(+)-1,7,7-Trimethyl-3-aci-nitrobicyclo[2.2.1]-2-one sodium salt. †Department of Chemistry, University of Illinois, Urbana, IL 61801. ‡Department of Chemistry, California State University, Fresno, CA 93740.

Procedure

Mix 150 g of (1R)-3-endo-bromobornan-2-one (d-bromocamphor) (0.65 mol) with 500 mL of concentrated (15.8 M) nitric acid (7.90 mol) in a 1-L round-bottomed flask connected by ground glass connections to two long, water-cooled condensers in order to prevent escape of the product. (Caution. The reaction must be carried out in a well-ventilated hood because toxic nitrogen dioxide is produced as a by-product.) The mixture is heated carefully with magnetic stirring in an oil bath on a hot plate until its temperature reaches 118°, at which constant temperature the mixture boils. (The reaction starts at about 85°, as evidenced by evolution of orangebrown nitrogen dioxide gas.) Once the reaction has started, no further heating is necessary for about 20 min. After the initial reaction subsides, the oil bath is heated to about 125° to keep the mixture at 114°, just below its boiling point (about 140°). After 2.5 hr of heating, the mixture has become a translucent pale yellow. The temperature is maintained for 40 hr, after which the mixture is allowed to cool, whereupon it becomes viscous and partially solidifies. The supernatent liquid is removed with a pipet, and the residue is poured into 200 mL of water, where it solidifies. The supernatant is decanted. The air-dried residue consists of about 70 g of crude(1R)-3-endo-bromo-3-exo-nitrobornan-2-one(d- α , α -nitrobromocamphor) (39.06% vield).

The crude $d - \alpha, \alpha$ -nitrobromocamphor is dissolved with heating in 40 mL of absolute ethanol. Place 15.5 g (0.674 g-atom) of sodium, dissolved in 135 mL of absolute alcohol, into a 500-mL round-bottomed flask that has been fitted with a long reflux condenser. (
Caution. This vigorous, exothermic reaction, which results in the evolution of hydrogen, should be carried out in a well-ventilated hood.) The dissolved (d- α , α -nitrobromocamphor is poured very slowly into the 500-mL flask containing the sodium ethoxide. During the addition, continuous stirring with a glass rod is required. (If the $d-\alpha,\alpha$ -nitrobromocamphor solution is poured only slowly down the condenser it solidifies in the condenser. The checkers suggest that the condenser may be removed to facilitate the addition.) The flask is cooled in ice during this addition, resulting in almost immediate solidification. The precipitated sodium salt of (1R)-3-nitrobornan-2-one (sodium d- α -camphornitronate) is collected by filtration. The yield is 60.40 g (42.45%). The mother liquor can be frozen partially in a dry ice-acetone bath and more of the sodium salt removed by quickly filtering the mother liquor before the salt has had time to redissolve. In this way an additional 2.11 g (1.48%) of the product can be obtained. The pale yellow crystals are washed once with a minimum volume (40 mL) of a 1:1 mixture of acetone and absolute ethanol. They are recrystallized from a minimum volume (540 mL) of *absolute* ethanol and air dried. The yield is about 43.76 g (30.75%). If desired, the product may be dried further over phosphorus(V) oxide at 80°, whereupon it suffers a weight loss of 11.25%, resulting in a final yield of 38.84 g (27.29%). Its specific rotation $[\alpha]_{\rm P}^{20} = +285^{\circ}$.

Anal. Calcd. for NaC₁₀H₁₄NO₃: C, 54.79; N, 6.39, H, 6.44. Found: C, 53.5; N, 6.1; H, 6.4.*

Properties

The sodium salt of (1R)-3-nitrobornan-2-one (sodium *d*-camphornitronate) is a pale yellow crystalline solid, easily soluble in water. It is slightly soluble in absolute ethanol and almost completely insoluble in acetone. Its optical activity has been measured;⁵ $[\alpha]_{D}^{20} = +295^{\circ}$; $[\alpha]_{5750}^{20} = +308^{\circ}$; $[\alpha]_{5461}^{20} = +368^{\circ}$.

Acknowledgments

The submitters wish to thank the checkers for rewriting the synthesis, which has resulted in a great improvement.

References

- 1. See, for example, A. Werner, Ber. Chem. Ges. 45, 865 (1912).
- 2. T. M. Lowry, J. Chem. Soc., 73, 995 (1898).
- 3. T. M. Lowry and V. Steele, J. Chem. Soc., 107, 1039 (1915).
- 4. L. B. Clapp, *The Stereochemistry of Complex Inorganic Compounds*, Ph.D. dissertation, University of Illinois, Urbana, IL, 1941, p. 13.
- 5. H. D. K. Drew, F. S. H. Head, and H. J. Tress, J. Chem. Soc., 1937, 1549.

32. TRIS(GLYCINATO)COBALT(III)

 $10\text{KHCO}_3 + 2\text{CoCl}_2 \cdot 6\text{H}_2\text{O} + \text{H}_2\text{O}_2 \longrightarrow$ $2\text{K}_3[\text{Co(CO}_3)_3] + 4\text{CO}_2 \uparrow + 4\text{KCl} + 18\text{H}_2\text{O}$ $\text{K}_3[\text{Co(CO}_3)_3] + 3\text{H}_2\text{NCH}_2\text{COOH} + 3\text{HC}_2\text{H}_3\text{O}_2 \longrightarrow$ $fac\text{- and } mer\text{-}[\text{Co(H}_2\text{NCH}_2\text{COO})_3] + 3\text{KC}_2\text{H}_3\text{O}_2 + 3\text{CO}_2 \uparrow + 3\text{H}_2\text{O}$

*The checkers obtained the following values: C, 52.23; H, 6.08; N, 6.02. The fact that each of these values is approximately 5% low is believed to be due to the presence of sodium bromide in the product.

Submitted by GEORGE B. KAUFFMAN,* MOHAMMAD KARBASSI,* and EISHIN KYUNO[†] Checked by W. J. BIRDSALL[‡] and P. E. A. KYLANPAA[‡]

One of the earliest cases of stereoisomerism among inner complexes, tris(glycinato)cobalt(III),¹ occurs in two forms, violet (α) and red (β). In one of these geometric isomers, all of the amino groups of the glycine molecules are adjacent (*fac*), while in the other, two of these occupy opposite positions (*mer*). Absorption spectra indicate that the more soluble violet α form is the *mer* isomer.²⁻⁵

Three general preparative methods are available:6

- 1. The classic method of Ley and Winkler¹—dissolving freshly prepared cobalt(III) hydroxide oxide, CoO(OH), in an aqueous solution of glycine with heating—gives both products, with the *mer* isomer predominating (often this is the only isomer formed).
- 2. The method of Neville and Gorin⁷—allowing glycine to react with hexaamminecobalt(III) chloride in a boiling aqueous potassium hydroxide solution under reflux—favors formation of the *fac* isomer.
- 3. The method of Shibata et al.,⁸ employed here—allowing glycine to react with aqueous potassium tri(carbonato)cobaltate(III)—gives both isomers in approximately equal amounts.

All three methods have been applied to synthesize tris complexes of other amino acids,^{8,9} including those with optically active acids.^{10–16}

Procedure

Thirty grams of potassium hydrogencarbonate (0.300 mol) is added to 30 mL of water contained in a 150-mL beaker, and the mixture (A) is cooled in an ice bath for 15 min with mechanical stirring. In a separate 100-mL beaker, 10.0 g of cobalt(II) chloride 6-hydrate (0.042 mol) is added to 10 mL of water at 30°. The resulting mixture is allowed to stand for 15 min in an ice bath, and 15 mL of 30% hydrogen peroxide is then added slowly to it (solution **B**). Solution **B** is added to **A** at a rate of one drop every 5 sec, with mechanical stirring at $0-5^\circ$, followed by suction filtration. Nine grams of glycine (0.120 mol) is added to the resulting green filtrate of potassium tri(carbonato)cobaltate(III). Attempts to prepare tris-

^{*}Department of Chemistry, California State University, Fresno, CA 93740.

[†]School of Pharmacy, Hokuriku University, 3, Ho Kanagawa-machi, Kanazawa 920-11, Japan.

[‡]Albright College, P.O. Box 516, Reading, PA 19603.

(glycinato)cobalt(III) from sodium tri(carbonato)cobaltate(III) 3-hydrate¹⁷ resulted in poor yields and little of the *fac* isomer.

The mixture is heated at $60-70^{\circ}$ on a water bath until the color of the resulting solution changes from green to dark blue to violet (~30 min). Then 21 mL of 6 N acetic acid is added slowly at a rate of 1 drop every 5 sec with mechanical stirring at $60-70^{\circ}$ (effervescence). A slight excess (0.5 mL) of acetic acid may be added to ensure completion of the reaction. The solution is stirred vigorously until the evolution of carbon dioxide ceases and the color of the solution has become reddish violet.

The solution is concentrated to two thirds of its original volume and is allowed to stand overnight. The deposited reddish pink crystals of the less soluble $fac(\beta)$ isomer are collected by suction filtration on a 60-mL sintered glass funnel (medium porosity), washed successively with three 10-mL portions each of cold water, ethanol, and diethyl ether, and dried in a vacuum desiccator over Drierite®, followed by 2 hr of additional drying at 100° in vacuo. The filtrate is concentrated in a rotary evaporator until violet crystals of the more soluble $mer(\alpha)$ isomer are deposited. These are collected on a 60-mL sintered glass funnel (medium porosity) and washed and dried in the same manner as was the $fac(\beta)$ isomer. The yields of fac and mer isomers are 2.1 g (18.7%) and 2.7 g (24.0%), respectively. Conditions have been chosen to yield appreciable amounts of both isomers. Slight variations in the procedure result in different ratios of isomers. For example, if, before addition of the acetic acid, the reaction mixture is heated for an hour after it has become violet, the fac isomer is favored: fac, 3.3 g (29.3%); mer, 1.5 g (13.3%). On the other hand, if it is heated only until it has become dark blue (about 15 min), the mer isomer is favored: fac, 0.9 g (8.0%); mer, 4.2 g (37.4%).

Anal. fac Isomer Calcd. for $CoC_6H_{12}N_3O_6$: C, 25.64; H, 4.30; N, 14.95. Found: C, 25.61; H, 4.29; N, 14.75. mer Isomer Calcd. for $CoC_6H_{14}N_3O_7$: C, 24.09; H, 4.72; N, 15.05. Found: C, 24.03; H, 4.85; N, 14.15.

Visible spectrum (H₂O): 520, 372 nm (fac); 540, 370 nm (mer).

The procedure can be modified to prepare the corresponding complexes of other amino acids. For example, if 11.0 g of alanine is substituted for the glycine and if, before addition of the acetic acid, the reaction mixture is heated for an hour after it has become violet, the yields of *fac* and *mer* isomers of $[Co(H_2NCH_2CH_2COO)_3]$ are 1.5 g (11.6%) and 3.7 g (28.6%), respectively.

Anal. Calcd. for $CoC_9H_{18}N_3O_6$: C, 33.45; H, 5.61; N, 13.00. Found: fac Isomer, C, 33.39; H, 5.43; N, 12.97; mer Isomer, C, 33.42; H, 5.58; N, 12.85.

Visible spectrum (H₂O): 514, 366 (*fac*); 538, 369 nm (*mer*).

Properties

According to Ley and Winkler,¹ $mer(\alpha)$ -tris(glycinato)cobalt(III) forms large, dark violet, rhombic crystals containing two molecules of water of crystallization, while $fac(\beta)$ -tris(glycinato)cobalt(III) forms reddish pink, needlelike crystals with one molecule of water of crystallization. Contrary to these results, our analytical and thermogravimetric data have shown the pink form to be anhydrous and the violet form to be a monohydrate. The number of molecules of water of crystallization varies with conditions of drying.

The isomers are not directly convertible. They are soluble only with difficulty in water (at 25°, 0.199 g red/L and 9.33 g violet/L;¹ at 20°, 0.192 g red/L and 9.21 g violet/ L^{18}) and in basic solvents such as pyridine and aniline. Both are considerably more soluble in acid solutions, from which they can be precipitated unchanged by addition of ethanol. As further evidence of their extraordinary stabilities, they can be recovered unchanged from hot concentrated sulfuric acid and can be treated with hot concentrated nitric acid for some time without noticeable decomposition. Both are decomposed, however, by prolonged warming with concentrated hydrochloric acid, resulting in evolution of chlorine and formation of cobalt(II) chloride. They are virtually insoluble in most organic solvents. Electrical conductance measurements of aqueous and sulfuric acid solutions of both isomers show them to be nonelectrolytes, while cryoscopic studies show them to be monomeric and undissociated in solution. Being unsymmetrical, both isomers can exist in enantiomorphic forms, but for many years no attempts at resolution were made, probably because their nonelectrolytic character is not suited to salt formation. By chromatographic adsorption on a starch column Krebs and Rasche¹⁹ have resolved the violet isomer into its optical antipodes.

Neither isomer reacts with ammonia at low temperature. Both react with potassium cyanide giving potassium hexacyanocobaltate(III) and potassium glycinate. The red isomer reacts readily with potassium nitrite to give a solution yielding ruby red crystals, whereas the violet isomer undergoes this reaction only with difficulty.

References

- 1. H. Ley and H. Winkler, Berichte der Deutschen Chemischen Gesellschaft, 42, 3894 (1909); 45, 372 (1912).
- H. Kuroya and R. Tsuchida, Bull. Chem. Soc. Jpn., 15, 427 (1940); Y. Shimura and R. Tsuchida, Bull. Chem. Soc. Jpn., 29, 311 (1956); K. Nakamoto, J. Fujita, M. Kobayashi, and R. Tsuchida, J. Chem. Phys., 27, 439 (1957).
- 3. F. Basolo, C. J. Ballhausen, and J. Bjerrum, Acta Chem. Scand., 9, 810 (1955).

- 4. A. J. Saraceno, I. Nakagawa, S. Muzishima, C. Curran, and J. V. Quagliano, J. Am. Chem. Soc., 80, 5018 (1958).
- 5. E. Fluck (ed.), *Gmelins Handbuch der Anorganischen Chemie*, 8th ed., Kobalt, System Nr. 58, Teil B, Ergänzungsband, Lieferung 2, Springer-Verlag, Berlin, 1964, p. 647.
- M. Shibata, Modern Syntheses of Cobalt(III) Complexes, Springer-Verlag, Berlin, 1983, pp. 34-35.
- 7. R. G. Neville and G. Gorin, J. Am. Chem. Soc., 78, 4895 (1956).
- 8. M. Mori, M. Shibata, E. Kyuno, and M. Kanaya, Bull. Chem. Soc. Jpn., 34, 1837 (1961).
- 9. M. B. Ćelap, T. J. Niketić, T. J. Nibolić, and V. N. Nibolić, Inorg. Chem., 6, 2063 (1967).
- I. Lifschitz, Proc. K. Ned. Akad. Wet., 15, 721 (1924); I. Lifschitz and W. Froentjes, Rec. Trav. Chim., 60, 225 (1941).
- 11. B. E. Douglas and S. Yamada, Inorg. Chem., 4, 1651 (1965).
- J. H. Dunlop and R. D. Gillard, J. Chem. Soc. (A), 1965, 6531; R. D. Gillard and N. C. Payne, J. Chem. Soc. (A), 1969, 1197; R. D. Gillard, S. H. Laurie, D. C. Price, D. A. Phipps, and C. F. Weick, J. Chem. Soc. Dalton Trans., 1974, 1385; M. G. B. Drew, J. H. Dunlop, R. D. Gillard, and D. Rogers, Chem. Commun., 1966, 42.
- 13. T. Yasui, J. Hidaka, and Y. Shimura, Bull. Chem. Soc. Jpn., 38, 2025 (1965).
- 14. E. Larsen and S. F. Mason, J. Chem. Soc. (A), 1966, 313.
- 15. R. G. Denning and T. S. Piper, Inorg. Chem., 5, 1056 (1966).
- M. Shibata, H. Nishikawa, and K. Hosaka, Bull. Chem. Soc. Jpn., 40, 236 (1967); K. Hosaka, H. Nishikawa, and M. Shibata, Bull. Chem. Soc. Jpn., 42, 277 (1969).
- 17. H. F. Bauer and W. C. Drinkard, Inorg. Synth., 8, 202 (1966).
- 18. H.-G. Rosenkranz, Ph.D. Dissertation, Universität Jena, 1950, pp. 7, 11, 20.
- 19. H. Krebs and R. Rasche, Z. Anorg. Chem., 276, 236 (1954).

33. RESOLUTION OF THE TRIS(OXALATO)CHROMATE(III) ION BY A SECOND-ORDER ASYMMETRIC SYNTHESIS

Submitted by GEORGE B. KAUFFMAN,* NOBUYUKI SUGISAKA,† and IAN K. REID‡ Checked by R. KENT MURMANN§

The tris(oxalato)chromate(III) ion, $[Cr(C_2O_4)_3]^{3-}$, possesses the double historical distinction of being both the first resolved complex anion and the first resolved complex that did not contain nitrogen.¹ Since it racemizes rapidly in aqueous solution, more so than the corresponding cobalt(III) ion,^{2,3} virtually all of this labile complex can be separated as a single en-

*Department of Chemistry, California State University, Fresno, CA 93740.

†Riker Laboratories, Inc., 270-4S-02 3M Center, St. Paul, MN 55144.

‡Research School of Chemistry, The Australian National University, Canberra 2600, Australia.

\$Department of Chemistry, University of Missouri, Columbia, MO 65211.

antiomer, which precipitates as the less soluble diastereomer. In contrast to most resolutions, which employ low temperatures to keep racemization to a minimum, the technique of second-order asymmetric transformation^{1,4} involves warming the solution during diastereomer formation in order to induce racemization.

The resolving agent, (+)-bis(1,2-ethanediamine)(oxalato)cobalt(III) iodide, is first converted to the acetate, which is then warmed with a solution of racemic potassium tris(oxalato)chromate(III) in order to precipitate the (+),(+) diastereomer by a second-order asymmetric transformation. The diastereomer is decomposed with potassium iodide, which also regenerates the resolving agent. The (+) enantiomer, which racemizes rapidly, is *immediately* precipitated from the filtrate with ethanol. An analogous procedure employing the (-) form of the resolving agent can be used to obtain the (-) enantiomer. The specific rotations obtained by this procedure ($[\alpha]_D = \pm 1900^\circ$) are higher than those reported previously by Jaeger⁵ ($\pm 420^\circ$), Johnson and Mead⁶ ($\pm 1170^\circ$), and Dwyer and Sargeson and co-workers⁷ ($\pm 1640^\circ$).

A. PRECIPITATION OF (+)-BIS(1,2-ETHANEDIAMINE)-(OXALATO)COBALT(III) (+)-TRIS(OXALATO)-CHROMATE(III) HEXAHYDRATE, (+),(+) DIASTEREOMER

$$(+)-[Co(C_{2}O_{4})(en)_{2}]I + AgC_{2}H_{3}O_{2} \longrightarrow$$

$$(+)-[Co(C_{2}O_{4})(en)_{2}]C_{2}H_{3}O_{2} + AgI \downarrow$$

$$3\{(+)-[Co(C_{2}O_{4})(en)_{2}]C_{2}H_{3}O_{2}\}$$

$$+ K_{3}(\pm)-[Cr(C_{2}O_{4})_{3}]\cdot 3H_{2}O + 3H_{2}O \longrightarrow$$

$$(+)-[Co(C_{2}O_{4})(en)_{2}]_{3}(+)-[Cr(C_{2}O_{4})_{3}]\cdot 6H_{2}O \downarrow + 3KC_{2}H_{3}O_{2}$$

$$(en = 1,2-ethanediamine)$$

Procedure

Five grams (0.0127 mol) of (+)-bis(1,2-ethanediamine)(oxalato)cobalt(III) iodide⁸ ($[\alpha]_D^{25} = +720^\circ$) is converted to the acetate by shaking for 10 min with 2.11 g (0.0126 mol) of solver acetate suspended in 30 mL of hot (50°) water contained in a 100-mL flask. The precipitated silver iodide is removed by filtration and washed with 10 mL of hot water. The combined red filtrate and washings are added with stirring to a solution of 2.00 g (0.00409 mol) of racemic potassium tris(oxalato)chromate(III) trihydrate^{9,10} in 10 mL of water contained in a 100-mL beaker. The redbrown diastereomer begins to precipitate almost immediately. The suspension is quickly warmed to 50°, maintained at that temperature for 5 min, and allowed to cool slowly to 35°. The diastereomer crystals are collected by filtration on a 5-cm Büchner funnel, washed successively with 5-mL portions of ice water, 60% aqueous ethanol, 95% ethanol, and acetone, and are then air dried. The yield is about 3.7 g [74%, assuming complete racemization of the (-) enantiomer to the (+) enantiomer]. A 0.02% aqueous solution in a 1-dm tube gives $\alpha_D^{25} = +0.27^\circ$, from which $[\alpha]_{D}^{25} = +1300^\circ$.

Anal. Calcd. for $[Co(C_2O_4)(C_2H_8N_2)_2]_3[Cr(C_2O_4)_3]$ ·6H₂O: C, 23.52; H, 4.94; N, 13.72. Found: C, 23.70; H, 4.99; N, 13.74.

Smaller second (0.4 g) and third (0.1 g) fractions of diastereomer may be obtained by allowing the filtrate to stand at room temperature for 24 and 48 hr, respectively. Since the diastereomer racemizes only slowly in solution, all three fractions may be collected and combined (~4.2 g) (~84%) before proceeding with the following section.

B. ISOLATION OF POTASSIUM (+)-TRIS(OXALATO)-CHROMATE(III) DIHYDRATE

$$(+)-[Co(C_2O_4)(en)_2]_3(+)-[Cr(C_2O_4)_3]\cdot 6H_2O + 3KI \longrightarrow K_3(+)-[Cr(C_2O_4)_3]\cdot 2H_2O + 3\{(+)-[Co(C_2O_4)(en)_2]I\} \downarrow + 4H_2O$$

Procedure

Since the optical enantiomers racemize rapidly in solution, all operations should be carried out as quickly as possible using iced solutions and iced apparatus.

The (+),(+) diastereomer (~4.2 g) is suspended in 15 mL of water contained in a 30-mL beaker, and 4 mL of saturated potassium iodide solution is added gradually with constant stirring. The precipitated resolving agent ($[\alpha]_{D}^{25} = +720^{\circ}$) is recovered (in yields as high as 3.5-4.0 g or 70-80%) by filtration and is washed with a few milliliters of potassium iodide solution. Potassium (+)-tris(oxalato)chromate(III) dihydrate is *immediately* precipitated as bluish-mauve crystals from the combined filtrate and washings by slow addition of ice-cold ethanol until precipitation appears almost complete (10-20 mL). The product is collected by filtration on a 5-cm Büchner funnel, washed successively with 5-mL portions of icecold 80% aqueous ethanol, 95% ethanol, acetone, and is then air dried. The yield is 1.43 g [75%, based on $K_3(\pm)$ -[Cr(C₂O₄)₃]·3H₂O or 89%, based on the (+),(+) diastereomer]. A 0.02% aqueous solution in a 1-dm tube gives $\alpha_D^5 = +0.38^\circ$, from which $[\alpha]_D^5 = +1900^\circ$. Recrystallization does not increase the rotation.

Anal. Calcd. for $K_3[Cr(C_2O_4)_3]$ ·2H₂O: C, 15.35; H, 0.86. Found: C, 15.54; H, 0.89.

C. ISOLATION OF POTASSIUM (-)-TRIS(OXALATO)-CHROMATE(III) MONOHYDRATE

$$\begin{array}{rcl} (-)-[Co(C_2O_4)(en)_2]I + AgC_2H_3O_2 \longrightarrow \\ & (-)-[Co(C_2O_4)(en)_2]C_2H_3O_2 + AgI \downarrow \\ 3\{(-)-[Co(C_2O_4)(en)_2]C_2H_3O_2\} \\ & + K_3(\pm)-[Cr(C_2O_4)_3]\cdot 3H_2O + 3H_2O \longrightarrow \\ & (-)-[Co(C_2O_4)(en)_2]_3(-)-[Cr(C_2O_4)_3]\cdot 6H_2O \downarrow + 3KC_2H_3O_2 \\ (-)-[Co(C_2O_4)(en)_2]_3(-)-[Cr(C_2O_4)_3]\cdot 6H_2O + 2KI \longrightarrow \\ & K_3(-)-[Cr(C_2O_4)_3]\cdot H_2O + 3\{(-)-[Co(C_2O_4)(en)_2]I\} \downarrow + 5H_2O \end{array}$$

Procedure

The (-) enantiomer is obtained by the procedure for the (+) enantiomer, substituting, however, the (-) form of the resolving agent⁸ ($[\alpha]_D^{25} = -720^\circ$) for the (+) form. The yield of (-),(-) diastereomer is 4.2 g (84%). A 0.02% aqueous solution in a 1-dm tube gives $\alpha_D^{25} = -0.27^\circ$, from which $[\alpha]_D^{25} = -1300^\circ$.

Anal. Calcd. for $[Co(C_2O_4)(C_2H_8N_2)_2]_3[Cr(C_2O_4)_3]$ ·6H₂O: C, 23.52; H, 4.94; N, 13.72. Found: C, 23.50; H, 5.05; N, 13.84.

The yield of (-) enantiomer is 1.43 g or 78% based on K₃[Cr(C₂O₄)₃]·3H₂O or 92% based on the diastereomer. A 0.02% aqueous solution in a 1-dm tube gives $\alpha_D^5 = -0.38^\circ$, from which $[\alpha]_D^5 = -1900^\circ$.

Anal. Calcd. for $K_3[Cr(C_2O_4)_3]$ ·H₂O: C, 15.96; H, 0.45. Found: C, 15.95; H, 0.58.

The high optical density of even dilute solutions makes observation of the field difficult. The half-shade angle control on the Rudolph high-precision polarimeter should be opened to the maximum extent.

Properties

Although Werner¹ considered both enantiomers of potassium tris-(oxalato)chromate(III) to be monohydrates, Charonnat¹¹ and Delépine,¹² on the basis of isomorphism with the corresponding iridium salt, proposed that they are dihydrates. The (+) enantiomer has been described as bluish red in the dry, pure condition.^{1,13} The optical enantiomers are less soluble in water than the racemic mixture. Because of the high rate of racemization in water, recrystallization has been reported to be accompanied by a considerable loss of optical rotation.^{6,14–16} For the same reason, the optical rotation values reported by different workers are not directly comparable.¹⁷

Racemization also occurs in the solid state, but more slowly than in solution. It is faster and more extensive in the case of the hydrate at room temperature than in that of the anhydrous salt at 115°. The anhydrous salt can be stored up to 3 weeks *in vacuo* over phosphorus(V) oxide without loss of optical activity, but racemization occurs within 12 hr on heating the anhydrous salt in the presence of water vapor.

In aqueous solution potassium tris(oxalato)chromate(III) racemizes faster than the analogous cobalt compound but more slowly than the corresponding iron compound.³ Many studies of the racemization rate have been made under various conditions.^{1,6,18,19} The rate is dependent on the nature of the solvent; it is lowered by addition of organic solvents to aqueous solutions.^{1,18} Both enantiomers have been the subject of numerous optical rotatory dispersion studies.^{5,20-22} No exchange has been shown to occur between oxalate ion containing radioactive carbon and the tris(oxalato)-chromate(III) ion.²³

References

- 1. A. Werner, Berichte der Deutschen Chemischen Gesellschaft, 45, 3061 (1912).
- 2. G. B. Kauffman, L. T. Takahashi, and N. Sugisaka, Inorg. Synth., 8, 207 (1966).
- 3. W. Thomas and R. Fraser, J. Chem. Soc., 123, 2973 (1923).
- 4. F. P. Dwyer and E. C. Gyarfas, Proceedings of the Royal Society of New South Wales, 83, 263 (1949).
- 5. F. M. Jaeger, Rec. Trav. Chim., 38, 142, 243 (1919).
- 6. C. H. Johnson and A. Mead, Trans. Faraday Soc., 31, 1621 (1935).
- 7. F. P. Dwyer and A. M. Sargeson, J. Phys. Chem., 60, 1331 (1956).
- 8. F. P. Dwyer, I. K. Reid, and F. L. Garvan, J. Am. Chem. Soc., 83, 1285 (1961).
- 9. J. C. Bailar, Jr., and E. M. Jones, Inorg. Synth., 1, 35 (1939).
- 10. W. G. Palmer, *Experimental Inorganic Chemistry*, Cambridge University Press, Cambridge, England, 1954, p. 386.
- 11. R. Charonnat, Ann. Chim., [10] 16, 5 (1931).
- 12. M. Delépine, Bull. Soc. Chim. France, [5] 1, 1256 (1934).

- 13. L. Calderoni, Boll. Chim. Farm., 71, 517, 525 (1932).
- 14. C. H. Johnson, Trans. Faraday Soc., 31, 1612 (1935).
- 15. N. W. D. Beese and C. H. Johnson, Trans. Faraday Soc., 31, 1632 (1935).
- 16. E. Bushra and C. H. Johnson, J. Chem. Soc., 1939, 1937.
- 17. T. M. Lowry, Bur. Stand. Miscellan. Publ., 118, 1, 86 (1932).
- 18. G. K. Schweitzer and J. L. Rose, J. Phys. Chem., 56, 428 (1952).
- 19. W. D. Treadwell, G. Szabados, and E. Haimann, Helv. Chim. Acta, 15, 1049 (1932).
- 20. J. P. Mathieu, J. Chim. Phys., 33, 78 (1936).
- 21. J. Lifschitz and E. Rosenbohm, Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie 19, 198 (1920).
- 22. W. Kuhn and A. Szabo, Z. Physik. Chem., B15, 59 (1932); W. Kuhn and K. Bein, Z. Anorg. Allgem. Chem., 216, 321 (1934).
- 23. F. A. Long, J. Am. Chem. Soc., 61, 570 (1939); 63, 1353 (1941).

34. DIFLUORODIOXOURANIUM(VI)

$$UO_{2}(NO_{3})_{2} \cdot 6H_{2}O + H_{2}O_{2} \longrightarrow UO_{4} \cdot 2H_{2}O + 2HNO_{3} + 4H_{2}O$$
$$UO_{4} \cdot 2H_{2}O + 3HF \longrightarrow H[UO_{2}F_{3}] \cdot 2H_{2}O + H_{2}O_{2}$$
$$H[UO_{2}F_{3}] \cdot 2H_{2}O \xrightarrow{heated at} UO_{2}F_{2} + HF + 2H_{2}O$$

Submitted by M. C. CHAKRAVORTI* and MANJU CHOWDHURY* Checked by P. G. ELLER[†] and R. J. KISSANE[†]

The fluoro compounds of uranium are of special interest in atomic energy programs. The compound, UO_2F_2 , commonly called uranyl fluoride, is the best known oxyfluoride of hexavalent uranium and serves as a starting material in the synthesis of oxyfluoro or mixed ligand oxyfluoro uranium compounds. The anhydrous compound is usually prepared¹ by the action of gaseous hydrogen fluoride on UO_3 at temperatures of 300 to 500°. Other methods^{1.2} involve reaction between anhydrous UO_2Cl_2 and anhydrous hydrofluoric acid at room temperature or by a high-temperature UO_3 — F_2 reaction. In the method described here UO_2F_2 can be conveniently prepared in high yield using uranyl nitrate 6-hydrate, $UO_2(NO_3)_2$ · $6H_2O$ and aqueous hydrofluoric acid (20%). The advantages offered by this method are that it starts with the most commonly available compound of uranium, namely, $UO_2(NO_3)_2$ · $6H_2O$ and makes the use of anhydrous hydrogen fluoride or fluorine unnecessary. The method can be used by any worker in

^{*}Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India. †Los Alamos National Laboratory, Los Alamos, NM 87545.

any ordinary laboratory without the need of working with fluorine or anhydrous hydrogen fluoride at elevated temperature. The preparation of UO_2Cl_2 appeared earlier in *Inorganic Syntheses*.³

Procedure

• **Caution.** Hydrofluoric acid is toxic and highly corrosive. All operations with it should be carried out in an efficient fume hood. It should not be inhaled. Polyethylene gloves should be used while handling it. Ten grams (19.8 mmol) of $UO_2(NO_3)_2 \cdot 6H_2O$ is dissolved in 50 mL of water.

Ten grams (19.8 mmol) of $UO_2(NO_3)_2 \cdot 6H_2O$ is dissolved in 50 mL of water, and 0.3 mL of concentrated HNO₃ is added. The solution is heated to about 70° and 5 mL of hydrogen peroxide (30%) is added to the solution while stirring. A yellow precipitate of $UO_4 \cdot 2H_2O$ appears. After digesting for 0.5 hr on a steam bath the product is washed with water several times by decantation and is then filtered under suction. The precipitate is thoroughly washed with water and then transferred to a basin or dish made of polyethylene. It is dissolved in 12 mL (20%) hydrofluoric acid by stirring with a polyethylene stirrer. The solution is dried completely on a steam bath, and the product is finally dried in a desiccator over concentrated sulfuric acid for 7 days. A small dish containing pellets of caustic soda is also placed in the desiccator.* The dried product has the composition⁴ $H[UO_2F_3] \cdot 2H_2O$.

Anal. Calcd. for H[UO₂F₃]·2H₂O: U, 65.4; F, 15.7. Found: U, 65.3; F, 15.8.

It is transferred into a platinum dish and heated at 150° for about 2 hr. The yield of UO_2F_2 is 5.5 g, 90%.

For the analysis of uranium, the sample is ignited in a platinum crucible and weighed as U_3O_8 . Fluoride is determined by titration with a standard solution of thorium nitrate using sodium alizarinsulfonate as an indicator, after steam distillation of fluosilicic acid.⁵

Anal. Calcd. for UO₂F₂: U, 77.2; F, 12.3. Found: U, 76.9; F, 12.0.

Properties

The substance is bright yellow in color and is very soluble in water. It is soluble in ethanol, but insoluble in acetone and diethyl ether. It is mod-

^{*}If the product dried on a steam bath is first subjected to pumping for 4 hr and then kept in a desiccator, as described, the time is reduced to 3 to 4 days. This time may be saved if $H[UO_2F_3] \cdot 2H_2O$ containing a little adsorbed HF is directly heated at 150°.

erately hygroscopic, and on standing in air, it absorbs water to form a dihydrate. (The checkers report that the product contained 0.59% H_2O by Karl Fischer titration.) In the IR spectra, a UO_2 band occurs at 1010 cm⁻¹. The crystal structure has been studied.^{6.7}

References

- 1. J. J. Katz and E. Rabinowitch, *The Chemistry of Uranium*, Part 1, McGraw-Hill, New York, 1951, pp. 565-566.
- 2. J. C. Bailar, Jr. (Ed.), Comprehensive Inorganic Chemistry, Vol. 5, Pergamon, New York, 1973, p. 176.
- 3. J. A. Leary and J. F. Suttle, Inorg. Synth., 5, 148 (1957).
- 4. M. C. Chakravorti and N. Bandyopadhyay, J. Inorg. Nucl. Chem., 34, 2867 (1972).
- 5. G. Charlot and D. Bezier, *Quantitative Inorganic Analysis*, English translation by R. C. Murray, Methuen, London, 1957, p. 424.
- 6. W. H. Zachariasen, Acta Cryst., 1, 277 (1948).
- 7. N. V. Belov, Doklady Akad. Nauk SSSR, 65, 677 (1949).

$$12(\mathrm{NH}_4)\mathrm{Cl} + \mathrm{Y}_2\mathrm{O}_3 \longrightarrow 2(\mathrm{NH}_4)_3[\mathrm{YCl}_6] + 6\mathrm{NH}_3 + 3\mathrm{H}_2\mathrm{O} \quad (1a)$$

$$6 (NH_4)Cl + 2YCl_3 \cdot 6H_2O \longrightarrow 2(NH_4)_3[YCl_6] + 12H_2O$$
(1b)

$$12(\mathrm{NH}_4)\mathrm{Cl} + 2\mathrm{Y} \longrightarrow 2(\mathrm{NH}_4)_3[\mathrm{YCl}_6] + 6\mathrm{NH}_3 + 3\mathrm{H}_2 \qquad (1\mathrm{c})$$

$$2(\mathbf{NH}_4)_3[\mathbf{YCl}_6] \longrightarrow \{(\mathbf{NH}_4)[\mathbf{Y}_2\mathbf{Cl}_7] + 5(\mathbf{NH}_4)\mathbf{Cl}\}$$

$$\{(\mathrm{NH}_4)[\mathrm{Y}_2\mathrm{Cl}_7] + 5(\mathrm{NH}_4)\mathrm{Cl}\} \longrightarrow 2\mathrm{Y}\mathrm{Cl}_3 + 6(\mathrm{NH}_4)\mathrm{Cl} \tag{2}$$

Submitted by GERD MEYER* Checked by EDUARDO GARCIA† and JOHN D. CORBETT†

Among the methods for the preparation of anhydrous rare earth metal trichlorides, MCl₃ (M = La-Lu, Y,Sc),¹ the so-called *ammonium chloride* route² is probably the most popular and frequently used because it is inexpensive and straightforward even for large scale quantities. It was originally believed that the conversion of rare earths, M₂O₃, to trichlorides,

*Work performed at Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, 6300 Giessen, Federal Republic of Germany. Present address: Institut für Anorganische Chemie, Universität Hannover, Callinstrasse 9, 3000 Hannover, Federal Republic of Germany.

†Department of Chemistry, Iowa State University, Ames, IA 50011.

 MCl_3 , is accomplished simply and directly by heating a mixture of rare earth oxides and excess ammonium chloride to a temperature of 200° or higher.² Excess ammonium chloride was thought to be necessary even recently³ to prevent *hydrolysis*, that is, mainly the formation of oxychlorides, MOCI. Therefore, in the second step of the procedure the remaining ammonium chloride is then removed completely by heating in a vacuum at 300° to 320°.²

It was not recognized prior to 1982 that the *excess* ammonium chloride is not only necessary to prevent oxychloride formation but also essential in the early stages to form complex halides such as $(NH_4)_3[MCl_6]$ for M =Tb-Lu,Y,Sc, and $(NH_4)_2[MCl_5]$ for $M = La-Gd.^4$ This first step of the synthesis proceeds with reasonable speed at about 230°. The second step, in which the product of the first step is heated in a vacuum at 300°, is actually the decomposition of these complex chlorides and removal of any excess ammonium chloride. In some cases, the decomposition of $(NH_4)_3[MCl_6]$ passes through the intermediate $(NH_4)[Y_2Cl_7]$, for example, for $M = Y,^4$ but this has no effect on the purity of the final product, MCl_3. If insufficient $(NH_4)Cl$ is used in the first step, that is, not at least 12 mol $(NH_4)Cl/mol$ M_2O_3 , to convert all of the reactant to $(NH_4)_3[MCl_6]$ for 10 mol where $(NH_4)_2[MCl_5]$ forms}, or if other reaction conditions like temperature or time are not observed carefully, the $(NH_4)_3[MCl_6]$ formed will react at about 300 to 330° with M₂O₃ to form MOCl.⁵

$$2(NH_4)_3[MCl_6] + 5M_2O_3 \longrightarrow 12MOCl + 6NH_3 + 3H_2O_3$$

The reaction of $(NH_4)_3[MCl_6]$ with water vapor must also be taken into account:^{5,6}

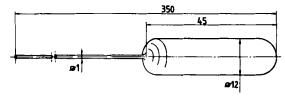
$$(NH_4)_3[MCl_6] + H_2O \longrightarrow MOCl + 3(NH_4)Cl + 2HCl$$

Oxygen, for example, from dry air, seems not to react with $(NH_4)_3[MCl_6]$ or MCl₃ at the temperatures used here.³ Except for this classical procedure for the syntheses of $(NH_4)_3[MCl_6]$ or $(NH_4)_2[MCl_5]$ [route eq. (1a)], a wet variant roughly described by eq. (1b) is even more straightforward for small scale quantities. The oxidation of the metal [variant eq. (1c)] is similar to the dry route eq. (1a) but seems less desirable since the metals are generally much more expensive than the sesquioxides. For a similar route to trichlorides from the metal and HCl gas, see ref. 7.

Procedure

Starting materials are commercially available rare earth oxides [Johnson-Matthey, Union Molycorp, Rhone-Poulene] (generally M_2O_3 except for M = Pr, Tb where the compositions are approximately Pr_6O_{11} and Tb_4O_7)

or the hydrated chlorides $MCl_3 \cdot xH_2O(x = 7 \text{ for } M = La-Nd \text{ and } x = 6 \text{ for } Sm-Lu, Y, Sc)$, or the metals themselves, preferably as powders, and ammonium chloride (Merck, Aldrich, etc.).


Step 1. The first step is the synthesis of the complex ammonium chlorides $(NH_4)_2[MCl_5]$ for M = La-Gd and $(NH_4)_3[MCl_6]$ for M = Tb-Lu, Y, Sc. This step is described here in three variations for the example of M = Y, but the syntheses of others can be designed very easily following the outlined procedure.

1a. For large scale quantities, for example, 50 g of Y_2O_3 and ≈ 150 g of $(NH_4)Cl$, the procedure as previously described is advisable.² Care should be taken that at least 12 mol of $(NH_4)Cl$, or better, 15 mol,³ are used per mole of sesquioxide, Y_2O_3 .

For small scale quantities, for example, 1 mmol Y_2O_3 (=225.8 mg), a Pyrex ampule of about 12 mm o.d. is loaded with the reaction mixture of 225.8 mg of Y_2O_3 and 706.1 mg of (NH₄)Cl [i.e., 12 mmol of (NH₄)Cl + 10% excess], previously ground (in an agate mortar) preferably under dry conditions, that is, in a dry box. The neck of the ampule is pulled so that a capillary opening is produced as shown in Fig. 1.

The loaded ampule is then placed in a tubular furnace, and the temperature is slowly raised to $230-250^{\circ}$ and held there for 10-20 hr. The progress of the reaction can be followed by droplets of water condensing in the capillary or by the alkaline reaction of the evolving ammonia with water. Excess (NH₄)Cl is usually found to crystallize in the cooler parts of the ampule. The product (NH₄)₃[YCl₆] is obtained in essentially quantitative yield.

1b. The wet route to $(NH_4)_3$ [YCl₆] starts either with YCl₃·6H₂O (commercially available as yttrium chloride), for example, 606.7 mg = 2 mmol, or simply Y₂O₃ (225.8 mg = 1 mmol), which is dissolved

Fig. 1. Pyrex ampule with capillary opening as a container for reactions of $(NH_4)Cl$ with Y_2O_3 or Y metal. Proposed sizes are in millimeters. A shorter capillary (≈ 150 mm) but with a smaller opening (≈ 0.5 mm) is equally useful.

together with 353.0 mg (NH₄)Cl ($\equiv 6 \text{ mmol} + 10\%$) in about 50 mL 12 *M* hydrochloric acid. When Y₂O₃ is used, heating to the boiling point is necessary to obtain a clear solution. This solution is then evaporated to dryness on a sand bath or a heating plate, or with an IR lamp. Slow evaporation is advisable to prevent spattering.

The dry residue, which is at least partly $(NH_4)_2[YCl_5 \cdot H_2O]$, is transferred to a corundum or glass boat of appropriate size (e.g., 10×60 mm) and inserted into the center of a Pyrex tube in a tubular furnace. A convenient apparatus has been described for the very similar synthesis of, for example, $K[Dy_2Cl_7]$.⁸ Dry HCl gas is then passed for 1–2 days over the sample, which is heated to no higher than 230–250°. The product, $(NH_4)_3[YCl_6]$, should be completely soluble in water without cloudiness, which serves as a test for contamination by oxychloride, MOCl.

1c. The procedure of variant (1a) is followed with the Pyrex ampule loaded with, for example, 177.8 mg of yttrium metal powder ($\equiv 2$ mmol) and 706.1 mg (NH₄)Cl ($\equiv 12$ mmol + 10%). The temperature must be raised to 270-300°.⁹

Step 2. The second step is the thermal decomposition of the previously synthesized complex ammonium chlorides, $(NH_4)_3[MCl_6]$ or $(NH_4)_2[MCl_5]$.

The $(NH_4)_3[YCl_6]$ obtained via one of the three routes just outlined is transferred in a dry box to a platinum, porcelain, or even glass crucible. This is then inserted into a wide glass tube (=40 mm o.d.), which is fused to a water-cooled condenser (Fig. 2), or more simply to a long glass tube (=200 mm), which may be joined to a trap with dry ice-acetone (usually not necessary) to prevent the attached vacuum line from being contaminated with (NH₄)Cl.

The temperature is raised slowly to above 300° , preferably $350-400^\circ$, under *dynamic* vacuum (oil rotary or, even better, mercury diffusion pump). A few hours is usually sufficient to ensure complete decomposition to YCl₃.

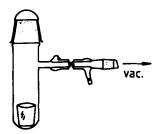


Fig. 2. Apparatus for the decomposition of, for example, $(NH_4)_3[YCl_6]$.

Properties

The rare earth trichlorides, MCl₃, are obtained as finely divided, hygroscopic powders that give broad lines on Debye or Guinier X-ray patterns. This means that the products are of only poor crystallinity and therefore highly reactive, especially those that have the YCl₃-type structure (DyCl₃-LuCl₃, YCl₃). Others crystallize with the UCl₃-type (LaCl₃-GdCl₃) and TbCl₃ with the PuBr₃-type structure. Indicative for YCl₃ are strong X-ray lines at d = 2.740 (100), 2.745 (47), 5.682 (57), 6.012 Å (84) with relativeintensities on a 1 to 100 scale given in parentheses. For further crystallographic details see, for example, ref. 10. Principal impurities are oxychlorides, MOCI. These are obtained in the PbFCI (for M = La-Dy) and the YOF-SmSI structure types under the conditions just outlined.⁶ Especially the reaction of $(NH_4)_3$ [YCl₆] with Y₂O₃ to YOCl is troublesome and pertains to the use of an insufficient quantity of ammonium chloride in the first step. Indicative for the presence of YOCI is especially the low-angle reflection at d = 9.32 Å (100). For a very high purity product (YCl₃) one or more subsequent sublimations in a completely tantalum apparatus should be carried out.⁷ When sufficient (NH₄)Cl was used, however, this has been found not to be necessary for most applications. The trichlorides, MCl₃, should be stored in sealed Pyrex ampules under dry inert gas (Ar, N₂) and handled only under dry conditions (dry box).

References

- 1. M. D. Taylor, Chem. Rev., 62, 503 (1962).
- 2. J. B. Reed, B. S. Hopkins, and L. F. Audrieth, Inorg. Synth., 1, 28 (1939).
- 3. Y. S. Kim, F. Planinsek, B. J. Beaudry, and K. A. Gschneidner, Jr., in *The Rare Earths in Modern Science and Technology*, Vol. 2, G. M. McCarthy, J. J. Rhyne, and H. B. Silber (eds.), Plenum, New York, 1980, p. 53.
- 4. G. Meyer and P. Ax, Mater. Res. Bull., 17, 1447 (1982).
- 5. G. Meyer and Th. Staffel, Z. Anorg. Allg. Chem., 532, 31 (1986).
- 6. E. Garcia, J. D. Corbett, J. E. Ford, and W. J. Vary, Inorg. Chem., 24, 494 (1985).
- 7. J. D. Corbett, Inorg. Synth., 22, 39 (1983).
- 8. G. Meyer, Inorg. Synth., 22, 1 (1983).
- 9. G. Meyer, Th. Staffel, S. Dötsch, and Th. Schleid, Inorg. Chem., 24, 3504 (1985).
- E. Fluck (ed.) Gmelins Handbuch der Anorganischen Chemie, 8th ed., Part C 5, Springer-Verlag, Berlin, 1977.

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

Chapter Five

TRANSITION METAL ORGANOMETALLIC COMPOUNDS

36. BIS(PHOSPHINE) DERIVATIVES OF IRON PENTACARBONYL AND TETRACARBONYL (TRI-tert-BUTYLPHOSPHINE)IRON(0)

Submitted by MICHAEL J. THERIEN[†] and WILLIAM C. TROGLER^{*} Checked by ROSALICE SILVA[†] and MARCETTA Y. DARENSBOURG[†]

Bis(phosphine) derivatives of pentacarbonyliron are starting materials for the synthesis of several organometallic iron complexes.¹⁻⁷ Iron carbonyl phosphine complexes have attracted attention⁸⁻¹¹ because of their relevance to photochemical catalysis of olefin hydrosilation. Though Fe(CO)₃(PR₃)₂ complexes are used widely in organotransition metal chemistry, an efficient preparation of these compounds has not been reported. Clifford and Mukherjee¹² describe two methods for the synthesis of tricarbonylbis(triphenyphosphine)iron(0). They report that direct reaction between Fe₃(CO)₁₂ and triphenylphosphine in THF solvent gives a mixture of Fe(CO)₃[P(C₆H₅)₃]₂ (27%) and Fe(CO)₄[P(C₆H₅)₃] (34%). The second

*Department of Chemistry, D-006, University of California at San Diego, La Jolla, CA 92093.

†Department of Chemistry, Texas A&M University, College Station, TX 77843.

method [the reaction between $Fe(CO)_5$ and $P(C_6H_5)_3$ in cyclohexanol] gives both $Fe(CO)_3[P(C_6H_5)_3]_2$ and $Fe(CO)_4[P(C_6H_5)_3]$ in 15% yield. Again, the mono- and bis-substituted compounds have to be separated by vacuum sublimation.

A better synthesis (89% yield) of $Fe(CO)_3(PPh_3)_2$ is reported¹³ from $[PPN]_2[Fe_4(CO)_{13}]$, where $PPN^+ = bis(triphenylphosphine)iminium$. The CoX_2 (X = Cl, Br, I) catalyzed substitution of CO in Fe(CO)₅ is reported¹⁴ to yield Fe(CO)₄L species in 15 to 99% yield and Fe(CO)₃(PPh₃)₂ was prepared (net 62% yield) from Fe(CO), in a two-step procedure that requires a chromatographic separation. Strohmeier and Muller¹⁵ report that irradiation of $Fe(CO)_{s}$ in the presence of several phosphines produces $Fe(CO)_{3}L_{2}$ and $Fe(CO)_{4}L$ complexes in yields that range from 13% for the synthesis of $Fe(CO)_3[P(n-Bu)_3]_2$ to 35% for $Fe(CO)_3[P(c-C_6H_{11})_3]_2$. For some of the compounds synthesized, vacuum sublimation is necessary to separate the $Fe(CO)_{3}L_{2}$ species from $Fe(CO)_{4}L$. The one-step photochemical procedure we report here employs cyclohexane as a solvent. That enables unreacted phosphine, Fe(CO)₅, and Fe(CO)₄L to remain in solution while pure $Fe(CO)_{3}L_{2}$ precipitates. It is essential that the phosphines used in these reactions be free of phosphine oxides, which labilize¹⁶ CO and yield products other than $Fe(CO)_3(PR_3)_2$ complexes.

General Procedure

Method 1. For large scale reactions, 300 to 450 mL of cyclohexane is heated at reflux over sodium, distilled, and transferred under N₂ into a photochemical reaction vessel (500 mL) that is fitted around a 450-W Hanovia mercury arc lamp contained in a water cooled quartz immersion well (see Fig. 1). This apparatus is available from Ace Glass.* A septum-capped sidearm permits the system to be flushed with N₂ through a syringe needle. The carbon monoxide evolved during the reaction is collected by venting the air-tight irradiation vessel through a mineral oil bubbler. The outlet of the bubbler is connected, via Tygon tubing, to release gas into the bottom of an inverted 2000- or 3000-mL graduated cylinder that is filled with water and contained in a partially filled 5000-mL beaker. The volume of CO gas produced is measured as it displaces water in the graduated cylinder. The oil bubbler prevents exposure of the reaction solution to water vapor and serves as a safety valve if a slight back pressure develops. Two to 10 mL of Fe(CO)₅ (152 to 760 mmol) is introduced by syringe into the cyclohexane

^{*}Ace Glass Co., P.O. Box 688, 1430 Northwest Blvd., Vineland, NJ 08360.

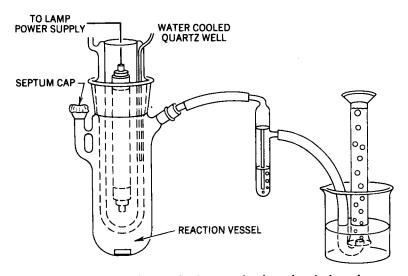


Fig. 1. Experimental setup for large scale photochemical syntheses.

solvent along with 3 to 5 equivalents of phosphine through the septum capped sidearm. Photolysis is begun with stirring, and the volume of gas evolved is monitored as light yellow $Fe(CO)_3L_2$ precipitates during the reaction. Irradiation is stopped when the volume of CO gas evolved equals the theoretical amount or when the reaction mixture ceases to evolve CO. At this point one must carefully remove the immersion well from the center of the reaction vessel (under an N₂ flush) without dislodging solid decomposition products that adhere to the surface of the inner quartz well. The solution is filtered under N₂, and the recovered $Fe(CO)_3(PR_3)$ is dried under vacuum. The volume of the filtrate is reduced by 50% and then filtered to yield more $Fe(CO)_3(PR_3)_2$. The recovered $Fe(CO)_3(PR_3)_2$ complexes give satisfactory elemental analyses and IR spectra and require no further purification.

Method 2. A convenient method for small scale preparations of these compounds uses Schlenk techniques. To a 100-mL quartz Schlenk tube is added 0.5 to 1.0 mL (38. to 76. mmol) of Fe(CO)₅, 3 to 5 equivalents of phosphine, and 80 mL of dry deoxygenated cyclohexane. The Schlenk tube is placed adjacent to the mercury arc lamp contained in the quartz immersion well. The sidearm of the Schlenk flask is attached to N₂ flushed Tygon tubing, which is connected to the bubbler and an inverted water-filled graduated cylinder (500 mL) contained in a partially filled beaker.

It is best to let the photochemical reaction proceed for a few minutes before opening the stopcock. This allows a pressure of CO to build up; this forces air in the Tygon tubing to the other side of the bubbler when the stopcock is opened. When complete, the reaction is worked up as in the large scale procedure just described. The checkers found reduced yields when the reactions were conducted on a smaller scale without the specified excess of phsophine ligand.

Caution. The compound $Fe(CO)_5$ is toxic and should be used only in a fume hood. Care should be used when handling trimethyl- and triethylphosphine since they are toxic and ignite readily. The UV lamp will cause severe eye damage or blindness if it is viewed without UV-protective goggles. It should be concealed from sight in a light-tight box during photolysis.

A. TRICARBONYLBIS(TRIPHENYLPHOSPHINE)IRON(0)

 $Fe(CO)_5 + 2P(C_6H_5)_3 \xrightarrow{h\nu} Fe(CO)_3[P(C_6H_5)_3]_2 + 2CO$

Method 1 is used for the reaction between 10 mL of $Fe(CO)_5$ and 95 g of $P(C_6H_5)_3$. After 15 hr of irradiation, 2.95 L of gas is evolved, and the reaction is stopped. The first filtration yields 28.1 g of product. Reducing the volume by 50% yields an additional 5.2 g of $Fe(CO)_3[P(C_6H_5)_3]_2$. Yield: 33.3 g, 66%.

Anal. Calcd. for $Fe(CO)_3[P(C_6H_5)_3]_2$: C, 70.50; H, 4.52; P, 9.34. Found: C, 70.54; H, 4.98; P, 9.23.

B. TRICARBONYLBIS(TRICYCLOHEXYLPHOSPHINE)IRON(0)

 $Fe(CO)_5 + 2P(c-C_6H_{11})_3 \xrightarrow{h\nu} Fe(CO)_3[P(c-C_6H_{11})_3]_2 + 2CO$

The photochemical reaction between 0.90 mL of Fe(CO)₅ (6.84×10^{-3} mol) and 9.3 g (3.32×10^{-2} mol) of P(c-C₆H₁₁)₃ in 300 mL of cyclohexane (Method 1) went to completion in 6 hr with the evolution of 320 mL of gas. After the initial filtration, 2.65 g of product is recovered. Reducing the volume of cyclohexane and refrigerating the solution yields an additional 0.75 g of product. Yield: 3.4 g; 71%.

Anal. Calcd. for Fe(CO)₃[P(c-C₆H₁₁)₃]₂: C, 66.86; H, 9.43; P, 8.86. Found: C, 67.45; H, 9.52; P, 8.50.

C. TRICARBONYLBIS(TRI-n-BUTYLPHOSPHINE)IRON(0)

 $Fe(CO)_5 + 2P(n-Bu)_3 \xrightarrow{h\nu} Fe(CO)_3[P(n-Bu)_3]_2 + 2CO$

Using Method 1, a mixture of 5 mL of Fe(CO)₅ (3.83×10^{-2} mol) and 21.2 g of P(*n*-Bu)₃ (1.04×10^{-1} mol) is irradiated. The reaction is complete after 12 hr. The initial filtration yields 3.7 g of product. After reducing the volume of the solution, an additional 2.2 g is obtained. Yield: 5.9 g; 28%.

Anal. Calcd. for Fe(CO)₃[P(*n*-Bu)₃]₂: C, 59.58; H, 9.93; P, 11.40. Found: C, 59.32; H, 9.86; P, 11.15.

D. TRICARBONYLBIS(TRIMETHYLPHOSPHINE)IRON(0)

$$Fe(CO)_5 + 2PMe_3 \xrightarrow{h\nu} Fe(CO)_3(PMe_3)_2 + 2CO$$

To 1 mL of Fe(CO)₅ (7.61 \times 10⁻³ mol) was added 2.76 g of PMe₃ (3.63 \times 10⁻² mol) in 80 mL of dry cyclohexane (Method 2). The reaction vessel is cooled in a quartz beaker containing an ice–salt mixture to avoid loss of volatile PMe₃ during the irradiation even though the cooling bath scatters much of the light. After 5 hr the reaction is complete. The initial filtration yields 1.23 g of product. After reducing the volume of solvent by 50%, an additional 0.54 g is recovered. Yield: 1.77 g, 80%.

Anal. Calcd. for Fe(CO)₃[P(CH₃)₃]₂: C, 37.02; H, 6.21; P, 21.21. Found: C, 36.65; H, 6.27; P, 21.13.

E. TETRACARBONYLTRI-tert-BUTYLPHOSPHINEIRON(0)

$$Fe(CO)_5 + P(t-Bu)_3 \xrightarrow{h\nu} Fe(CO)_4[P(t-Bu)_3]$$

The reaction between 1.3 mL of Fe(CO)₅ (9.69 \times 10⁻³ mol) and 6.31 g of P(t-Bu)₃ in 350 mL of dry cyclohexane (Method 1) produces 475 mL of CO after 8 hr of irradiation. The reaction mixture is filtered to yield 1.51 g of yellow product. An additional 1.05 g of solid is obtained by reducing the volume of solution. The combined yield (2.56 g) proves to be exclusively the monosubstituted product. Apparently, the conditions of the reaction do not allow two bulky tri-*tert*-butylphosphine ligands to replace two carbonyl groups on Fe(CO)₅. Yield: 2.56 g; 72%.

Anal. Calcd. for Fe(CO)₄[P(t-Bu)₃]: C, 51.91; H, 7.35; P, 8.37. Found: C, 51.43; H, 7.23; P, 8.32.

Properties

Both the $Fe(CO)_3(PR_3)_2$ complexes and $Fe(CO)_4[P(t-Bu)_3]$ are soluble in organic solvents such as CH_2Cl_2 , benzene, toluene, THF, acetone, and hot heptane or cyclohexane, with the degree of solubility varying with the type of phosphine (the PPh₃ derivative is least soluble). All the complexes are air stable in the solid state. Prolonged exposure to light darkens the surfaces of these compounds. When left in solution for long periods of time and exposed to air, the compounds decompose slowly; those complexes containing small phosphine ligands seem to be the most sensitive. These compounds should be kept cold for long term storage. Physical properties are listed in the following table.

Compound	mp (°)	$\nu_{\rm CO} \ ({\rm cm}^{-1})^a$	³¹ P (ppm) ^b
$Fe(CO)_{4}[P(t-Bu)_{3}]$	170 dec	2040, 1960, 1920	126.9
$Fe(CO)_3(PMe_3)_2$	195	1863	42.4
$Fe(CO)_{3}[P(n-Bu)_{3}]_{2}$	55	1855	66.0
$Fe(CO)_{3}[P(c-C_{6}H_{11})_{3}]_{2}$	228	1846	89.1
$Fe(CO)_{3}[PPh_{3}]_{2}$	272	1878	78.2

"Solution IR spectra used CH₂Cl₂ as the solvent.

^bNMR spectra were recorded on a Nicolet 200-MHz instrument in CDCl₃ solvent. Chemical shifts are parts per million (ppm) downfield from 85% H₃PO₄.

References

- 1. P. K. Baker, N. S. Connelly, B. M. R. Jones, J. P. Maher, and K. R. Somers, J. Chem. Soc., Dalton Trans., 1980, 579.
- 2. W. E. Carroll and F. J. Lalor, J. Chem. Soc., Dalton Trans., 1973, 1754.
- 3. G. R. Crooks and B. F. G. Johnson, J. Chem. Soc. (A), 1968, 1238.
- 4. R. K. Kummer and W. A. G. Graham, Inorg. Chem., 1208, (1968).
- 5. A. Davison, W. McFarlane, L. Pratt, and G. Wilkinson, J. Chem. Soc., 1962, 3653.
- 6. K. Farmey and M. Kilner, J. Chem. Soc. (A), 1970, 634.
- M. J. Therien, C-L. Ni, F. C. Anson, J. G. Osteryoung, and W. C. Trogler, J. Am. Chem. Soc., 108, 4037, (1986).
- R. D. Sanner, R. G. Austin, M. S. Wrighton, W. D. Honnick, and C. U. Pittman, *Inorg. Chem.*, 18, 928, (1979).
- 9. D. K. Liu, C. G. Brinkley, and M. S. Wrighton, Organometallics, 3, 1449, (1984).
- 10. J. L. Graff, R. D. Sanner, and M. S. Wrighton, Organometallics, 1, 837, (1982).
- 11. D. K. Liu, M. S. Wrighton, D. R. McKay, and G. R. Maciel, Inorg. Chem., 23, 212, (1984).
- 12. A. F. Clifford and A. K. Mukherjee, Inorganic Synth., 8, 184, (1966).
- 13. S. B. Butts and D. F. Shriver, J. Organomet. Chem., 169, 191, (1979).
- 14. M.O. Albers and N. J. Coville, J. Organomet. Chem., 17, 385, (1981).
- 15. W. Strohmeier and F. J. Muller, Chem. Ber., 102, 3613, (1969).
- 16. D. J. Darensbourg, M. Y. Darensbourg, and N. Walker, Inorg. Chem., 20, 1918, (1981).

37. Tricarbonyl Bis(N,N-dialkylcarbamodithioate)tungsten(II) 157

37. TRICARBONYL BIS(N,N-DIALKYLCARBAMODITHIOATE)TUNGSTEN(II)

$$\begin{split} W(CO)_6 &+ Br_2 \longrightarrow WBr_2(CO)_4 &+ 2CO \\ WBr_2(CO)_4 &+ 2NaS_2CNR_2 \longrightarrow W(CO)_3[S_2CNR_2]_2 &+ CO &+ 2NaBr \end{split}$$

Submitted by J.A. BROOMHEAD,* J. BUDGE,† W. PIENKOWSKI,* and C.G. YOUNG* Checked by T. L. TONKER‡ and J. L. TEMPLETON‡

There is renewed interest in the fundamental chemistry of tungsten arising from its congener relationship to molybdenum; an important element in both catalysis and metalloenzyme processes. The title complex has been prepared by Templeton and Ward¹ from $W(CO)_4I_2$ and the crystal and molecular structure reported for the dimethylcarbamodithioate analog. Their method requires a chromatographic purification step, which is not necessary in the following procedure using bromine as the oxidant. This method is similar to that described previously² for $Mo(CO)_2(S_2CNEt_2)_2$ and $Mo(CO)_3(S_2CNEt_2)_2$ and may be used with slight modifications for the corresponding dimethyl-, diisopropyl-, benzyl-, pyrrolidyl- and dicyclohexylcarbamodithioate ligands.

Caution. Carbon monoxide is liberated in this reaction and it should be performed in a well-ventilated fume hood.

Procedure

(All operations are carried out under nitrogen on a Schlenk line.) Tungsten hexacarbonyl (Fluka AG) (4 g, 0.011 mol) is suspended in deoxygenated dichloromethane (60 mL) in a Schlenk flask connected to a gas bubbler outlet and fitted with a rubber septum. The mixture is cooled at -78° in acetone-dry ice and stirred magnetically while bromine (0.58 mL, 0.011 mol) is added by injection. After slight warming, there is vigorous gas evolution (CARE!) and a red-brown solution is formed. The solvent is removed on the vacuum line at room temperature and the vessel is alternatively filled with nitrogen and evacuated several times to ensure complete removal of bromine. The orange-brown residue is dissolved in methanol (30 mL) and further gas evolution takes place to give a brown solution containing dibromotetracarbonyltungsten(II). This is filtered directly into

[‡]Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514.

^{*}Faculty of Science, Australian National University, Canberra, A.C.T. 2601. Australia. *BP America, Independence, OH 44131-5595.

a stirred slurry of NaS₂CNEt₂·3H₂O (5.17 g, 0.023 mol) in methanol (30 mL), (or equimolar amounts of the corresponding NaS₂CNR₂ salts). The crude orange-brown solid is filtered off, washed with methanol (2×15 mL) and pumped dry. The product is dissolved in dichloromethane (~15 mL) and precipitated as orange crystals by the addition of methanol (~60 mL). Yield: 4.5 g (73%).

Anal. Calcd. for $C_{13}H_{20}N_2O_3S_4W$: C, 27.7; H, 3.6; N, 5.0; S, 22.7. Found: C, 27.7; H, 3.8; N, 4.9; S, 22.5.

Properties

The tricarbonylbis(N, N-dialkylcarbamodithioate)tungsten(II) complexes are orange crystalline solids that may be stored indefinitely under nitrogen. Loss of one carbonyl ligand occurs on heating at reflux in methanol and the corresponding dicarbonyl complexes are formed. The tricarbonyl complexes are soluble in nonpolar solvents. For W(CO)₃(S₂CNEt₂)₂ the characteristic strong IR bands (for CsI discs) occur at 2020, 1937, 1917, 1902, and 1886 cm⁻¹ ($\nu_{C=0}$) and 1508 cm⁻¹ ($\nu_{C=N}$). The ¹³C NMR spectrum at -50° shows only one carbonyl resonance and equivalent diethylcarbamodithioate resonances indicating fluxionality in these ligands. The ¹H NMR and IR spectra of the dimethyldithiocarbamate derivative and of the dicarbonyl complexes have been reported.³

References

1. J. L. Templeton and B. C. Ward. Inorg Chem., 19, 1753 (1980).

2. J. A. Broomhead, J. Budge, and W. Grumley. Inorg. Synth., 16, 235 (1976).

3. J. A. Broomhead and C. G. Young. Aust. J. Chem., 35, 277 (1982).

38. CYCLOPENTADIENYLBIS(TRIMETHYLPHOSPHINE) AND CYCLOPENTADIENYLBIS(TRIMETHYLPHOSPHITE) COMPLEXES OF Co and Rh

Submitted by H. WERNER,* R. FESER,* V. HARDER,* W. HOFMANN,* and H. NEUKOMM* Checked by W. D. JONES†

The title complexes, $CpM(PMe_3)_2$ and $CpM[P(OMe)_3]_2$, are electron-rich half-sandwich complexes that have been demonstrated to be valuable pre-

*Institut für Anorganische Chemie der Universität, Am Hubland, D-8700 Würzburg, Federal Republic of Germany.

†Department of Chemistry, The University of Rochester, Rochester, NY 14627.

cursors to a large number of organometallic derivatives.¹ They behave as Lewis bases and react with a wide variety of electrophiles E or EX to form new metal-element bonds. They have also been shown to be valuable starting materials for the syntheses of heterometallic di- and trinuclear complexes via their reactions with unsaturated transition metal compounds.¹ The only viable syntheses of these compounds now known are those reported here.

A. (η⁵-CYCLOPENTADIENYL)BIS-(TRIMETHYLPHOSPHINE)RHODIUM(I)²

 $[(C_8H_{14})_2RhCl]_2 + 4PMe_3 + 2LiC_5H_5 \longrightarrow 2Rh(\eta-C_5H_5)(PMe_3)_2 + 2LiCl + 2C_8H_{14}$

Procedure

In a 125-mL Schlenk tube, equipped with a nitrogen inlet and a magnetic stirring bar, 3.7 g (5.15 mmol) $[(C_8H_{14})_2RhCl]_2$ (ref. 3) is dissolved in 40 mL of THF, freshly distilled over Na and benzophenone. The solution is treated dropwise with 2.1 mL (21.0 mmol) PMe₃ and then stirred for 1 hr at room temperature. A 1.01 g (14.0 mmol) quantity of LiC₅H₅, freshly prepared from equimolar amounts of *n*-BuLi and C₅H₆ in hexane,⁴ is added and the reaction mixture is stirred for 2 hr at room temperature. The suspension is filtered, and the red-brown filtrate is evaporated to dryness under reduced pressure. The solid residue is extracted with pentane (2 × 20 mL). The pentane solution is filtered, and the filtrate is concentrated *in vacuo* to ~5 mL. After cooling to -78° , red-brown air-sensitive crystals are obtained, which must be stored under thoroughly purified nitrogen or argon (preferably in a refrigerator). Yield: 2.37 g (72%), mp 85°.

Anal. Calcd. for $C_{11}H_{23}P_2Rh$: C, 41.26; H, 7.24; P, 19.35; Rh, 32.13; MW, 320.2. Found: C, 41.04; H, 7.09; P, 19.62; Rh, 32.38; MW, 320 (mass spectroscopy).

Note: In the original procedure,² the cycloocta-1.5-diene complex $[C_8H_{12}RhCl]_2$ was used as starting material. The present method avoids the isolation of the intermediate $[Rh(PMe_3)_4]Cl$.

Properties

 $(\eta$ -Cyclopentadienyl)bis(trimethylphosphine)rhodium(I) is a red-brown crystalline product that remains unchanged when stored under an inert

atmosphere at 0–10°. It is soluble in hydrocarbon solvents but decomposes in chloroform and carbon tetrachloride. In methylene dichloride, an oxidative addition reaction occurs to give the cation $[Rh(\eta-C_5H_5)(PMe_3)_2-CH_2Cl]^+$, which can be isolated as the PF₆⁻ salt.⁵ The ¹H NMR spectrum of the title compound (60 MHz, benzene-d₆, δ in ppm downfield from TMS) shows two signals at: 5.27 (triplet, $J_{PH} = 0.6$ Hz, C_5H_5 protons) and 1.16 (doublet of virtual triplets, $J_{RhH} = 1.2$ Hz, N = 8.4 Hz, PMe₃ protons).

The complex is a useful starting material for the preparation of other cyclopentadienylrhodium complexes, for example, $[Rh(\eta-C_5H_5)(PMe_3)_2R]$ -PF₆ (R = H, Me, Et, COMe, COPh, GeMe₃, SnMe₃, Cl, Br, I),² [Rh(η -C₅H₅)(PMe₃)₂(CH₂PMe₃)]I₂,⁵ [Rh(η -C₅H₅)(PMe₃)(CH₂PMe₃)I]I,⁵ and [Rh(η -C₅H₅)(PMe₃)₂(Al₂Me₄Cl₂)].⁶

B. (η⁵-CYCLOPENTADIENYL)BIS-(TRIMETHYLPHOSPHINE)COBALT(I)⁷

 $\begin{aligned} & 2\text{CoCl}_2 + \text{Mg} + 6\text{PMe}_3 \longrightarrow 2\text{CoCl}(\text{PMe}_3)_3 + \text{MgCl}_2 \\ & \text{CoCl}(\text{PMe}_3)_3 + \text{LiC}_5\text{H}_5 \longrightarrow \text{Co}(\eta\text{-}\text{C}_5\text{H}_5)(\text{PMe}_3)_2 + \text{PMe}_3 + \text{LiCl} \end{aligned}$

The original procedures for $CoCl(PMe_3)_3$ (ref. 8) and $C_5H_5Co(PMe_3)_2$ (ref. 9) were modified as described next.

Procedure

(a) $CoCl(PMe_3)_3$. In a 125-mL Schlenk tube, equipped with a nitrogen inlet, a solution of 7 mL (73.7 mmol) of PMe₃ (ref. 10) in 50 mL of THF, freshly distilled over Na and benzophenone, is treated with 2.0 g (15.4 mmol) of anhydrous $CoCl_2$, 600 mg of Mg turnings, freshly cut, and 50 mg (0.39 mmol) of anthracene. The reaction mixture is placed for 20 min in an ultrasonic bath, which leads to a color change from violet to dark brown. The solvent is removed *in vacuo*, and the brown solid residue is extracted with ether ($\sim 3 \times 20$ mL). The ether solution (which is *very* air sensitive), together with 2.6 mL (27.3 mmol) of PMe₃,¹⁰ is added to a Schlenk tube, equipped with a nitrogen inlet, and containing 1.4 g (10.8 mmol) of anhydrous CoCl₂. The reaction mixture is stirred for 2 hr at room temperature. The blue precipitate formed is filtered off, washed with ether, and dried *in vacuo*. The product must be stored under thoroughly purified nitrogen or argon at low temperature. Yield: 5.49 g (65%).

(b) $Co(\eta-C_5H_5)(PMe_3)_2$. In a 125-mL Schlenk tube, equipped with a nitrogen inlet and a magnetic stirring bar, 5.96 g (18.5 mmol) of $CoCl(PMe_3)_3$ is dissolved in 50 mL of THF, freshly distilled over Na and benzophenone, and the resulting solution cooled to -50° . To the solution, a quantity of 1.4 g (19.5 mmol) of LiC_5H_5 is added in small portions. The reaction mixture is stirred for 30 min at -50° and then slowly warmed to room temperature. While keeping the temperature at 20–25°, the solvent is removed *in vacuo*, and the brown solid residue is extracted with hexane (3 × 20 mL). The hexane solution is filtered and concentrated *in vacuo* to -5 mL. After cooling at -78° dark brown air-sensitive crystals are isolated, which must be stored under thoroughly purified nitrogen or argon (preferably at low temperature). Yield: 4.76 g (93%), mp 55–57°.

Anal. Calcd. for $C_{11}H_{23}CoP_2$: C, 47.85; H, 8.34; Co, 21.36; P, 22.45; MW, 275.9. Found: C, 47.87; H, 8.12; Co, 21.10; P, 22.28; MW, 276 (mass spectrometry).

Properties

(η -Cyclopentadienyl)bis(trimethylphosphine)cobalt(I) is a dark brown crystalline product that remains unchanged when stored under an inert atmosphere at 0 to 10°. It is soluble in hydrocarbon solvents but decomposes rapidly in chloroform. In methanol, slow reaction takes place that leads to the formation of the cation [Co(η -C₅H₅)(PMe₃)₂H]⁺. This cation (with PF₆⁻ as the anion) is formed more easily from [Co(η -C₅H₅)(PMe₃)₂] and NH₄PF₆. The ¹H NMR spectrum of the title compound (60 MHz, benzened₆, δ in ppm downfield from TMS) shows two signals at: 4.51 (triplet, $J_{PH} = 1.4$ Hz, C₅H₅ protons) and 1.07 (virtual triplet, N = 7.6 Hz, PMe₃ protons).

The complex is a useful starting material for the preparation of other cyclopentadienylcobalt complexes, for example, $[Co(\eta-C_5H_5)(PMe_3)_2R]X$ (R = H, Me, Et, COMe, COPh, SnCl₃, SnMe₃, SnPh₃; X = I or PF₆),^{9,11} $[Co(\eta-C_5H_4R)(PMe_3)_2]$ (R = CHMe₂, CMe₃, CMe₂Et),¹² $[Co(\eta-C_5H_5)(PMe_3)(\eta^2-CS_2)]$,¹³ $[Co(\eta-C_5H_5)(PMe_3)(\eta^2-CSe_2)]$,¹⁴ $[Co(\eta-C_5H_5)(PMe_3)(\eta^2-CSe_2)]$,¹⁴ $[Co(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁴ $[Co(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁴ $[Co(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁴ $[Co(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁶ $[(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁶ $[(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁶ $[(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁶ $[(\eta-C_5H_5)(PMe_3)(q^2-CSe_2)]$,¹⁶ $[(\eta-C_5H_5)(PMe_3)Co(\eta-CO)_2Mn(CO)(\eta-C_5H_4Me)]$.¹⁷ The carbondisulfide-cobalt complex has further been used for the synthesis of Co₃ clusters containing a bridging thiocarbonyl ligand.¹⁸

C. (η⁵-CYCLOPENTADIENYL)BIS-(TRIMETHYLPHOSPHITE)COBALT(I)¹⁹

 $Co(\eta - C_5H_5)_2 + 2P(OMe)_3 \longrightarrow [Co(\eta - C_5H_5)(P(OMe)_3)_2] + \{C_5H_5\}$

Procedure

In a 20-mL Schlenk tube, equipped with a nitrogen inlet, a reflux condenser, and a magnetic stirring bar, 2.09 g (11.06 mmol) of $Co(\eta-C_5H_5)_2$ (ref. 20) and 7 mL (59.4 mmol) of P(OMe)₃ are heated under reflux for 3 days. After cooling to room temperature, excess of P(OMe)₃ is removed *in vacuo* (~15 torr), and the oily residue is distilled at ~149° and ~10⁻⁴ torr using a short path distillation apparatus. The distilled product is dissolved in pentane (~10 mL), and the pentane solution is concentrated *in vacuo*. Cooling to ~ -30° gives red-brown air-sensitive crystals that are filtered off, washed with small amounts of cold pentane, and dried *in vacuo*. Yield: 2.2 g (56%), mp 38°.

Anal. Calcd. for $C_{11}H_{23}CoO_6P_2$: C, 35.50; H, 6.23; Co, 15.84; MW, 372.2. Found: C, 35.39; H, 6.01; Co, 15.87; MW, 372 (mass spectrometry).

Properties

(η -Cyclopentadienyl)bis(trimethylphosphite)cobalt(I) is a red-brown crystalline low-melting product that is air sensitive and should be stored under an inert atmosphere at 10–20°. It is soluble in hydrocarbon solvents, but decomposes in chloroform and carbon tetrachloride. The ¹H NMR spectrum (60 MHz, acetone- d_6 , δ in ppm downfield from TMS) shows two signals at: 4.63 (singlet, C₅H₅ protons) and 3.48 [virtual triplet, N = 12.0Hz, P(OMe)₃ protons]. The UV spectrum (in hexane, λ_{max} in cm⁻¹) shows three maxima at: 23 920 (log ϵ 2.7), 38 910 (log ϵ 4.7), and 43 860 (log ϵ 5.0).

The complex is a good nucleophile and reacts with acids (e.g., CF_3CO_2H) and methyl iodide to form the corresponding salts of the cations [Co(η -C₅H₅)(P(OMe)₃)₂R]⁺ (R = H, Me).²¹ Thermolysis gives the "supersandwich" complex [Co₃(η -C₅H₅)₂(μ -P(O)(OMe)₂)₆],²² which is an important starting material for the syntheses of heterometallic di- and trinuclear phosphonatemetal complexes.^{23,24}

D. (η⁵-CYCLOPENTADIENYL)BIS-(TRIMETHYLPHOSPHITE)RHODIUM(I)²⁵

 $[Rh(P(OMe)_3)_2Cl]_2 + 2NaC_5H_5 \longrightarrow [Rh(\eta-C_5H_5)(P(OMe)_3)_2] + 2 NaCl$

Procedure

In a 125-mL Schlenk tube, equipped with a nitrogen inlet and a magnetic stirring bar, 1.0 g (2.03 mmol) of $[Rh(C_8H_{12})Cl]_2$ (ref.26) is dissolved in 50 mL of CH_2Cl_2 . The solution is treated dropwise with 1 mL (8.1 mmol) of P(OMe)₃ and stirred for 2 hr at room temperature. The solvent and excess phosphite are removed *in vacuo*. The residue is dissolved in 60 mL of THF, and 450 mg (5.1 mmol) of NaC₃H₅ (ref. 20) is added. The reaction mixture is stirred for 24 hr at room temperature, filtered, and concentrated *in vacuo*. The oily residue is dissolved in 10 mL of hexane, and the solution is chromatographed on Al₂O₃ (neutral, activity III) using ether as eluant. The major yellow fraction is collected, the solvent is removed, and the resultant oily residue is dried for 24 hr in high vacuum (~10⁻⁴ torr). After storing the product for 3-4 weeks under an inert atmosphere without additional solvent at -10° , yellow crystals are formed. Yield: 605 mg (36%), mp 31°.

Anal. Calcd. for $C_{11}H_{23}O_6P_2Rh$: C, 31.74; H, 5.57; P, 14.88; MW, 416.15. Found: C, 31.84; H, 5.73; P, 14.72; MW, 416 (mass spectrometry).

Properties

(η -Cyclopentadienyl)bis(trimethylphosphite)rhodium(I) is a yellow crystalline low-melting product that is air sensitive and should be stored under an inert atmosphere at 10–20°. It is soluble in hydrocarbon solvents but decomposes in chloroform and carbon tetrachloride. The ¹H NMR spectrum (60 MHz, benzene- d_6 , δ in ppm downfield from TMS) shows two signals at 5.32 (doublet of triplets, $J_{RhH} = 0.6$ Hz, $J_{PH} = 1.2$ Hz, C_5H_5 protons) and 3.40 [virtual triplet, N = 12.2 Hz, P(OMe)₃ protons].

The complex is a good nucleophile and can be used as starting material for the syntheses of cationic complexes $[Rh(\eta-C_5H_5)(P(OMe)_3)_2R]^+$ (R = H, Me).^{21,27} It also reacts smoothly with alkali metal iodides MI (M = Li, Na, K) in two stages, via the intermediate $[Rh(\eta-C_5H_5)CH_3(P(OMe)_3)-P(O)(OMe)_2]$, to the corresponding rhodiumbis(phosphonate) complexes $[Rh(\eta-C_5H_5)CH_3(P(O)(OMe)_2)_2]M.^{28}$

References

- 1. H. Werner, Angew. Chem. Int. Ed. (Engl.), 22, 927 (1983).
- 2. H. Werner, R. Feser, and W. Buchner, Chem. Ber., 112, 834 (1979).
- 3. A. van der Ent and L. Onderdelinden, Inorg. Synth., 14, 92 (1973).
- 4. M. A. Lyle and S. R. Stobart, Inorg. Synth., 17, 178 (1977).
- 5. H. Werner, L. Hofmann, R. Feser, and W. Paul, J. Organomet. Chem., 281, 317 (1985).
- 6. J. M. Mayer and J. C. Calabrese, Organometallics, 3, 1292 (1984).
- 7. H. Otto, Ph.D. Thesis, Universität Würzburg, 1986, p. 239.
- 8. H. F. Klein and H. H. Karsch, Chem. Ber., 108, 944 (1975).
- 9. H. Werner and W. Hofmann, Chem. Ber., 110, 3481 (1977).
- 10. R. T. Markham, E. A. Dietz Jr., and D. R. Martin, Inorg. Synth., 16, 153 (1976).
- 11. K. Dey and H. Werner, Chem. Ber., 112, 823 (1979).
- 12. H. Werner and W. Hofmann, Chem. Ber., 114, 2681 (1981).
- 13. H. Werner, K. Leonhard, and C. Burschka, J. Organomet. Chem., 160, 291 (1978).
- 14. O. Kolb and H. Werner, J. Organomet. Chem., 268, 49 (1984).
- 15. H. Werner, S. Lotz, and B. Heiser, J. Organomet. Chem., 209, 197 (1981).
- 16. C. Burschka, K. Leonhard, and H. Werner, Z. Anorg. Allg. Chem., 464, 30 (1980).
- 17. K. Leonhard and H. Werner, Angew. Chem. Int. Ed. (Engl.), 16, 649 (1977).
- H. Werner, K. Leonhard, O. Kolb, E. Röttinger, and H. Vahrenkamp, Chem. Ber., 113, 1654 (1980).
- 19. V. Harder, J. Müller, and H. Werner, Helv. Chim. Acta, 54, 1 (1971).
- 20. R. B. King and F. G. A. Stone, Inorg. Synth., 7, 99 (1963).
- 21. H. Werner, H. Neukomm, and W. Kläui, Helv. Chim. Acta, 60, 326 (1977).
- 22. V. Harder, E. Dubler, and H. Werner, J. Organomet. Chem., 71, 427 (1974).
- 23. W. Kläui and H. Werner, Angew. Chem. Int. Ed. (Engl.), 15, 172 (1976).
- 24. W. Kläui and K. Dehnicke, Chem. Ber., 111, 451 (1978).
- 25. H. Neukomm and H. Werner, Helv. Chim. Acta, 57, 1067 (1974).
- 26. J. Chatt and L. M. Venanzi, J. Chem. Soc., 1957, 4735.
- 27. H. Neukomm and H. Werner, J. Organomet. Chem., 108, C 26 (1976).
- 28. H. Werner and R. Feser, Z. Anorg. Allg. Chem., 458, 301 (1979).

39. MIXED COBALT-RUTHENIUM DODECACARBONYL CLUSTERS: DODECACARBONYLHYDRIDOTRI-COBALTRUTHENIUM, Co₃RuH(CO)₁₂

Submitted by F. OLDANI* and G. BOR[†] Checked by T. J. COFFY[‡] and S. G. SHORE[‡]

Reported yields of the early methods for the preparation of the mixed cobalt-ruthenium cluster hydride $Co_3RuH(CO)_{12}$ were generally very low

*Swiss Federal Institute of Technology, ETH, Zurich; present address: Ciba-Geigy Schweizerhalle AG, CH-8133 Schweizerhalle (BL), Switzerland.

[†]Swiss Federal Institute of Technology, ETH, High Pressure Laboratory, CH-8092 Zurich, Switzerland.

[‡]Department of Chemistry, Ohio State University, Columbus, OH 43210-1173.

 $(\sim 7\%)$.^{1,2} More recently yields improved up to $\sim 30\%$ have been reported.³ In the first two methods^{1,2} the ruthenium sources were Ru₃(CO)₁₂ and [Ru(CO)₃Cl₂]₂, respectively, whereas in the last method ruthenium was introduced in the form of RuCl₃·3H₂O. We report here that the use of Ru(CO)₅ as a ruthenium source [which is easily obtained either thermally^{4a} or photochemically^{4b} from Ru₃(CO)₁₂] dramatically increases the overall yield in the synthesis of Co₃RuH(CO)₁₂ to 60–70%.

All these methods, including ours, yield the cluster hydride from the anionic intermediate $[Co_3Ru(CO)_{12}]^-$, by the addition of an acid in a polar solvent. We could also demonstrate in high pressure equipment that $Co_3RuH(CO)_{12}$ is directly formed in an apolar solvent from $Co_2(CO)_8$ and $Ru_3(CO)_{12}$ at 70° with a gas mixture composed of 100 bar H₂ and 0.6 bar CO. Under these conditions a mixture is gradually obtained that contains all $Co_{4-x}Ru_xH_x(CO)_{12}$ species (x = 0, 1, 2, 3, 4) in addition to $CoH(CO)_4$ and $Co_2(CO)_8$ in a stable equilibrium.^{5,6} About 30% of the dissolved cobalt that is present in the form of different carbonyls is in $Co_3RuH(CO)_{12}$. This is in sharp contrast to the analogous iron–cobalt cluster, $Co_3FeH(CO)_{12}$,⁷ which is thermodynamically unstable and is not formed from the components, but rather, when prepared through the anion $[Co_3Fe(CO)_{12}]^-$ decomposes in solution completely to yield $Fe(CO)_5$ and mixture of cobalt carbonyls.^{5,6}

■ **Caution.** All operations should be carried out in an efficient fume hood, since both escaping carbon monoxide and volatile metal carbonyls are toxic. Contact of the metal carbonyl solutions with skin and inhalation of their vapors should be avoided. Octacarbonyl dicobalt is oxidized readily by air and must be handled under an inert atmosphere.

Procedure

$$Ru_{3}(CO)_{12} + 3CO \longrightarrow 3Ru(CO)_{5}$$
(1)

 $\frac{1}{2}\operatorname{Co}_{2}(\operatorname{CO})_{8} + 2\operatorname{Ru}(\operatorname{CO})_{5} \longrightarrow [\operatorname{Co}(\operatorname{solv})_{x}][\operatorname{Co}_{3}\operatorname{Ru}(\operatorname{CO})_{12}]_{2} + 14\operatorname{CO} \quad (2)$

 $[Co(solv)_{x}][Co_{3}Ru(CO)_{12}]_{2} + 2HCl \longrightarrow 2Co_{3}RuH(CO)_{12} + CoCl_{2} \quad (3)$

1. Dodecacarbonyltriruthenium (2.5 g, 3.91 mmol) prepared as reported,⁸ is introduced into a 500-mL stainless steel (18-8-2) autoclave. Acetone (300 mL), purified by distillation over CaCl₂ or CaSO₄· $\frac{1}{2}$ H₂O (Siccon), is then added by suction. The autoclave is pressurized with carbon monoxide (220 bar), heated slowly to 154°, and then shuttled or stirred under these conditions for 22 hr. The maximum working pressure reached during this procedure was 435 bar.

The autoclave is then gradually cooled, first to room temperature, and then to -78° in an acetone-dry ice mixture. Pressure is then released through a cold trap. The IR spectrum shows only the two C—O stretching bands of Ru(CO)₅ at 2042 and 1996 cm⁻¹ (observed values in acetone solution). The yield is practically quantitative. This solution is used directly in the following steps. Note: In other solvents, like hexane or diethyl ether, the reaction is identical to that in acetone; the time required to the completion of the reaction can vary considerably, however.

2. Octacarbonyldicobalt (7.5 g, 22 mmol), prepared as reported,⁹ is dissolved in purified acetone (100 mL) and stirred under CO in a 750-mL three-necked flask at 50° for 15 min. Then a previously prepared solution (300 mL) of Ru(CO)₅ [~12 mmol, cf. point (1)], cooled to -78° , is added in an atmosphere of CO. The combined solution is stirred at 60° for 17 hr. At the end of this period the solvent is removed at 60° *in vacuo*. The dry residue is kept at the same temperature under high vacuum (<10⁻³ torr) for another 3–4 hr.

3. The dry product of part (2) is extracted in the same vessel by 10 portions of 100 mL each of distilled and deairated water under nitrogen. The resultant aqueous red solution is filtered under nitrogen and then acidified by the addition of hydrochloric acid (150 mL, 37%). The reddishbrown precipitate that is obtained in this way is filtered, washed with distilled water (20 mL), and dried at room temperature under high vacuum ($<10^{-3}$ torr) for 3 days. The red raw product, Co₃RuH(CO)₁₂ (4.8 g, 77 mmol, yield 61%) is recrystallized from a toluene-heptane mixture (1:1). The recrystallized sample and the raw product show the same IR spectrum.

Anal. calcd. for C₁₂HO₁₂Co₃Ru: C, 22.44; H, 0.16; Co/Ru, 3.0. Found: C, 22.64; H, 0.39; Co/Ru, 2.9.

Properties of $Co_3RuH(CO)_{12}$

 $Co_3RuH(CO)_{12}$ is an air-stable, red, crystalline solid. It is soluble in nonpolar solvents such as hexane, and very soluble in more polar or polarizable organic solvents such as benzene or dichloromethane. In THF (5% water) $Co_3RuH(CO)_{12}$ behaves as a strong acid as shown by potentiometric titration with piperidine.⁵

Solutions of $Co_3RuH(CO)_{12}$ in various hydrocarbons are stable in air for about 1 day.

The compound is best characterized by its IR spectrum in the C—O stretching region, which shows the following carbonyl bands (cm^{-1}) in

hexane solution: 2063 (s), 2056 (s), 2022 (m), 2010 (w,sh), and 1886 (m). The IR spectrum of $Co_3RuH(CO)_{12}$ in acetone shows bands (cm⁻¹) at 2060 (w), 2017 (s), 2002 (s), 1970 (w), 1823 (w), which indicates the loss of the proton to give the cluster anion $[Co_3Ru(CO)_{12}]^-$. The mass spectrum of $Co_3RuH(CO)_{12}$ shows the parent ion at m/e 616 and ions resulting from the successive loss of 12 carbonyls. In the UV-vis region the heteronuclear cluster $Co_3RuH(CO)_{12}$ shows bands at 525 nm (3300 L·mol⁻¹ cm⁻¹), 395 (5600) and 325 (10,000) (hexane solution). The $C_{3\nu}$ symmetry of the molecule of $Co_3RuH(CO)_{12}$ is indicated by IR studies of the ¹³CO-enriched compound.⁵

 $Co_3RuH(CO)_{12}$ and/or salt of $[Co_3Ru(CO)_{12}]^-$ were reported to act as homogeneous catalysts in the homologation of methanol.^{10,11} $Co_3RuH(CO)_{12}$ has been also applied to yield, by controlled thermal decomposition, very active heterogeneous Fischer–Tropsch catalysts.¹²

References

- 1. M. J. Mays and R. N. F. Simpson, J. Chem. Soc. (A), 1968, 1444.
- 2. D. B. W. Yawney and F. G. A. Stone, J. Chem. Soc. (A), 1969, 502.
- M. Hidai, M. Orisaku, M. Ue, Y. Koyasu, T. Kodama, and Y. Uchida, Organometallics, 2, 292 (1983).
- 4. (a) R. Whyman, J. Organomet. Chem., 56, 339 (1973);
 (b) B. F. G. Johnson, J. Lewis, and M. V. Twigg, *ibid.*, 67, C75 (1974).
- 5. F. Oldani, Ph.D. thesis, No. 7476, ETH-Zurich, 1984.
- 6. G. Bor, Pure Appl. Chem., 58, 543 (1986).
- 7. P. Chini, L. Colli, and M. Peraldo, Gazz. Chim. Ital., 90, 1005 (1960).
- B. R. James, G. L. Rempel, and W. K. Teo, *Inorg. Synth.*, 16, 45 (1976); A. Mantovani and S. Cenini, *ibid.*, 16, 47 (1976).
- P. Szabó, L. Markó, and G. Bor, *Chem. Tech.* [Leipzig], 13, 549 (1961). This method is more efficient than the previously reported ones in *Inorganic Synthesis:* compare *Inorg. Synth.*, 2, 238 (1946) and 5, 190 (1957).
- M. Hidai, M. Orisaku, M. Ue, and Y. Uchida, Chem. Lett., 1981, 143; M. Hidai, M. Orisaku, M. Ue, Y. Koyasu, T. Kodama, and Y. Uchida, Organometallics, 2, 292 (1983).
- 11. G. Doyle (Exxon Res. and Engng. Company), European Patent, 0030434/A1 (1981).
- 12. R. Hemmerich, W. Keim, and M. Röper, J. Chem. Soc., Chem. Commun., 1983, 428.

40. DINUCLEAR PHOSPHIDO AND ARSENIDO DERIVATIVES OF MOLYBDENUM

 $[Mo(\eta^5-C_5H_5)(CO)_3]_2 + R_2EH \xrightarrow{\Delta}$

[Mo(η⁵-C₅H₅)(CO)₂]₂(μ-H)(μ-ER₂) + 2CO ↑A. E = P, R = ι-Bu

B. E = As, R = Me

40. Dinuclear Phosphido and Arsenido Derivatives of Molybdenum 167

hexane solution: 2063 (s), 2056 (s), 2022 (m), 2010 (w,sh), and 1886 (m). The IR spectrum of $Co_3RuH(CO)_{12}$ in acetone shows bands (cm⁻¹) at 2060 (w), 2017 (s), 2002 (s), 1970 (w), 1823 (w), which indicates the loss of the proton to give the cluster anion $[Co_3Ru(CO)_{12}]^-$. The mass spectrum of $Co_3RuH(CO)_{12}$ shows the parent ion at m/e 616 and ions resulting from the successive loss of 12 carbonyls. In the UV-vis region the heteronuclear cluster $Co_3RuH(CO)_{12}$ shows bands at 525 nm (3300 L·mol⁻¹ cm⁻¹), 395 (5600) and 325 (10,000) (hexane solution). The $C_{3\nu}$ symmetry of the molecule of $Co_3RuH(CO)_{12}$ is indicated by IR studies of the ¹³CO-enriched compound.⁵

 $Co_3RuH(CO)_{12}$ and/or salt of $[Co_3Ru(CO)_{12}]^-$ were reported to act as homogeneous catalysts in the homologation of methanol.^{10,11} $Co_3RuH(CO)_{12}$ has been also applied to yield, by controlled thermal decomposition, very active heterogeneous Fischer–Tropsch catalysts.¹²

References

- 1. M. J. Mays and R. N. F. Simpson, J. Chem. Soc. (A), 1968, 1444.
- 2. D. B. W. Yawney and F. G. A. Stone, J. Chem. Soc. (A), 1969, 502.
- M. Hidai, M. Orisaku, M. Ue, Y. Koyasu, T. Kodama, and Y. Uchida, Organometallics, 2, 292 (1983).
- 4. (a) R. Whyman, J. Organomet. Chem., 56, 339 (1973);
 (b) B. F. G. Johnson, J. Lewis, and M. V. Twigg, *ibid.*, 67, C75 (1974).
- 5. F. Oldani, Ph.D. thesis, No. 7476, ETH-Zurich, 1984.
- 6. G. Bor, Pure Appl. Chem., 58, 543 (1986).
- 7. P. Chini, L. Colli, and M. Peraldo, Gazz. Chim. Ital., 90, 1005 (1960).
- B. R. James, G. L. Rempel, and W. K. Teo, *Inorg. Synth.*, 16, 45 (1976); A. Mantovani and S. Cenini, *ibid.*, 16, 47 (1976).
- P. Szabó, L. Markó, and G. Bor, *Chem. Tech.* [Leipzig], 13, 549 (1961). This method is more efficient than the previously reported ones in *Inorganic Synthesis:* compare *Inorg. Synth.*, 2, 238 (1946) and 5, 190 (1957).
- M. Hidai, M. Orisaku, M. Ue, and Y. Uchida, Chem. Lett., 1981, 143; M. Hidai, M. Orisaku, M. Ue, Y. Koyasu, T. Kodama, and Y. Uchida, Organometallics, 2, 292 (1983).
- 11. G. Doyle (Exxon Res. and Engng. Company), European Patent, 0030434/A1 (1981).
- 12. R. Hemmerich, W. Keim, and M. Röper, J. Chem. Soc., Chem. Commun., 1983, 428.

40. DINUCLEAR PHOSPHIDO AND ARSENIDO DERIVATIVES OF MOLYBDENUM

 $[Mo(\eta^5-C_5H_5)(CO)_3]_2 + R_2EH \xrightarrow{\Delta}$

[Mo(η⁵-C₅H₅)(CO)₂]₂(μ-H)(μ-ER₂) + 2CO ↑A. E = P, R = ι-Bu

B. E = As, R = Me

Submitted by R.A. JONES,* S.T. SCHWAB,* and A.L. STUART* checked by J.L. PETERSEN†

A variety of dinuclear phosphido[‡] or arsenido bridged complexes of molybdenum have been reported although their reactions have been little studied. The direct reaction of Me₂PH with $[Mo(\eta^5-C_5H_5)(CO)_3]_2$ gives $[Mo(\eta^5-C_5H_5)(CO)_2]_2(\mu-H)(\mu-Me_2P)$,¹ and several structural studies of this complex have been reported.²⁻⁴ The preparations reported here are for the *t*-Bu₂P and Me₂As analogs of this complex.⁵ They may be prepared conveniently and in high yields, and they should prove to be useful starting materials for further investigation of the chemistry of phosphido or arsenido bridged complexes.

General Procedure

All reactions and operations must be carried out under dinitrogen or under vacuum, using standard Schlenk line techniques.⁶ Diethyl ether, THF, and hexane are freshly distilled from sodium benzophenone ketyl under nitrogen. Toluene is freshly distilled from sodium under nitrogen. The compounds $[Mo(\eta^5-C_5H_5)(CO)_3]_2$,¹ t-Bu₂PH,⁷ and Me₂AsH⁸ are prepared as described in the literature cited.

A. TETRACARBONYLBIS(η⁵-CYCLOPENTADIENYL)μ-(DI-*tert*-BUTYLPHOSPHIDO)μ-HYDRIDODIMOLYBDENUM(2+)

Procedure

Caution. Because of the toxicity of carbon monoxide and t- Bu_2PH this reaction should be carried out in an efficient fume hood. The compound hexacarbonylbis(η^5 -cyclopentadienyl)dimolybdenum [Mo- $(\eta^5-C_5H_5)(CO)_3]_2$ (1.0 g, 2.04 mmol) is placed in a 250-mL Schlenk tube and 95 mL of toluene is added. Di-*tert*-butylphosphine (*t*-Bu₂PH) (0.596 g, 4.08 mmol) is added either via vacuum transfer or by syringe and the mixture is heated at reflux under nitrogen for 8 hr. During this time the color of the solution changes from red to brown. Evolved carbon monoxide is vented via a mercury bubbler. After cooling to room temperature, volatile materials are removed under vacuum, and the residue is extracted into two 15-mL portions of diethyl ether. The combined extracts are fil-

^{*}Department of Chemistry, The University of Texas at Austin, Austin, TX 78712. †Department of Chemistry, West Virginia University, Morgantown, WV 26506.

[‡]Also known as phosphino.

tered, and the solution is cooled to -20° . Red prisms of the product are formed in 72 hr. The supernatant liquid is decanted and the product dried under vacuum. Yield: 0.53 g (45%).

Anal. Calcd. for $C_{22}H_{29}Mo_2O_4P$: C, 45.53%; H, 5.04%. Found: C, 45.43%; H, 4.89%.

Properties⁵

The compound $[Mo(\eta^5-C_5H_5)(CO)_2]_2(\mu-H)(\mu-t-Bu_2P)$ is a red, crystalline, air-stable solid, mp 177 to 185° (dec). Infrared absorptions (CaF₂ cells, toluene) 1935 (s), 1857 (s), 1800 (w) cm⁻¹. Proton NMR (C₆D₆, 200 MHz) δ 4.95 (s) (10H), δ 1.28 (d) (J_{P-H} = 13.5 Hz, 18H), δ - 13.1 (d), ${}^{2}J_{P-H}$ = 35.4 Hz) (in ppm rel. Me_4 Si, δ 0.0). ³¹P {¹H} NMR (C₆D₆, ambient temperature) δ 267.53 (s) (in ppm rel. 85% H₃PO₄, δ 0.0 at 32.384 MHz).

B. TETRACARBONYLBIS(η⁵-CYCLOPENTADIENYL)-μ-(DIMETHYLARSIDO)-μ-HYDRIDODIMOLYBDENUM(2+)

Procedure

Caution. Because of the toxicity of carbon monoxide and Me_2AsH (also pyrophoric) this reaction should be carried out in an efficient fume hood.

The compound hexacarbonylbis(η^5 -cyclopentadienyl)dimolybdenum [Mo(η^5 -C₃H₃)(CO)₃]₂ (1.25 g, 2.55 mmol) is dissolved in 100 mL of THF in a 250mL Schlenk tube. Dimethylarsine (Me₂AsH) (0.45 mL, 5.14 mmol) is added either via vacuum transfer or by syringe, and the solution is heated under reflux for 40 hr. The resulting deep red solution is filtered, and volatile materials are removed under vacuum. The residue is washed with two 15-mL portions of hexane, and then extracted into two 15-mL portions of diethyl ether. The combined extracts are filtered, and the volume of the solution is reduced to 15 mL by evaporation under vacuum. Cooling to -20° gives the product as orange, air-stable rods. A small amount (~10%) of another product (η^5 -C₅H₅)Mo(CO)₂(μ -AsMe₂)(μ -As₂Me₄)Mo(CO)₄ also crystallizes as yellow prisms. Fractional crystallization of the first crop of crystals can be used to seperate the two compounds since compound B is more soluble and crystallizes after (η^5 -C₅H₅)Mo(CO)₂(μ -AsMe₂)(μ -AsM

Anal. Calcd. for $C_{16}H_{17}AsMo_2O_4$: C, 35.58%; H, 3.17%. Found: C, 35.62%; H, 3.10%.

Properties⁵

The product is moderately soluble in most polar organic solvents. The IR spectrum (THF solution, CaF₂ cells) shows two strong bands at 1935 and 1870 cm⁻¹. The ¹H NMR spectrum has peaks at δ 4.65 (s) (10H), δ 1.54 (s) (6H) and δ – 12.09 (s) (1H) (in C₆D₆, at ambient temperature, 90 MHz, ppm rel. *Me*₄Si, δ 0.0).

References

- 1. R. G. Hayter, Inorg. Chem., 2, 1031 (1963).
- 2. R. J. Doedens and L. F. Dahl, J. Am. Chem. Soc., 87, 2576 (1965).
- 3. J. L. Petersen, L. F. Dahl, and J. M. Williams, J. Am. Chem. Soc., 96, 6610 (1974).
- 4. J. L. Petersen and J. M. Williams, Inorg. Chem., 17, 1308 (1978).
- 5. R. A. Jones, S. T. Schwab, A. L. Stuart, B. R. Whittlesey, and T. C. Wright, *Polyhedron*, 4, 1689 (1985).
- 6. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
- H. Hoffman and P. Schellenbeck, Chem. Ber., 99, 1134 (1966); K. Issleib and F. Krech, J. Organomet. Chem., 13, 283 (1968).
- 8. R. D. Feltham and W. Silverthorn, Inorg. Synth., 10, 159 (1967).

41. DICARBONYLBIS(DI-tert-BUTYLPHOSPHINE)-(μ -DI-tert-BUTYLPHOSPHIDO)- μ -HYDRIDO-DIRHODIUM(1+)(Rh₂(μ -t-Bu₂P)(μ -H)(CO)₂(t-Bu₂PH)₂ AND μ -CHLORO-BIS(η^4 -1,5-CYCLOOCTADIENE)(μ -DI-tert-BUTYLPHOSPHIDO)DIRHODIUM(1+) (Rh₂(μ -t-Bu₂P)- μ -Cl(COD)₂),(COD = 1,5-CYCLOOCTADIENE)

 $Rh_4(CO)_{12} + 6 \cdot t - Bu_2PH \xrightarrow{toluene}$

$$\frac{Rh_2(\mu-t-Bu_2P)(\mu-H)(CO)_2(t-Bu_2PH)_2}{A} + 8CO \uparrow$$

 $[Rh(COD)Cl]_{2} + Li - t - Bu_{2}P \xrightarrow{hexane} Rh_{2}(\mu - t - Bu_{2}P)(\mu - Cl)(\eta^{4} - COD)_{2} + LiCl \downarrow B$

Submitted by R. A. JONES,* D. E. HEATON,* and T. C. WRIGHT* Checked by D. W. MEEK† and C. SUPPLEE†

Di-tert-butylphosphido \ddagger (t-Bu₂P) complexes of the d-block transition metals have been synthesized in order to study the steric effects of phosphido

†Department of Chemistry, The Ohio State University, Columbus, OH 43210-1173. ‡Also known as phosphino.

^{*}Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.

ligands in organometallic chemistry.¹⁻³ Most of the syntheses so far reported are tedious, difficult, or give low yields. The syntheses reported here are straightforward and give reasonable yields of dinuclear Rh(I) species with one *t*-Bu₂P bridging ligand. They should prove to be useful starting materials for further studies in this area.

General Procedure

Tetrahydrofuran (THF) and hexane are freshly distilled from sodium benzophenone ketyl under nitrogen. Toluene is freshly distilled from sodium metal under nitrogen. The starting materials; $Rh_4(CO)_{12}$,⁴ [Rh(COD)Cl]₂,⁵ *t*-Bu₂PH, and *t*-Bu₂PLi (in THF)⁶ are prepared as previously described. All manipulations are performed under nitrogen or under vacuum, using standard procedures.⁷

A. DICARBONYLBIS(DI-*tert*-BUTYLPHOSPHINE)(μ-DI-*tert*-BUTYLPHOSPHIDO)-μ-HYDRIDO-DIRHODIUM(1+) [Rh₂(μ-t-Bu₂P)(μ-H)(CO)₂(t-Bu₂PH)₂]

Procedure

• **Caution.** Because of the high toxicity of carbon monoxide this reaction should be carried out in an efficient fume hood.

Dodecacarbonyltetrarhodium [Rh₄(CO)₁₂] (0.20 g, 0.27 mmol) is dissolved in 50 mL of toluene in a 100-mL Schlenk flask. To the red solution is added di-*tert*-butylphosphine (*t*-Bu₂PH) (0.22 mL, 1.62 mmol) via syringe.* A reflux condenser is attached to the flask and the orange solution is stirred magnetically and heated under reflux for 12 hr. During this time the solution becomes dark red in color. Evolved carbon monoxide (**CAU-TION**, *very toxic*) is vented off via a mercury bubbler. After cooling to room temperature volatile materials are removed under vacuum (oil vacuum pump, $\sim 10^{-2}$ torr). The residue is extracted with two 25-mL portions of hexane, which are then combined and filtered. The volume of the solution is reduced to ~ 10 mL under vacuum and cooling to -40° overnight gives large yellow prisms of Rh₂(μ -t-Bu₂P)(μ -H)(CO)₂(t-Bu₂PH)₂, which are removed by decantation from the supernatant liquid and dried under vacuum. Yield: 0.23 g (61% based on Rh).

*The stoichiometry is critical if Rh:P = 6:4 is used the cluster Rh₆ $(\mu - t - Bu_2P)_4$ (co)₈ $(\mu - H)_2$ is produced.

Anal. Calcd. for $C_{26}H_{57}O_2P_3Rh_2$: C, 44.57%; H, 8.14%; P, 13.29%. Found: C, 44.33%; H, 8.05%; P, 12.89%.

Properties

Dicarbonylbis(di-*tert*-butylphosphine)(μ -di-tert-butylphosphido)- μ -hydridodirhodium(1+) is a yellow crystalline material that loses crystallinity under vacuum. It is soluble in common organic solvents such as hexane or toluene. It is moderately air sensitive in the solid state and more so when in solution.

The ¹H NMR spectrum, in toluene- d_8 solution at -80° , shows resonances at δ 4.70 (d, $J_{P-H} = 308.7$ Hz) (2H, *t*-Bu₂PH); δ 1.63 ($J_{P-H} = 6.69$ Hz) (18H, μ -*t*-Bu₂P); δ 1.18 (d, $J_{P-H} = 11.69$ Hz) (36H, *t*-Bu₂PH); δ – 10.40 (m) (1H, μ -H) (in ppm rel. ext. Me_4 Si; δ 0.0 at 90 MHz). The ³¹P {¹H} NMR in THF at ambient temperature shows a triplet of triplets (t.t.) at δ 264.3 (μ -*t*-Bu₂P) ($^{1}J_{Rh-P} = 113$ Hz, $^{2}J_{P-P} = 190$ Hz) and a doublet of doublets (d.d.) at δ 58.5, $^{1}J_{Rh-P} = 123$ Hz, $^{2}J_{P-P} = 190$ Hz (*t*-Bu₂PH) (at 32.384 MHz in ppm rel. 85% H₃PO₄(aq), δ 0.0),* mp 142–148° (dec), IR (Nujol mull, KBr plates) 2292 (m), 1942 (vs), 1903 (sh) cm⁻¹. The solid state structure has been determined by a single crystal X-ray diffraction study. The coordination geometry about each Rh atom is essentially planar with a fairly long Rh—Rh single bond of 2.905 Å.⁸

B. μ -CHLORO-BIS(η^{4} -1,5-CYCLOOCTADIENE)-(μ -DI-*tert*-BUTYLPHOSPHIDO)-DIRHODIUM(1+) [Rh₂(μ -*t*-Bu₂P) μ -Cl(COD)₂]

Procedure

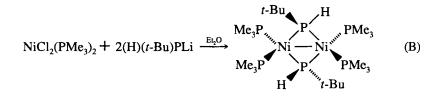
In a 250-mL Schlenk flask is placed $[Rh(\eta^4-COD)Cl]_2$ (0.63 g, 1.27 mmol) and 80 mL of hexane. The yellow suspension is stirred magnetically and cooled to 0°. A solution of t-Bu₂PLi (2.0 mL of a 0.66 *M* THF solution, 1.32 mmol) is added dropwise via syringe. The red-orange mixture is then allowed to warm to room temperature over ~0.5 hr. The flask is then fitted with a reflux condenser and the mixture is heated under reflux for ~16 hr until the suspended $[Rh(\eta^4-COD)Cl]_2$ is dissolved. The dark orange solution is then cooled to room temperature and volatile materials are removed under vacuum. The residue is extracted with three 50-mL portions of toluene and the extracts are combined and filtered. The solution is concen-

*The checkers found ³¹P {¹H} NMR at 202.5 MHz, $\delta = 259.1$, (t.t., ¹J_{Rh-P} = 113 Hz, ²J_{P-P} = 190 Hz), $\delta = 54.5$ (d.d., ¹J_{Rh-P} = 121 Hz, ²J_{P-P} = 190 Hz) for A.

trated under vacuum to $\sim 20 \text{ mL}$ and cooled to -40° to yield yellow crystals of Rh₂(μ -*t*-Bu₂P)(μ -Cl)(η ⁴-COD)₂. Yield: 0.42 g (55% based on Rh).

Anal. Calcd. for $C_{24}H_{42}ClPRh_2$: C, 47.80%; H, 6.97%; P, 5.15%. Found: C, 47.45%; H, 6.53%; P, 4.92%.

Properties


 μ -Chloro-bis(η^{4} -1,5-cyclooctadiene)(μ -di-*tert*-butylphosphino)-dirhodium(1+) is a yellow, crystalline, moderately air-stable, hexane-soluble complex, mp 185–190° (dec). The ³¹P {¹H} NMR spectrum in benzene- d_6 at ambient temperature shows a triplet at δ 43.2 ppm (${}^{1}J_{Rh-P} = 114$ Hz).⁸ The crystal structure of this complex contains two planar Rh(I) units with no apparent direct bonding interactions between the metal centers (Rh—Rh = ~3.3 Å).⁸

References

- 1. R. A. Jones, A. L. Stuart, J. L. Atwood, and W. E. Hunter, Organometallics, 2, 1437 (1983).
- 2. R. A. Jones, T. C. Wright, J. L. Atwood, and W. E. Hunter, Organometallics, 2, 470 (1983).
- 3. R. A. Jones and T. C. Wright, Organometallics, 2, 1842 (1983).
- 4. P. E. Cattermole and A. G. Osborne, Inorg. Synth., 17, 115 (1977).
- 5. G. Giordano and R. H. Crabtree, Inorg. Synth., 19, 218 (1979).
- H. Hoffman and P. Schellenbeck, Chem. Ber., 99, 1134 (1966); K. Issleib and F. Krech, J. Organomet. Chem., 13, 283 (1968).
- 7. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
- A. M. Arif, R. A. Jones, M. H. Seeberger, B. R. Whittlesey, and T. C. Wright, *Inorg. Chem.*, 25, 3943 (1986).

42. tert-BUTYLPHOSPHIDO (t-BuP(H)⁻) BRIDGED DIMERS OF RHODIUM(+1) AND NICKEL(+1) CONTAINING Rh=Rh DOUBLE AND Ni-Ni SINGLE BONDS

```
[Rh(\eta^{4}-COD)Cl]_{2} + 2(H)(t-Bu)PLi \xrightarrow{Et_{2}O}_{PMe_{3}}
H^{t-Bu} + LiCl + other products (A)
Me_{3}P + H^{t-Bu} + LiCl + other products (A)
Me_{3}P + H^{t-Bu} + LiCl + other products (A)
```


Submitted by R. A. JONES* and M. H. SEEBERGER* Checked by A. A. CHERKAS,[†] F. VAN GASTEL,[†] and A. J. CARTY[†]

Relatively few phosphido complexes of the transition metals are known that have an alkyl or aryl group (R) in addition to hydrogen attached to phosphorus [i.e., $R(H)P^{-}$].¹ The reactivity of the P—H unit has been studied in only a few cases.² The syntheses described here are for dinuclear Rh(+1) or Ni(+1) complexes that have two *t*-BuP(H)⁻ bridges. In both complexes the metals have pseudotetrahedral geometries. Of added interest for the rhodium complex is the presence of a Rh—Rh double bond.³

General Procedure

All operations are performed under nitrogen or under vacuum using standard Schlenk techniques.⁴ Diethyl ether, hexane, and THF are freshly distilled from sodium benzophenone ketyl. The compounds $[Rh(\eta^4-COD)Cl]_2$,⁵ NiCl₂(PMe₃)₂,⁶ and t-BuPH₂⁷ are prepared by the literature methods. A solution of the compound (H)(t-Bu)PLi is prepared by the addition of *n*-BuLi to a solution of t-BuPH₂ in THF (see below).

A. BIS-tert-BUTYLPHOSPHIDOTETRAKIS-(TRIMETHYLPHOSPHINE)DIRHODIUM(+1) [Rh(μ-t-Bu(H)P)(PMe₃)₂]₂

Procedure

t-BuPH₂ + n-BuLi $\xrightarrow{\text{THF}}$ (H)(t-Bu)PLi + n-BuH \uparrow

A dilute (~0.5 *M*) solution of (H)(*t*-Bu)PLi in THF is prepared by the addition of one equivalent of *n*-BuLi to *t*-BuPH₂ in THF.

*Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.

[†]Department of Chemistry, The University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

A 250-mL Schlenk tube, flushed with nitrogen and capped with a rubber septum, is cooled to -78° (dry ice/acetone bath) and THF (50 mL) is added. *t*-BuPH₂ (3.68 g, 5.0 mL, 41 mmol) is then added via syringe. Exactly one equivalent of *n*-BuLi (18.6 mL of a 2.20 *M* hexane solution) is then added slowly via syringe while the mixture is stirred magnetically. The evolved butane is vented via a mercury bubbler. The solution is allowed to warm to room temperature over 4 hr. The yellow-orange solution is then used for subsequent reactions. It may be stored at -40° for several weeks. If a slight excess of *n*-BuLi is used, a darker orange color results although this does not appear to affect the final yield of either compound formed by procedures A or B.

The compound di- μ -chloro-bis(η^4 -1,5-cyclooctadiene)dirhodium,⁵ (0.95 g, 1.93 mmol) is placed in a 250-mL Schlenk tube, and 100 mL of diethyl ether is added via syringe. The tube is cooled to -100° (liquid nitrogen, ethanol slush), and a solution of (H)(t-Bu)PLi in THF (6.57 mL of a 0.56 M solution, 3.68 mmol), prepared as just described, is added dropwise via syringe. The mixture is stirred magnetically and allowed to warm to room temperature over 10 hr. At this stage, an intensely red-purple solution is produced. The Schlenk tube is then recooled to -100° and excess PMe₃ (CAUTION, TOXIC) (2.0 mL, 10 mmol) is added via syringe. The mixture is again allowed to warm to room temperature (over 2 hr). (The checkers found a green-brown solution at this stage.) The solution is then filtered, and the volatile materials are removed under vacuum. The residue is extracted into 40 mL of hexane. (The checkers used 90 mL of hexane.) The solution is filtered and evaporated under vacuum to 10 mL. Cooling to -40° for 16 hr yields a large crystalline mass of the product. The supernatant liquid is decanted and the product is dried under vacuum at room temperature.

Anal. Calcd. for $C_{20}H_{56}P_6Rh_2$: C, 34.87%; H, 8.10%; P, 27.02%. Found: C, 35.49%; H, 8.38%; P, 26.38%.

Properties

The product is a red, crystalline, hexane-soluble material.¹ It is air stable in the solid state for short periods but unstable in solution when exposed to air. Yield: 85% (checkers found 74%), mp 219–221° (dec). The IR spectrum (Nujol mull, KBr plates) has a band of medium intensity at 2140 cm⁻¹ assigned to the P—H stretch. The ³¹P {¹H} NMR at 32.384 MHz in C₆D₆ at ambient temperature is a second-order pattern with two multiplets centered at δ 207.25 and δ – 10.5 (in ppm rel. 85% H₃PO₄, δ -0.0).¹

B. BIS-tert-BUTYLPHOSPHIDOTETRAKIS-(TRIMETHYLPHOSPHINE)DINICKEL(+1) [Ni(μ-t-Bu(H)P)(PEe₃)₂]₂

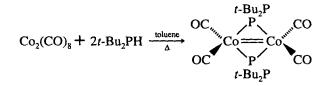
Procedure

The compound dichlorobis(trimethylphosphine)nickel⁶ (2.11 g, 7.4 mmol) is placed in a 250-mL Schlenk tube, and 80 mL of diethyl ether is added. The mixture is then cooled to -100° (liquid nitrogen, ethanol slush), and a solution of (H)(t-Bu)PLi (26.4 mL of a 0.56 M THF solution, 14.8 mmol) is added dropwise via syringe. The reaction mixture is stirred magnetically and allowed to warm to room temperature over a period of 10 hr. The solution is then filtered, the volatile materials are removed under vacuum, and the residue is extracted into 80 mL of hexane. The solution is filtered and concentrated to 15 mL under vacuum. Cooling to -40° gives a black solid after 12 hr. The supernatant liquid is decanted, and the solid is redissolved in hexane (40 mL). The resulting intensely purple colored solution is again concentrated (15 mL) and cooled (-40°). After 48 hr, large, deep purple crystals of the product are formed. They are separated from the supernatant liquid and dried under vacuum. Yield: 1.85 g (85%).

Anal. Calcd. for $C_{20}H_{56}Ni_2P_6$: C, 40.00%; H, 9.33%; P, 31.00%. Found: C, 39.37%; H, 8.54%; P, 30.38%.

Properties

The product is deep purple (almost black) in the solid state and gives intensely colored purple solutions in hydrocarbon solutions. It is best handled under nitrogen at all times since it decomposes within minutes on exposure to the atmosphere, mp 119–121° (dec slowly over this range), IR (Nujol mull, KBr plates) 2160 (m) (cm⁻¹) ν_{P-H} . The ³¹P {¹H} NMR shows resonances at δ 160.00 (s), δ 136.54 (s), δ –22.13 (s), δ –32.00 (in C₆D₆ solution at 32.384 MHz, in ppm rel. 85% H₃PO₄ δ 0.0).¹ (The checkers found IR; $\nu_{P-H} = 2173$ cm⁻¹ and ³¹P {¹H} NMR (101.26 MHz, toluene-*d*₈; δ -224.4 (s), 138.9 (s), 32.9 (s), –19.9 (s), –21.2 (s), –21.5 (s), (the unusual ³¹P NMR spectrum has been discussed previously¹) mp 119–121°.


References

- 1. R. A. Jones, N. C. Norman, M. H. Seeberger, J. L. Atwood, and W. E. Hunter, Organometallics, 2, 1629 (1983).
- H. Vahrenkamp and D. Wolters, Angew. Chem. Int. Ed. (Engl.), 22, 154 (1983); H. Vahrenkamp and D. Wolters, J. Organomet. Chem., 224, C17 (1982); P. M. Treichel,

W. K. Dean, and W. M. Douglas, *Inorg. Chem.*, **11**, 1609 (1972); W. Clegg and S. Morton, *Inorg. Chem.*, **18**, 1189 (1979); J. S. Field, R. J. Haines, and D. Smith, *J. Organomet. Chem.*, **224**, C49 (1982); K. Isslieb and H. R. Roloff, *Z. Anorg. Allg. Chem.*, **324**, 250 (1963).

- 3. R. A. Jones and T. C. Wright, Organometallics, 2, 1842 (1983).
- 4. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
- 5. G. Giordano and R. H. Crabtree, Inorg. Synth., 19, 218 (1979).
- 6. O. Dahl, Acta Chem. Scand., 23, 2342 (1969).
- 7. M. C. Hoff and P. Hill, J. Org. Chem., 24, 356 (1959).

43. TETRACARBONYLBIS(μ -DI-tert-BUTYLPHOSPHIDO)DICOBALT(+1) [Co(μ -t-Bu₂P)(CO)₂]₂

Submitted by D. J. CHANDLER,* R. A. JONES,* K. S. RATLIFF,* and A. L. STUART* Checked by N. VISWANATHAN† and G. L. GEOFFROY†

Varieties of dinuclear cobalt complexes are known with two phosphido bridges.¹ Those so far reported with the di-*tert*-butylphosphido ligand have two pseudotetrahedral 18-electron Co atoms linked by a metal-metal bond formally of order 2.¹ Tetracarbonylbis(μ -di-*tert*-butylphosphido)dicobalt(+1) can be prepared from the reaction of Co(CO)₄I (generated *in situ*) with Li(*t*-Bu₂P) in THF.¹ We describe here a simplified, high yield synthesis of this dimer via the interaction of Co₂(CO)₈ with *t*-Bu₂PH in toluene. The complex should prove to be a useful starting material for further reactivity studies.

General Procedure

Hexane is freshly distilled from sodium benzophenone ketyl under nitrogen. Toluene is freshly distilled from sodium under nitrogen. Octacarbonyldicobalt $\{Co_2(CO)_8\}$ (Strem Chemicals) is used as obtained. Di-*tert*-butylphosphine is prepared by the literature method.² All manipulations are

†Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.

^{*}Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.

performed under nitrogen or under vacuum using standard Schlenk line techniques.³

Procedure

■ **Caution.** Because of the high toxicity of carbon monoxide, this reaction should be carried out in an efficient fume hood.

Octacarbonyldicobalt $\{Co_2(CO)_8\}$ (4.00 g, 11.7 mmol) is placed in a 250mL Schlenk tube, which is then cooled to -78° with a dry ice-acetone bath. Toluene (150 mL) is added, and the reddish-brown suspension is stirred magnetically. Di-tert-butylphosphine (t-Bu₂PH) (3.42 g, 23.4 mmol) is added via syringe, and the mixture is allowed to warm to room temperature. It is first brown, becomes reddish brown and then burgundy in color. The solution is heated under reflux, under nitrogen for 12 hr, and the color changes first to dark red and then almost black. The carbon monoxide that is evolved is allowed to escape via a mercury bubbler (**CAUTION. VERY TOXIC**). After cooling to room temperature, volatile materials are removed under vacuum. The residue is washed with 20 mL of hexane and then extracted into four 40-mL portions of toluene. The dark red hexane solution is discarded, the extracts are combined, and the solution is filtered. Some dark green residue is left on the filter. The volume of the solution is reduced to ~ 100 mL under vacuum at room temperature and cooled to -40° . After 24 hr, dark green crystals of the product are removed from the supernatant liquid and dried under vacuum. Additional product can be obtained from the supernatant liquid by further reduction in volume and recooling. Overall yield: 4.55 g (75%), mp 215-218° (sealed tube under nitrogen, 1 atm, uncorrected) (dec).

Anal. Calcd. for $C_{20}H_{36}Co_2O_4P_2$: C, 46.1%; H, 6.92%; P, 11.9%. Found: C, 45.9%; H, 6.79%; P, 11.7%.

Properties

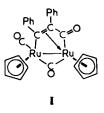
Tetracarbonylbis(μ -di-*tert*-butylphosphido)dicobalt(+1) is a deep green, almost black, crystalline solid. It is air-stable in the solid state for several hours. Solutions decompose slowly when exposed to air. The compound is soluble in toluene, benzene, and THF but only sparingly so in hexane. The IR spectrum (toluene solution, KBr cells) shows two strong bands at 1997 and 1955 cm⁻¹. The ¹H NMR spectrum in C₆D₆ at ambient temperature shows a multiplet at δ 1.15 (*t*-Bu₂P) (in ppm rel. *Me*₄Si δ 0.0, 90 MHz). The ³¹P {¹H} NMR spectrum shows a broad singlet; δ 331.43 ($\Delta w_{1/2} = 33$ Hz) (in ppm rel. 85% H₃PO₄ (aq), δ 0.0).¹

References

- 1. See, for example, R. A. Jones, A. L. Stuart, J. L. Atwood, and W. E. Hunter, Organometallics, 2, 1437 (1983) and references therein.
- H. Hoffman and P. Schellenbeck, Chem. Ber., 99, 1134 (1966); K. Issleib and F. Krech, J. Organomet. Chem., 13, 283 (1968).
- 3. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.

44. (η⁵-CYCLOPENTADIENYL)DIRUTHENIUM COMPLEXES

Submitted by N. M. DOHERTY* and S. A. R. KNOX* Checked by C. P. CASEY[†] and G. T. WHITEKER[†]


The generation and interconversion of hydrocarbon fragments on metal surfaces is an important aspect of transition metal catalysis.¹ In an effort to model and understand these transformations, much attention has been focused on the synthesis and reactivity of organic species coordinated at polynuclear transition metal centers.² Organodiruthenium complexes have provided a particularly rich area of study. The availability of a variety of organometallic derivatives of the bis(η^5 -cyclopentadienyl)diruthenium carbonyl system has allowed extensive examination of the reactivity of bridging alkylidene, alkylidyne, and ethenylidene ligands.

The starting material for preparation of these derivatives, $[Ru_2(CO)_4(\eta^5-C_3H_5)_2]$, has previously been obtained by the reaction of sodium cyclopentadienide with a dihaloruthenium(II) carbonyl { $[Ru(CO)_2I_2]$ (ref. 3) or $[Ru(CO)_3Cl_2]_2$ (ref. 4)} prepared by carbonylation of the corresponding ruthenium(III) trihalide. A more facile synthesis was later reported, involving the reaction of triruthenium dodecacarbonyl with cyclopentadiene.⁵ The procedure described herein represents a modification of this second method, resulting in an improved yield.

A number of synthetic routes to organic derivatives of $[Ru_2(CO)_4(\eta^5-C_5H_5)_2]$ have been developed^{6.7} and several representative examples are described here. One convenient entry into this chemistry is provided by the complex $[Ru_2(CO)(\mu-CO)\{\mu-\eta^1:\eta^3-C(O)C_2Ph_2\}(\eta^5-C_5H_5)_2](I).^8$

^{*}Department of Inorganic Chemistry, The University, Bristol BS8 1TS, United Kingdom.

[†]Department of Chemistry, University of Wisconsin, Madison, WI 53706.

In boiling toluene, diphenylacetylene is rapidly displaced from this species by a variety of reagents; that is, it serves as an excellent source of the Ru₂(CO)₃(η^5 -C₅H₅)₂ fragment.⁹ Reaction with phosphorus ylides provides a series of μ -alkylidene derivatives [Ru₂(CO)₂(μ -CO)(μ -CHR)(η^5 -C₅H₅)₂].¹⁰ Another route to organodiruthenium complexes involves anionic methyl attack on a coordinated carbonyl ligand of [Ru₂(CO)₄(η^5 -C₅H₅)₂], followed by protonation to generate a cationic μ -alkylidyne derivative, [Ru₂(CO)₂(μ -CO)(μ -CMe)(η^5 -C₅H₅)₂]⁺. This can be deprotonated to give a μ -ethenylidene complex [Ru₂(CO)₂(μ -CO)(μ -CCH₂)(η^5 -C₅H₅)₂] or treated with hydride to yield the μ -ethylidene derivative [Ru₂(CO)₂(μ -CO)(μ -CHMe)(η^5 -C₅H₅)₂].¹¹

A. TETRACARBONYLBIS(η⁵-CYCLOPENTADIENYL)-DIRUTHENIUM

$$\frac{3}{[Ru_{3}(CO)_{12}]} + 2C_{5}H_{6} \longrightarrow \\2[RuH(CO)_{2}(\eta^{5}-C_{5}H_{5})] \xrightarrow{O_{2}} [Ru_{2}(CO)_{4}(\eta^{5}-C_{5}H_{5})_{2}]$$

Procedure

A three-necked, 500-mL, round-bottomed flask equipped with a nitrogen by-pass, a reflux condenser, and a magnetic stirring bar is charged with triruthenium dodecacarbonyl (8.5 g, 0.013 mol) (best prepared by the carbonylation of RuCl₃ in methanol¹²), 350 mL of dry, deoxygenated heptane, and freshly distilled cyclopentadiene (17.5 g, 0.265 mol) [prepared by cracking dicyclopentadiene over iron filings under a nitrogen atmosphere, and collecting the cyclopentadiene distillate (40–45°) from a 12in. fractionating column]. The mixture is heated at reflux for 1 hr, producing [RuH(CO)₂(η^5 -C₅H₅)]. A stopper is then removed from the flask and the volume of solvent is reduced to 50 mL by continued heating at reflux under a brisk flow of nitrogen, allowing the heptane to boil away. (This procedure is performed in a fume hood.) At this point orange product begins to crystallize from the reaction mixture. An additional 300 mL of untreated heptane, obtained directly from the reagent bottle, is added to the flask, the stopper is replaced, and the solution is heated at reflux for a further 2 hr. On cooling to room temperature the reaction mixture affords orange crystals of the product. The solid is collected by decantation and washed three times with 30-mL portions of hexane. After drying under vacuum the yield is 7.15 g. Additional product is obtained from the decanted solution and hexane washings by evaporation of the solvent followed by chromatography on a 3×20 cm alumina (Brockman grade 2) column. Elution with dichloromethane-hexane (1:3) removes unreacted starting materials and impurities as yellow bands. Elution with dichloromethanehexane (1:1) develops a yellow band from which 0.77 g of product is obtained. Overall yield of product is 90-95% by this procedure.

Anal. Calcd. for C₁₄H₁₀O₄Ru₂: C, 37.8; H, 2.3. Found: C, 37.6; H, 2.1.

Properties

The compound is an air-stable, orange crystalline solid, soluble in common organic solvents. Solutions decompose slowly in air on exposure to light. The IR spectrum (in CH_2Cl_2) shows bands at 2003 (s), 1966 (s), 1934 (m), and 1771 (s) cm⁻¹ due to the carbonyl ligands.

B. μ-CARBONYL-CARBONYLBIS($η^{5}$ -CYCLOPENTADIENYL)-(μ-3-OXO-1,2-DIPHENYL-1-η:1,2,3-η-1-PROPEN-1,3-diyl)-DIRUTHENIUM(Ru—Ru), [Ru₂(CO)(μ-CO){μ-η¹: η³-C(O)C₂Ph₂}(η⁵-C₅H₅)₂] (I)

 $[Ru_{2}(CO)_{4}(\eta^{5}-C_{5}H_{5})_{2}] + PhC_{2}Ph \xrightarrow{h\nu} \\ [Ru_{2}(CO)(\mu-CO)\{\mu-\eta^{1}:\eta^{3}-C(O)C_{2}Ph_{2}\}(\eta^{5}-C_{5}H_{5})_{2}] + CO$

Procedure

The reaction is performed in a silica glass reaction tube (2.5 cm in diameter, 40 cm in length, with a ground glass joint at the top) equipped with a nitrogen by-pass and a magnetic stirring bar. The UV irradiation source is a 250-W mercury lamp held ~20 cm from the reaction vessel. A mixture of tetracarbonylbis(η^5 -cyclopentadienyl)diruthenium (1.40 g, 3.15 mmol) and diphenylacetylene (1.68 g, 9.43 mmol) in dry, deoxygenated toluene (150 mL) is irradiated under a nitrogen atmosphere for 40 hr, during which time the color of the solution changes from orange to dark red. The solvent is evaporated from this mixture under reduced pressure and the residue is dissolved in the minimum of dichloromethane, then introduced to an alumina (Brockman grade 2) column (20×3 cm). Elution with dichloromethane-hexane (7:3) separates a yellow band that yields 0.045 g (3%) of a yellow crystalline side product $[Ru_2(CO)_4(\eta^5-C_5H_5)\{\eta^5-C_5H_4Ru(CO)_2(\eta^5-C_5H_5)\}]$.⁸ Elution with dichloromethane-acetone (20:1) develops an orange band that yields 0.92 g (49%) of product after evaporation of the eluent.

Anal. Calcd. for C₂₇H₂₆O₃Ru₂: C, 54.5; H, 3.4. Found: C, 54.0; H, 3.4.

Properties

The compound is a red, crystalline, air-stable solid, soluble in common organic solvents. The IR spectrum (in CH_2Cl_2) exhibits bands at 1978 (s), 1803 (s), and 1731 (m) cm⁻¹ due to the carbonyl and ketone groups. The ¹H NMR spectrum (in C_5D_5N) shows singlets at $\delta = 5.28$ and 5.56 for the η^5 -cyclopentadienyl ligands and a multiplet centered at $\delta = 7.30$ for the phenyl protons.

The compound reacts readily in boiling toluene with alkynes (HC=CH, HC=CMe, MeC=CMe, HC=CPh, MeC=CPh, MeC=CPh, MeOOCC=CCOOMe) to form the analogs [Ru₂(CO)(μ -CO){ μ - η^1 : η^3 -C(O)CR¹CR²}(η^5 -C₅H₅)₂] in good yields.⁸ Likewise, reaction of the compound in refluxing toluene with CH₂=CH₂, SO₂, or P(OMe)₃, leads to substitution products of the formula [Ru₂(CO)₃(L)(η^5 -C₅H₅)₂].⁹ With allene an unusual reaction occurs to yield [Ru(CO)(η^5 -C₅H₅){ η^3 -C₃H₄-2-Ru(CO)₂(η^5 -C₅H₅)}].¹³ Ylides provide a general route to μ -alkylidene compounds, exemplified below.

C. μ-CARBONYL-μ-METHYLENE-BIS[CARBONYL-(η⁵-CYCLOPENTADIENYL)RUTHENIUM]

$$[Ru_{2}(CO)(\mu-CO)\{\mu-\eta^{1}:\eta^{3}-C(O)C_{2}Ph_{2}\}(\eta^{5}-C_{5}H_{5})_{2}](I) + Ph_{3}PCH_{2} \longrightarrow [Ru_{2}(CO)_{2}(\mu-CO)(\mu-CH_{2})(\eta^{5}-C_{5}H_{5})_{2}] + PhC_{2}Ph + PPh_{3}$$

Procedure

A two-necked, 250-mL flask equipped with a nitrogen by-pass, a reflux condenser, and a magnetic stirring bar is charged with $[Ru_2(CO)(\mu-CO)-{\mu-\eta^1:\eta^3-C(O)C_2Ph_2}(\eta^5-C_5H_5)_2]$ (0.50 g, 0.84 mmol) and 100 mL of dry, deoxygenated toluene. A solution of Ph₃PCH₂ (3 mmol), prepared by the literature method,¹⁴ in 20 mL of toluene is added to the flask and the mixture is heated at reflux for 0.5 hr, during which time a color change

from orange-red to yellow is observed. The solvent is removed under reduced pressure and the residue is chromatographed on an alumina (Brockman grade 2) column (20×3 cm). Elution with dichloromethanehexane (2:3) develops a yellow band that yields 0.25 g (70%) of yellow crystalline product, and an orange band that yields 0.055 g (10%) of the side product [Ru₂(CO)(PPh₃)(μ -CO)₂(η ⁵-C₅H₅)₂] as orange crystals.¹⁰

Anal. Calcd. for $C_{14}H_{12}O_3Ru_2$: C, 39.1; H, 2.8. Found: C, 39.1; H, 2.9. Yields of 30 and 35% were obtained by the checkers.

Properties

The compound is an air-stable, yellow crystalline solid and is readily soluble in common organic solvents. It is isolated as a mixture of cis and trans isomers that interconvert in solution too rapidly to allow their separation by chromatography. The IR spectrum (in CH_2Cl_2) of the mixture of isomers show bands at 1985 (s), 1941 (m), and 1781 (m) cm⁻¹ due to the carbonyl ligands. The ¹H NMR spectrum (in CDCl₃) exhibits singlet resonances for the trans isomer at $\delta = 5.32$ (cyclopentadienyl protons) and 8.44 (μ methylene protons) and for the cis isomer at $\delta = 5.24$ (C_5H_5) and at 7.52 and 9.16 (μ -CH₂).

Related μ -alkylidene derivatives, $[Ru_2(CO)_2(\mu$ -CO)(μ -CHR)(η^5 -C₅H₅)₂] (R = Me, Et, Ph, CH=CH₂) can be prepared in good to moderate yields by the analogous reaction of $[Ru_2(CO)(\mu$ -CO){ μ - η^1 : η^3 -C(O)C₂Ph₂}(η^5 -C₅H₅)₂] with Ph₃PCHR.¹⁰ In a similar manner, the reactions of thermally robust diazoalkanes $[CH(COOEt)N_2 \text{ or } Ph_2CN_2]$ with $[Ru_2(CO)(\mu$ -CO){ μ - η^1 : η^3 -C(O)C₂Ph₂}(η^5 -C₅H₅)₂] in refluxing toluene produce the corresponding μ -alkylidene derivatives.¹⁰

The μ -methylene complex $[Ru_2(CO)_2(\mu-CO)(\mu-CH_2)(\eta^5-C_5H_5)_2]$ may be prepared directly from $[Ru_2(CO)_4(\eta^5-C_5H_5)_2]$ and Li[BHEt₃] (see Section F).

D. μ-CARBONYL-μ-ETHENYLIDENE-BIS[CARBONYL-(η⁵-CYCLOPENTADIENYL)RUTHENIUM]

 $[Ru_{2}(CO)_{4}(\eta^{5}-C_{5}H_{5})_{2}] + MeLi \longrightarrow$ $[Ru_{2}(CO)_{3}\{C(O)Me\}(\eta^{5}-C_{5}H_{5})_{2}]^{-} + Li^{+}$ $[Ru_{2}(CO)_{3}\{C(O)Me\}(\eta^{5}-C_{5}H_{5})_{2}]^{-} + 2H^{+} \longrightarrow$ $[Ru_{2}(CO)_{2}(\mu-CO)(\mu-CMe)(\eta^{5}-C_{5}H_{5})_{2}]^{+} + H_{2}O$

 $[\operatorname{Ru}_2(\operatorname{CO})_2(\mu\operatorname{-CO})(\mu\operatorname{-CMe})(\eta^5\operatorname{-C}_5\operatorname{H}_5)_2]^+ + \operatorname{NEt}_3 \longrightarrow \\ [\operatorname{Ru}_2(\operatorname{CO})_2(\mu\operatorname{-CO})(\mu\operatorname{-CCH}_2)(\eta^5\operatorname{-C}_5\operatorname{H}_5)_2] + \operatorname{NHEt}_3^+$

■ **Caution.** Methyllithium diethyl ether solutions are pyrophoric in air and must be handled under an inert atmosphere. It is advisable to use a hood.

Procedure

A Schlenk flask equipped with a stopper, a nitrogen by-pass, and a magnetic stirring bar is charged with tetracarbonylbis(n⁵-cyclopentadienyl)diruthenium (0.79 g, 1.78 mmol) and 100 mL of dry, deoxygenated THF. Halide-free methyllithium in diethyl ether (2.0 mL of 1 M solution) is added by syringe and the solution is stirred at room temperature for 45 min. The reaction mixture is cooled to -78° and an excess of H[BF₄]·OEt₂ (~2 mL) is added, giving $[Ru_2(CO)_2(\mu-CO)(\mu-CMe)(\eta^5-C_5H_5)_2][BF_4]$ as an orange precipitate. The mixture is allowed to warm to room temperature over ~ 1 hr, an excess of NEt₃ (5 mL) added, and then the whole is stirred for a further 10 min. The solvent is removed under pressure and the oily residue extracted with dichloromethane (~200 mL). The extract is washed with water ($\sim 200 \text{ mL}$) to remove ammonium salt, the water layer is backextracted with dichloromethane (~200 mL), and the solvent is evaporated from the combined dichloromethane solutions. The residue is chromatographed on an alumina column. Elution with dichloromethane-hexane (2:3) develops two yellow bands that yield, in turn, trans and cis isomers of the product in a combined yield of 0.60 g (76%).

Anal. Calcd. for C₁₅H₁₂O₃Ru₂: C, 40.7; H, 2.7. Found: C, 40.7; H, 2.8.

Properties

The compound is a yellow, crystalline, air-stable solid, soluble in common organic solvents. The IR spectrum (in CH₂Cl₂) of the trans isomer shows carbonyl bands at 1953 (s) and 1793 (m) cm⁻¹; the cis isomer shows carbonyl bands at 1994 (s), 1951 (w), and 1788 (m) cm⁻¹. The ¹H NMR spectrum (in CDCl₃) of the trans product exhibits singlets at $\delta = 5.26$ for the η^5 -C₅H₅ protons and at 6.37 for the vinylidene protons; the cis product shows singlets at $\delta = 5.20$ (η^5 -C₅H₅) and 6.27 (μ -CCH₂).

E. μ -CARBONYL- μ -ETHYLIDYNE-BIS[CARBONYL- $(\eta^{5}$ -CYCLOPENTADIENYL)RUTHENIUM] TETRAFLUOROBORATE

 $[\operatorname{Ru}_2(\operatorname{CO})_2(\mu\operatorname{-CO})(\mu\operatorname{-CCH}_2)(\eta^5\operatorname{-C}_5\operatorname{H}_5)_2] + H[\operatorname{BF}_4] \longrightarrow \\ [\operatorname{Ru}_2(\operatorname{CO})_2(\mu\operatorname{-CO})(\mu\operatorname{-CMe})(\eta^5\operatorname{-C}_5\operatorname{H}_5)_2][\operatorname{BF}_4]$

Procedure

The reaction is carried out in a 250-mL, round-bottomed flask equipped with a magnetic stirring bar. A nitrogen atmosphere was used, but is not strictly necessary. A sample of μ -carbonyl- μ -ethenylidene-bis[carbonyl(η^5 cyclopentadienyl)ruthenium] (0.20 g, 0.45 mmol) is dissolved in 100 mL of dichloromethane. A few drops of H[BF₄]·OEt₂ are added to the stirred solution, causing an immediate color change from yellow to orange. The solvent is removed under reduced pressure and the residue washed three times with 30-mL portions of diethyl ether. Crystallization from dichloromethane affords 0.22 g (92%) of product.

Anal. Calcd. for $C_{15}H_{13}BF_4O_3Ru_2$: C, 34.0; H, 2.5. Found: C, 34.2; H, 2.7.

Properties

The compound is an orange crystalline solid that is stable under vacuum, but slowly decomposes in the air. It is soluble in dichloromethane and acetone, and solutions may be handled briefly in air. The IR spectrum (in CH₂Cl₂) shows bands at 2049 (s), 2014 (w), and 1859 (m) cm⁻¹ due to the carbonyl ligands. The ¹H NMR spectrum (in CD₂Cl₂) shows singlets at $\delta = 4.62$ for the ethylidyne protons and at 5.72 for the η^{5} -cyclopentadienyl protons.

F. μ-CARBONYL-μ-ETHYLIDENE-BIS[CARBONYL-(η⁵-CYCLOPENTADIENYL)RUTHENIUM]

 $[Ru_{2}(CO)_{4}(\eta^{5}-C_{5}H_{5})_{2}] + MeLi \longrightarrow \\ [Ru_{2}(CO)_{3}\{C(O)Me\}(\eta^{5}-C_{5}H_{5})_{2}]^{-} + Li^{+} \\ [Ru_{2}(CO)_{3}\{C(O)Me\}(\eta^{5}-C_{5}H_{5})_{2}]^{-} + 2H^{+} \longrightarrow \\ [Ru_{2}(CO)_{2}(\mu-CO)(\mu-CMe)(\eta^{5}-C_{5}H_{5})_{2}]^{+} + H_{2}O \\ [Ru_{2}(CO)_{2}(\mu-CO)(\mu-CMe)(\eta^{5}-C_{5}H_{5})_{2}]^{+} + H^{-} \longrightarrow \\ [Ru_{2}(CO)_{2}(\mu-CO)(\mu-CMe)(\eta^{5$

■ **Caution.** Methyllithium diethyl ether solutions are pyrophoric in air and must be handled under an inert atmosphere. It is advisable to use a hood.

Procedure

A Schlenk flask equipped with a stopper, a nitrogen by-pass, and a magnetic stirring bar is charged with tetracarbonylbis(η^5 -cyclopentadienyl)diruthenium (1.00 g, 2.25 mmol) and 40 mL of dry, deoxygenated THF. Halide-free methyllithium in diethyl ether (2.3 mL of 1 *M* solution) is added by syringe and the mixture is stirred for 1 hr. The reaction is cooled to -78° , an excess of H[BF₄]·OEt₂ (~ 2 mL) added, and the mixture stirred at this temperature for 30 min. An excess of Na[BH₄] (0.5 g, 13 mmol) is added and the mixture is allowed to warm to room temperature over 30 min. The solvent is evaporated at reduced pressure, the residue extracted with dichloromethane (~ 100 mL), and the extracts filtered through a short alumina column. The filtrate is chromatographed on another alumina (Brockman grade 2) column (20 × 3 cm). Elution with dichloromethane–hexane (1:1) gives a single yellow band which yields 0.89 g (89%) of product.

Anal. Calcd. for C₁₅H₁₄O₃Ru₂: C, 40.5; H, 3.2. Found: C, 40.4; H, 3.2.

Properties

The compound is a yellow, air-stable crystalline solid, soluble in common organic solvents. The IR spectrum (in CH₂Cl₂) of the mixture of cis and trans isomers obtained shows bands at 1974 (s), 1933 (m), and 1776 (m) cm⁻¹ due to the carbonyl ligands. The ¹H NMR spectrum (in CDCl₃) shows resonances for the trans isomer at $\delta = 3.16$ (d, J = 7 Hz, μ -CHMe), 5.18 (s, C₅H₅), 5.24 (s, C₅H₅), and 10.14 (q, J = 7 Hz, μ -CHMe), and for the cis isomer at $\delta = 3.04$ (d, J = 7 Hz, μ -CHMe), 5.18 (s, 2C₅H₅), and 10.94 (q, J = 7 Hz, μ -CHMe).

A related sequence, involving the action of Li[BHEt₃] on $[Ru_2(CO)_4$ - $(\eta^5-C_5H_5)_2]$, produces the previously described methylene complex $[Ru_2(CO)_2(\mu-CO)(\mu-CH_2)(\eta^5-C_5H_5)_2]$ in excellent yield.¹⁵

References

- 1. E. L. Muetterties and J. Stein, Chem. Rev., 79, 479 (1979).
- 2. See, for example, W. A. Herrmann, Angew. Chem., Int. Ed. (Engl.), 21, 117 (1982).
- 3. E. O. Fischer and A. Vogler, Z. Naturforsch., B17, 421 (1962).
- 4. T. Blackmore, M. I. Bruce, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 2158.
- 5. A. P. Humphries and S. A. R. Knox, J. Chem. Soc., Dalton Trans., 1975, 1710.
- A. F. Dyke, S. R. Finnimore, S. A. R. Knox, P. J. Naish, A. G. Orpen, G. H. Riding, and G. E. Taylor, *Reactivity of Metal-Metal Bonds*, M. H. Chisholm (ed.), (ACS Symposium Series, Vol. 155) Washington, Vol. 1981, p. 259.
- 7. S. A. R. Knox, Pure Appl. Chem., 56, 81 (1984) and references therein.

- 8. A. F. Dyke, S. A. R. Knox, P. J. Naish, and G. E. Taylor, J. Chem. Soc., Dalton Trans., 1982, 1297.
- D. L. Davies, A.F. Dyke, S. A. R. Knox, and M. J. Morris, J. Organomet. Chem., 215, C30 (1981).
- 10. D. L. Davies, S. A. R. Knox, K. A. Mead, M. J. Morris, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 2293.
- 11. R. E. Colborn, D. L. Davies, A. F. Dyke, A. Endesfelder, S. A. R. Knox, A. G. Orpen, and D. Plaas, J. Chem. Soc., Dalton Trans., 1983, 2661.
- 12. M. I. Bruce and C. H. Hameister, see Comprehensive Organometallic Chemistry, Vol. 4, G. Wilkinson, F. G. A. Stone, and E. W. Abel, (eds.), Pergamon Press, 1982, p. 664.
- 13. R. E. Colborn, A. F. Dyke, S. A. R. Knox, K. A. Mead, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2099.
- 14. H. Schmidbaur, H. Stühler, and W. Vornberger, Chem. Ber., 105, 1084 (1972).
- 15. D. H. Berry and J. E. Bercaw, private communication.

45. DI-μ-IODO-BIS(TRICARBONYLOSMIUM), BIS(TETRACARBONYLIODOOSMIUM), AND DICARBONYLIODO(η⁵-CYCLOPENTADIENYL)OSMIUM

Submitted by STEVEN ROSENBERG,* ALBERT W. HERLINGER,† WAYNE S. MAHONEY,* and GREGORY L. GEOFFROY* Checked by ROBERT T. HEMBRE,† K. R. BIRDWHISTELL,† and J. NORTON†

Metal carbonyl-halide complexes are valuable synthetic reagents for the preparation of many interesting mononuclear and polynuclear compounds. Osmium reagents include such complexes as $Os(CO)_4X_2$,¹ $Os_2(CO)_8X_2$,² and $Os_2(CO)_6(\mu-X)_2$,³ where X = Cl, Br, and I. The binuclear compounds serve as useful synthetic materials for the preparation of bi- and polynuclear organometallic compounds. The utility of the two binuclear reagents, however, has been limited by the lack of convenient routes for their synthesis. Previously the title compounds have been obtained in low yields by reaction of CF₃I or I₂ with Os₃(CO)₁₂ in benzene in sealed tubes over several days.⁴ The Os₂(CO)₈I₂ complex has also been reported to be obtainable in good yield by reacting Os₃(CO)₁₂ with iodine under controlled conditions,³ but the specific details of this synthesis were not given. The same authors report that refluxing Os₂(CO)₈I₂ in heptane yields Os₂(CO)₆(μ -I)₂ in high yield.³ Reported herein are details of the high-yield syntheses of Os₂(CO)₆(μ -I)₂

^{*}Department of Chemistry, The Pennsylvania State University, University Park, PA 16802. †Department of Chemistry, Loyola University of Chicago, Chicago, IL 60626. †Department of Chemistry, Colorado State University, Fost Colling, CO 80523

[‡]Department of Chemistry, Colorado State University, Fort Collins, CO 80523.

and $Os_2(CO)_8I_2$ by careful control of reaction variables in the $Os_3(CO)_{12}$ + I_2 reaction.

The thermal reaction of C_5R_5H (R = H, CH₃) with $Os_2(CO)_6(\mu-I)_2$ represents a convenient synthesis of the cyclopentadienyl complexes $Os(\eta^5-C_5R_5)(CO)_2I$, and details of these preparations are given. The complex $OsCp(CO)_2I$ (Cp = C_5H_5) has been previously prepared in 51% yield by the thermal reaction of TlC₅H₅ with $Os(CO)_4Br_2$ to give a mixture of $OsCp(CO)_2H$ and $Os_2Cp_2(CO)_4$, which was subsequently treated with I₂ to yield the desired product.⁵ The complex $OsCp^*(CO)_2I$ (Cp^{*} = C_5Me_5) has been prepared in 38% yield by the thermal reaction of $Os_3(CO)_{12}$ with C_5Me_5H to give $OsCp(CO)_2H$, which was then treated with I₂.⁵

A. HEXACARBONYL-DI-µ-IODODIOSMIUM(I)

$$2Os_3(CO)_{12} + 3I_2 \longrightarrow 3Os_2(CO)_6(\mu - I)_2 + 6CO$$
(1)

■ **Caution.** The reaction should be performed in a well-ventilated fume hood since toxic carbon monoxide is liberated. The Carius tube should be wrapped with a wire screen and placed behind a safety shield.

Procedure

Dodecacarbonyltriosmium, $Os_3(CO)_{12}$, used as starting material for this preparation may be synthesized as described in Vol 21 of *Inorganic Syntheses.*⁶

A 300 mL resealable Carius tube fitted with a Teflon vacuum stopcock is charged with Os₃(CO)₁₂ (0.45 g, 0.5 mmol), I₂ (0.19 g, 0.75 mmol), and 25 mL of dry toluene. The Carius tube is evacuated to ~0.01 torr and heated in an oil bath at 175-180° for 24 hr. The tube should be immersed as fully as possible in the oil bath. After cooling to room temperature, the Carius tube is opened in air and the yellow solution transferred to a 250mL round-bottom flask. Anhydrous methanol (75 mL) is then added to facilitate removal of the solvent by rotary evaporation as a 3:1 azeotrope. The product obtained at this point may be pure enough for many synthetic purposes and the yield (0.57 g, 0.71 mmol) is nearly quantitative (95%). Further purification can be achieved by chromatography on Florisil using a 4 in. \times $\frac{3}{4}$ in. column with hexane as the eluant. The only material that elutes is yellow $Os_2(CO)_6(\mu-I)_2$. Evaporation of solvent from this band followed by drying in a stream of nitrogen gives the compound as a yellow microcrystalline solid (0.48 g, 80%, mp 87-89°). If desired, the compound can be further purified by sublimation $(0.01 \text{ torr}, 60^\circ)$.

The yield of $Os_2(CO)_6(\mu-I)_2$ is highly dependent on reaction conditions, particularly temperature. Consequently, care must be exercised to minimize temperature gradients within the reaction vessel. The Carius tube should be immersed as fully as possible in the oil bath, exposed portions of the tube covered with foil, and the temperature of the bath maintained in the 175°-180° range. If the oil bath is allowed to drop below this temperature range, for example, to $165^\circ-175^\circ$, mixtures of $Os_2(CO)_6(\mu-I)_2$ (~70%) and $Os_2(CO)_8I_2$ (~30%) are obtained. This mixture can be upgraded to give essentially quantitative formation of $Os_2(CO)_6(\mu-I)_2$ by reheating in an evacuated Carius tube at $175-180^\circ$ for 12 hr. Alternatively, the mixture can be conveniently separated by chromatography on Florisil using a 4 in. $\times \frac{3}{4}$ in. column. Elution with hexane gives $Os_2(CO)_6(\mu-I)_2$ and subsequent elution with 1:1 (v/v) hexane-dichloromethane yields $Os_2(CO)_8I_2$ as a yellow solid.

$$Os_2(CO)_8I_2 \xrightarrow{\Delta} Os_2(CO)_6(\mu-I)_2 + 2CO$$
 (2)

Caution. The reaction should be performed in a well-ventilated fume hood since toxic carbon monoxide is liberated. The Carius tube should be wrapped with a wire screen and placed behind a safety shield.

Procedure

This procedure is similar to that described by Sutton and co-workers.³ A sample of $Os_2(CO)_8I_2$ (0.10 g, 0.12 mmol), prepared as described in the following synthesis, is suspended in 25 mL of dry nitrogen saturated heptane in a 100-mL, three-neck, round-bottom flask fitted with a gas inlet, a reflux condenser, and a magnetic stirring bar. The reaction mixture is stirred while heating to reflux under dry oxygen-free nitrogen. The suspended solid gradually dissolves as the heptane is heated to boiling and the resultant yellow solution is refluxed under nitrogen for 45 min. After the solution has cooled to room temperature, the solvent is removed under reduced pressure on a rotary evaporator. The resultant yellow solid is dissolved in hexane and purified by chromatography on Florisil as described in the previous preparation. The complex $Os_2(CO)_6(\mu-I)_2$ is obtained as a yellow-orange microcrystalline solid (0.077 g, 80%).

Properties

The orange-yellow crystalline product is air stable. It readily dissolves in both polar and nonpolar solvents giving yellow moisture sensitive, but thermally stable, solutions. Full spectroscopic and structural data have been reported,³ and the compound may be conveniently characterized by its IR spectrum in the carbonyl stretching region: ν_{CO} (hexane, abs. mode) = 2098 (m), 2069 (s), 2016 (s), 2010 (s), and 2004 (sh). The mass spectrum shows a parent ion at m/e 806 (¹⁹²Os) and fragment ions corresponding to progressive loss of 6 CO groups. The pure compound melts in the 87–89° range.

B. BIS[TETRACARBONYLIODOOSMIUM(I)]

$$Os_2(CO)_6(\mu-I)_2 + 2CO \longrightarrow Os_2(CO)_8I_2$$
 (3)

■ **Caution.** This synthesis should be performed in a well-ventilated fume hood since toxic carbon monoxide is involved. The glass pressure bottle should be wrapped in a wire screen and placed behind a safety shield.

Procedure

A 100-mL glass pressure bottle, Fig. 1, containing a magnetic stirring bar is charged with $Os_2(CO)_6(\mu-I)_2$ (1.25 g, 1.56 mmol) and hexane (50 mL).* The reaction vessel is then pressurized to 90 psi with carbon monoxide, vented, and repressurized to 90 psi with CO. Stirring is continued at room temperature for 36 hr. During this time, $O_{s_2}(CO)_{s_2}$ gradually precipitates from solution as a yellow microcrystalline solid. The reaction vessel is vented in a fume hood in air. The crystals are collected by filtration, washed with several small portions of hexane, and air dried (0.74 g, 55%, mp 133-136°). Further material can be obtained by chromatography of the yellow filtrate on Florisil (4 in. $\times \frac{3}{4}$ in. column). After loading the filtrate on the column, elution with hexane gives a yellow band of unreacted $Os_2(CO)_6(\mu$ -I)₂. Further elution with 1:1 (v/v) hexane-dichloromethane gives a yellow band of $Os_2(CO)_{RI_2}$. The solvent is removed from the latter on a rotary evaporator. The resultant solid is transferred to a fritted glass filter and washed with 10 mL of hexane to give an additional 0.40 g of Os₂(CO)₈I₂ (total yield 85%).

Properties

The yellow air-stable crystalline product readily dissolves in polar solvents, but is considerably less soluble in nonpolar solvents than $Os_2(CO)_6(\mu-I)_2$. Solutions of $Os_2(CO)_8I_2$ are thermally stable below ~60%, but above this

*Alternatively, an autoclave can be used for this procedure employing 700 psi of CO pressure at 23° for 18 hr.

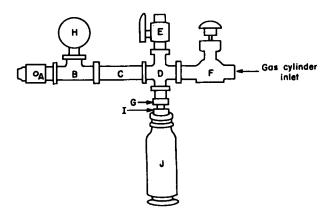


Fig. 1 Sources and description of apparatus. (I) Pittsburgh Valve and Fitting Company: A, Nupro safety relief valve (100 psi release) 3-6R-4M-100; B, Cajon $\frac{1}{4}$ in. Tee B-4-T; C, Cajon $\frac{1}{4}$ in. Hex long nipple B-4-HLN(2- $\frac{1}{4}$ in.); D, Cajon $\frac{1}{4}$ in. Cross B-4-CS; E, Whitey Ball Valve B-43M-S4; F, Whitey $\frac{1}{4}$ in. Forged Body Valve B-1VM4-S4; G, Cajon hex reducing nipple, $\frac{1}{4}$ to $\frac{1}{8}$ in. B-4-HRN-2. (II) Mattheson Gas Products: H, Standard Guage (2-3% accuracy) 0-100 psig 63-3112. (III) Lab Crest Scientific: I, Needle Valve adapter 110-957; Rubber washer 110-973; J, Aerosol reaction vessel, 3 oz 110-023-0003.

temperature the compound loses CO to yield $Os_2(CO)_6(\mu-I)_2$. Spectroscopic data have been reported for this compound,⁴ and it may be conveniently characterized by its IR spectrum in the carbonyl stretching region: v_{CO} (hexane, abs mode) = 2112 (s), 2076 (s), 2063 (s), 2060 (vs), 2049 (s), and 2029 (s) cm⁻¹. The mass spectrum shows the parent molecular ion at m/e 862 (¹⁹²Os) and fragment ions corresponding to progressive loss of 8 CO groups. The pure material melts at 133–136°.

C. DICARBONYL(η⁵-CYCLOPENTADIENYL)IODOOSMIUM AND DICARBONYLIODO(η⁵PENTAMETHYL-CYCLOPENTADIENYL)OSMIUM

 $Os_2(CO)_6(\mu-I)_2 + (C_5R_5H) \xrightarrow{\Delta}$

 $2Os(\eta^{5}-C_{5}R_{5})(CO)_{2}I + 2 CO + H_{2}$ (4) R = H, Me

■ **Caution.** The reaction should be peformed in a well-ventilated fume hood since toxic carbon monoxide is liberated. The Carius tube should be wrapped with a wire screen and placed behind a safety shield.

Procedure

 $Os_2(CO)_6(\mu-I)_2$ is generated in situ in the manner described in Section A but substituting benzene for toluene solvent. The Carius tube is opened in air and charged with $\frac{1}{2}$ mL of dicyclopentadiene (Aldrich Chemical Co.). After evacuation to 0.01 torr, the Carius tube is sealed and heated in an oil bath at 175-180° for 72 hr. It is important that the tube be immersed as fully as possible in the oil bath and the temperature maintained above 175°. After cooling and opening in air, solvent is removed from the yellow solution by rotary evaporation to yield a yellow solid. This is dissolved in 25 mL of CH₂Cl₂ followed by addition of 50 mL of hexane. The solution is then concentrated to 25 mL and placed in a freezer at -10° overnight. The yellow solid that precipitates is collected on a medium porosity frit, washed with 10 mL of hexane, and dried in vacuo to afford 899 mg (2.05 mmol) of Cp(CO)₂OsI, in 62% yield. The filtrates from above may be concentrated by rotary evaporation and the recrystallization procedure repeated to afford another 30% (435 mg, 0.99 mmol) of OsCp(CO)₂I. The overall yield varies from 86 to 92%. The pentamethylcyclopentadienyl analog can be prepared similarly in 85-88% yield by substituting 0.6 mL of C₄Me₄H (Alfa Products Company or ref. 7) for $(C_4H_4)_2$.

Properties

Both $OsCp(CO)_2I$ and $OsCp^*(CO)_2I$ are air stable yellow solids. They readily dissolve in polar solvents and are very slightly soluble in hexane. Full spectroscopic data have been reported for both complexes,⁵ and they may be conveniently characterized by their IR spectra in the carbonyl stretching region: ν_{CO} (hexane, abs modes), $OsCp(CO)_2I = 2039$ (s), 1988 (s) cm⁻¹; $Os(Cp^*)(CO)_2I = 2020$ (s), 1968 (s) cm⁻¹.

References

- 1. F. L'Eplattenier and F. Calderazzo, Inorg. Chem., 6, 2092 (1967).
- K. M. Motyl, J. R. Norton, C. K. Schauer, and O. P. Anderson, J. Am. Chem. Soc., 104, 7325 (1982).
- 3. E. E. Sutton, M. L. Niven, and J. R. Moss, Inorg. Chem. Acta, 70, 207 (1983).
- 4. M. I. Bruce, M. Cooke, M. Green, and D. J. Westlake, J. Chem. Soc. (A), 1969, 987.
- 5. J. K. Hoyano, C. J. May, and W. A. G. Graham, Inorg. Chem., 21, 3095 (1982).
- 6. B. F. G. Johnson and J. Lewis, Inorg. Synth., 13, 92 (1972).
- (a) F. X. Kohl and P. Jutzi, J. Organomet. Chem., 243, 119 (1983). (b) J. M. Manriquez, P. J. Fagan, L. D. Schertz, and T. J. Marks, Inorg. Synth., 21, 181 (1982).

46. μ-NITRIDO-BIS(TRIPHENYLPHOSPHORUS)(1+)μ-CARBONYL-DECACARBONYLμ-HYDRIDOTRIOSMATE(1-)

Submitted by K. BURGESS* and R. P. WHITE* Checked by S. BASSNER,† G. L. GEOFFROY,† R. L. GRAY,‡ and D. J. DARENSBOURG‡

The starting material for most of the osmium cluster chemistry published to date, $Os_3(CO)_{12}$,¹ is quite stable and relatively unreactive. Hydroxide ions remove one carbonyl ligand from $Os_3(CO)_{12}$ and a triosmium anion results that is far more reactive than the cluster from which it is produced. Indeed, this anion, $[Os_3(\mu-H)(\mu-CO)(CO)_{10}]^-$, combines under mild conditions with a range of inorganic,^{2.3} organic,^{4.5} and organometallic,^{6.7} electrophiles providing a route to functionalized triosmium complexes and mixed-metal clusters. A reliable and convenient modification of the original synthesis of $[Os_3(\mu-H)(\mu-CO)(CO)_{10}]^-$ (ref 8) is presented here.

 $Os_{3}(CO)_{12} + KOH + (PPh_{3})_{2}NCI \longrightarrow$ $[(PPh_{3})_{2}N][Os_{3}(\mu-CO)(CO)_{10}] + KCI + CO_{2}$

■ **Caution.** Owing to the high toxicity of carbon monoxide and osmium carbonyls these reactions should be carried out in an efficient fume hood.

Powdered samples of 0.454 g (0.5 mmol) of $Os_3(CO)_{12}$ (ref. 1) and 1.403 g (25 mmol) of KOH are placed in a 50-mL Schlenk tube with a magnetic stirrer. The reaction vessel is sealed with a septum and evacuated-filled with nitrogen three times to remove oxygen. The Schlenk tube and its contents are cooled in liquid nitrogen, 25 mL of methanol (distilled from magnesium and taken directly from a still collector vessel under dinitrogen) is added by syringe, and the mixture is degassed using three freeze-thaw cycles. The reaction mixture is then warmed to 25° and vigorously stirred for 6 hr during which time the solution changes from yellow to red. A degassed solution of 0.32 g (0.56 mmol) of (PPh_3)₂NCl (Aldrich Chemical

^{*}University Chemical Laboratory, Cambridge, CB2 1EW, United Kingdom. Address correspondence to Kevin Burgess, Chemistry, Box 1892, Rice University, Houston, TX 77251. †Department of Chemistry, The Pennsylvania State University, University Park, PA 16802. ‡Department of Chemistry, Texas A&M University, College Station, TX 77843.

Co.) in 3 mL of methanol is added all at once and the stirring is continued for 15 min. Degassed distilled water (~2 mL required) is carefully added dropwise, with stirring, over 5 min until a red precipitate appears and persists on stirring for 2 min. The water should be added with care since too much will precipitate some (PPh₃)₂NCl. The suspension is stirred further for 1 hr. The precipitate is then filtered in air, washed with 5 mL of distilled water and 5 mL of cold methanol, and dried *in vacuo* overnight to give 58%, 0.414 g, (0.292 mmol) of μ -nitrido-bis(triphenylphosphorus)(1 +) μ -carbonyl-decarbonyl- μ -hydrido-triosmate(1 –).

Anal. Calcd. for $C_{47}H_{31}NO_{11}P_2Os_3$: C, 39.80; H, 2.20; N, 0.99; P, 4.37. Found: C, 40.05, H, 2.28; N, 1.10; P, 4.45.

Properties

 μ -Nitrido-bis(triphenylphosphorus)(1+) μ -carbonyl-decarbonyl- μ -hydrido-triosmate(1-), [(PPh₃)₂N][Os₃(μ -H)(μ -CO)(CO)₁₀] is obtained as a light red powder. The solid is air stable but solutions decompose in ~5 min when exposed to the atmosphere. It is soluble in THF, dichloromethane, acetonitrile, methanol, and diethyl ether, and insoluble in hydrocarbon solvents. The IR spectrum of the compound contains four CO stretching vibrations for terminal carbonyls and one bridging carbonyl stretch (CH₂Cl₂, cm⁻¹): 2038 (w), 2021 (s), 1996 (s), 1951 (ms), and 1667 (w), respectively. The ¹H NMR spectrum (80 MHz, chloroform- d_1 , δ in ppm downfield from TMS, ambient) shows a broad multiplet at 7.5, due to the protons attached to the aromatic rings in the cation, and a sharp metal hydride signal at -13.8.

References

- 1. B. F. G. Johnson and J. Lewis; Inorg. Synth., 13, 93 (1972).
- 2. B. F. G. Johnson, P. R. Raithby, and C. Zuccaro, J. Chem. Soc. Dalton Trans., 1980, 99.
- B. F. G. Johnson, J. Lewis, P. R. Raithby, and S. W. Sankey, J. Organomet. Chem., 228, 135 (1982).
- 4. J. B. Keister, J. Chem. Soc. Chem. Commun., 1979, 214.
- 5. C. E. Kampe, N. M. Boag, and H. D. Kaesz, J. Am. Chem. Soc., 105, 2896 (1983).
- B. F. G. Johnson, D. A. Kaner, J. Lewis, and P. R. Raithby, J. Organomet. Chem., 215, C33 (1981).
- 7. M. Fajardo, H. D. Holden, B. F. G. Johnson, J. Lewis, and P. R. Raithby, J. Chem. Soc. Chem. Commun., 1984, 24.
- 8. C. R. Eady, B. F. G. Johnson, J. Lewis, and M. C. Malatesta, J. Chem. Soc. Dalton Trans., 1978, 1358.

Inorganic Syntheses, Volume 25 Edited by Harry R. Allcock Copyright © 1989 by Inorganic Syntheses, Inc.

47. Cobalttriosmium Clusters 195

47. DECACARBONYL- $(\eta^{5}-$ CYCLOPENTADIENYL)DIHYDRIDOCOBALTTRIOSMIUM, CoOs₃(μ -H)₂($\eta^{5}-C_{5}H_{5}$)(μ -CO)(CO)₉; NONACARBONYL-(η^{5} -CYCLOPENTADIENYL)TRIHYDRIDO- AND (η^{5} -CYCLOPENTADIENYL)TETRAHYDRIDOCOBALT-TRIOSMIUM, CoOs₃(μ -H)₃($\eta^{5}-C_{5}H_{5}$)(CO)₉ AND CoOs₃(μ -H)₄-($\eta^{5}-C_{5}H_{5}$)(CO)₉

Submitted by DENG-YANG JAN,* TIM J. COFFY,* WEN-LIANG HSU,* and SHELDON G. SHORE* Checked by B. HANDWERKER† and GREGORY L. GEOFFROY†

A general route to triosmium based mixed metal, tetranuclear clusters involves reactions of the cluster $Os_3(\mu-H)_2(CO)_{10}$ with metal carbonyls under reaction conditions that cause formation of unsaturated metal carbonyl fragments generated under thermal¹⁻⁶ or photochemical⁷ conditions. While $Os_3(\mu-H)_2(CO)_{10}$ has usually been employed as the starting material it has also, apparently, been generated *in situ* from $Os_3(CO)_{12}$ in the formation of the mixed metal cluster in the presence of added H_2 .^{8,9} The effect of the presence or absence of added H_2 to the reaction system can determine the cluster products formed^{4,5,8,10} and in the reactions of $[Ni(\eta^5-C_5H_5)CO]_2$ (ref. 8) and $[Mo(\eta^5-C_5H_5)(CO)_n]_2$ (n = 2,3)¹⁰ the added H_2 is believed to assist in opening the metal–metal bond through formation of an intermediate, reactive hydride.

Here we describe the synthesis of $CoOs_3(\mu-H)_2(\eta^5-C_5H_5)(\mu-CO)(CO)_9$ from the reaction of $Os_3(\mu-H)_2(CO)_{10}$ with $Co(\eta^5-C_5H_5)(CO)_2$, while two other clusters richer in hydrogen, $CoOs_3(\mu-H)_3(\eta^5-C_5H_5)(CO)_9$ and $CoOs_3(\mu-H)_4(\eta^5-C_5H_5)(CO)_9$ were synthesized in the presence of H₂.

Procedure

Caution. Because of the toxicity of the CO evolved, all the reactions should be run in a well-ventilated hood.

*Department of Chemistry, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210.

†Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.

Materials

Toluene is dried, distilled, and stored in the presence of sodium benzophenone ketyl. The cluster $Os_3(\mu-H)_2(CO)_{10}$ is prepared according to a method in the literature¹¹ and $Co(\eta^5-C_5H_5)(CO)_2$ (Strem Chemicals) is distilled under high vacuum and stored at -78° .

A. DECACARBONYL(η^{5} -CYCLOPENTADIENYL)-DIHYDRIDOCOBALTTRIOSMIUM CoOs₃(μ -H)₂(η^{5} -C₅H₅)-(μ -CO)(CO)₉

$$Os_{3}(\mu-H)_{2}(CO)_{10} + Co(\eta^{5}-C_{5}H_{5})(CO)_{2} \longrightarrow CoOs_{3}(\mu-H)_{2}(\eta^{5}-C_{5}H_{5})(\mu-CO)(CO)_{9} + 2CO \quad (1)$$

In a drybox containing a N₂ atmosphere a 10-mL quantity of dry toluene is syringed into a 50-mL round-bottom flask containing 51 mg Os₃(µ- $H_{2}(CO)_{10}$ (0.06 mmol) and a Teflon coated magnetic stirring bar. By means of a syringe 140 mg $Co(\eta^5-C_5H_5)(CO)_2$ (0.778 mmol) is then added to the solution. The flask is then capped with a solv-seal (grease-free) vacuum adapter and connected to a vacuum line. The flask is frozen at -196° (liq N_2) and the N_2 gas is pumped away. After being allowed to warm up slowly to room temperature, the reaction mixture is stirred at 90° (under static vacuum). Consumption of $Os_3(\mu-H)_2(CO)_{10}$ is checked by TLC (SiO₂) and the CO produced in the reaction is pumped away from time to time (\sim every 6–8 hr). The Os₃(μ -H)₂(CO)₁₀ is consumed in 36 hr,¹² at which point the solution is cooled to room temperature and the solvent and excess $Co(n^5-C_5H_5)(CO)_2$ is pumped away under vacuum.¹³ There remains in the reaction flask a dark green residue that is dissolved in a minimum amount of CH₂Cl₂ and subjected to TLC (SiO₂ preparative, 2 mm in thickness) using 1:4 toluene-hexane as the eluent. A green band (35 mg, 60%, $R_f = 0.48$) is collected and shown to be CoOs₃(μ -H)₂(η^5 -C₅H₅)(μ -CO)(CO)₉.

Properties of $CoOs_3(\mu-H)_2(\eta^5-C_5H_5)(\mu-CO)(CO)_9$

This compound is a green solid. It is stable in the solid state, while slowly decomposing in solution when exposed to air over a long period of time. It is soluble in CH_2Cl_2 , but only slightly soluble in hexane.

The IR spectrum (cyclohexane, ν_{CO}): 2095 (m), 2068 (vs), 2050 (vs), 2012 (vs), 2000 (sh), 1977 (m), 1968 (m), 1800 (s) cm⁻¹. Mass spectrum: parent ion is at m/e 981.8223. Consistent with ${}^{1}\text{H}_{7} {}^{12}\text{C}_{15} {}^{16}\text{O}_{10} {}^{59}\text{Co} {}^{192}\text{Os}_{3}$ (calcd. value is 981.8207). ${}^{1}\text{H}$ NMR spectra (90 MHz, CD₂Cl₂, -80°): $\delta = 5.47$ (s, 5H), -17.17 (s, 1H), -20.89 (s, 1H) ppm.

Anal. Calcd. 18.44C, 0.72 H. Found: 18.65 C, 0.77 H. The structure of this compound has been determined by X-ray diffraction, and its structure in solution, inferred from ¹³NMR spectrum at -75° , is consistent with that in the solid state.⁶

B. NONACARBONYL(η^{5} -CYCLOPENTADIENYL)TRIHYDRIDO AND TETRAHYDRIDO (η^{5} -CYCLOPENTADIENYL)-COBALTTRIOSMIUM, CoOs₃(μ -H)₃(η^{5} -C₅H₅)(CO)₉ AND CoOs₃(μ -H)₄(η^{5} -C₅H₅)(CO)₉

$$Os_{3}(\mu-H)_{2}(CO)_{10} + Co(\eta^{5}-C_{5}H_{5})(CO)_{2} \xrightarrow{H_{2}} CoOs_{3}(\mu-H)_{3}(\eta^{5}-C_{5}H_{5})(CO)_{9} + CoOs_{3}(\mu-H)_{4}(\eta^{5}-C_{5}H_{5})(CO)_{9}$$
(2)

This reaction is carried out in a 50-mL, three-necked, round-bottom flask containing a magnetic stirrer, a gas inlet placed in one neck is tube positioned below the surface of the reaction solution, and a reflux condenser placed on a second neck is connected to a mercury-oil bubbler. Prepurified H_2 is bubbled through a toluene solution (20 mL) of 150 mg of Os₃(μ - $H_{2}(CO)_{10}$ (0.176 mmol). The system is flushed with H_{2} for 30 min and 208 mg of $Co(\eta^5-C_5H_5)(CO)_2$ (1.156 mmol) is then added by means of a syringe through the third neck of the flask under the stream of issuing H_2 . The third neck is then capped and with H₂ flowing through the solution, the solution is heated up to 90° and stirred. The time required for the reaction in the presence of H₂ depends on the flow rate of hydrogen. To make sure the reaction is complete, the reaction mixture is checked with TLC from time to time. For our particular parameters (H₂ flow rate of 50 mL/min at 298 K and 1 atm), 60 hr of reaction time is required. The solution is then cooled to room temperature. Then toluene and unconsumed $Co(\eta^{5})$ $C_{5}H_{5}(CO)_{2}$ are pumped away under vacuum¹³ to leave a dark brown residue that is dissolved in a minimum amount of CH₂Cl₂. Elution of this residue on a 2-mm preparative SiO₂ TLC plate with 1:4 toluene-hexane gives three bands, these being, in descending order of R_f value, purple $CoOs_3(\mu-H)_3(\eta^5-C_5H_5)(CO)_9$ (54.2 mg, 32%, $R_f = 0.83$), dark green CoOs₃(μ -H)₄(η^5 -C₅H₅)(CO)₉(58.9 mg, 35%, $R_f = 0.64$), and green CoOs₃(μ -H)₂(η^5 - $C_{s}H_{s}(\mu-CO)(CO)_{9}$ (2 mg, 1%, $R_{f} = 0.48$).

Properties of $CoOs_3(\mu-H)_3(\mu^5-C_5H_5)(CO)_9$ and $CoOs_3(\mu-H)_4(\eta^5-C_5H_5)(CO)_9$

 $CoOs_3(\mu-H)_3(\eta^5-C_5H_5)(CO)_9$ and $CoOs_3(\mu-H)_4(\eta^5-C_5H_5)(CO)_9$ are obtained as purple and dark green solids, respectively. While stable in the

solid state, CH_2Cl_2 solutions of these two compounds decompose slowly when exposed to air. Both are very soluble in most organic solvents such as hexane, benzene, and methylene chloride.

CoOs₃(μ-H)₃(η⁵-C₅H₅)(CO)₉ is paramagnetic. It contains one unpaired electron as determined by the Evans method.¹⁴ The ESR signal is too broad (298–4K) to calculate a *g* value. The structure has been determined by X-ray diffraction^{4,6,15} and spectral data are IR spectrum (hexane, ν_{CO}): 2082 (w), 2060 (s), 2008 (vs), 1990 (m), 1955 (vw) cm⁻¹. Mass spectrum: parent ion at *m/e* 954.8369, consistent with ¹H₈ ¹²C₁₄ ¹⁶O₉ ⁵⁹Co ¹⁹²Os₃ (calcd. value is 954.8336).

Anal. Calcd. 17.71 C, 0.85 H. Found: 17.50 C, 0.82 H.

The conditions chosen for reaction (2) permit significant yields of $CoOs_3(\mu-H)_3(\eta^5-C_5H_5)(CO)_9$. This compound, however, will react with H₂ to convert to $CoOs_3(\mu-H)_4(\eta^5-C_5H_5)(CO)_9$.⁴ Spectral data of $CoOs_3(\mu-H)_4(\eta^5-C_5H_5)(CO)_9$ are IR spectrum (hexane, ν_{CO}): 2082 (m), 2060 (s), 2050 (s), 2019 (s), 1995 (s,sh), 1992 (s), 1977 (m), 1952 (vw) cm⁻¹. Mass spectrum: parent ion at *m/e* 955.8387, consistant with ¹H₉ ¹²C₁₄ ¹⁶O₉ ⁵⁹Co ¹⁹²Os₃ (calcd. value is 955.8415). ¹H NMR spectrum (CD₂Cl₂, -60°): $\delta = -5.23$ (s, 5H), -18.26 (s, 2H), 20.27 (s, 2H).

Anal. Calcd. 17.71 C, 0.95 H. Found: 17.49 C, .99 H.

References

- 1. J. S. Plotkin, D. G. Alaway, C. R. Weisenberger, and S. G. Shore, J. Am. Chem. Soc., 102, 6158 (1980).
- 2. M. R. Churchill, C. Bueno, W.-L. Hsu, J. S. Plotkin, and S. G. Shore, *Inorg. Chem.*, 21, 1958 (1982).
- 3. L.-Y. Hsu, W.-L. Hsu, D.-Y. Jan, A. G. Marshall, and S. G. Shore, *Organometallics*, **3**, 591 (1984).
- 4. S. G. Shore, W.-L. Hsu, C. R. Weisenberger, M. L. Caste, M. Churchill, and C. Bueno, Organometallics, 1, 1405 (1982).
- 5. S. G. Shore, W.-L. Hsu, M. R. Churchill, and C. Bueno, J. Am. Chem. Soc., 105, 655 (1983).
- M. R. Churchill, C. Bueno, S. Kennedy, J. C. Bricker, J. S. Plotkin, and S. G. Shore, Inorg. Chem., 21, 627 (1982).
- 7. E. W. Burkhardt, and G. L. Geoffroy, J. Organometal. Chem., 198, 179 (1980).
- M. Castiglioni, E. Sappa, M. Valle, M. Lanfranchi, and A. Tiripicchio, J. Organometal. Chem., 241, 99 (1983).
- 9. G. Lavigne, F. Papageorgiou, C. Bergounhou, and J. J. Bonnet, *Inorg. Chem.*, 22, 2485 (1983).
- 10. L.-Y. Hsu, W.-L. Hsu, D.-Y. Jan, and S. G. Shore, Organometallics, 5, 1041 (1986).
- 11. S. A. R. Knox, J. W. Koepke, M. A. Andrews, and H. D. Kaesz, J. Am. Chem. Soc., 97, 3942 (1975).

- 12. It is important that the reaction time not be drastically exceeded. $CoOs_3(\mu-H)_2(\eta^5-C_5H_5)(\mu-CO)(CO)_9$ will decompose in a toluene solution at 90° over an extended period of time.
- 13. $Co(\eta^{5}-C_{5}H_{5})Co(CO)_{2}$ has to be removed completely from reaction mixture before the residue being eluted on TLC to have maximum yield of products.
- 14. J. Loliger, and R. Scheffold, J. Chem. Educ., 49, 646 (1972).
- 15. M. R. Churchill, and C. Bueno, Inorg. Chem., 22, 1510 (1983).

SUBJECT INDEX

Names used in this Subject Index for Volumes 21–25 are based upon IUPAC Nomenclature of Inorganic Chemistry, Second Edition (1970), Butterworths, London; IUPAC Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H (1979), Pergamon Press, Oxford, U.K.; and the Chemical Abstracts Service Chemical Substance Name Selection Manual (1978), Columbus, Ohio. For compounds whose nomenclature is not adequately treated in the above references, American Chemical Society journal editorial practices are followed as applicable.

Inverted forms of the chemical names (parent index headings) are used for most entries in the alphabetically ordered index. Organic names are listed at the "parent" based on Rule C-10, Nomenclature of Organic Chemistry, 1979 Edition. Coordination compounds, salts and ions are listed once at each metal or central atom "parent" index heading. Simple salts and binary compounds are entered in the usual uninverted way, e.g., Sulfur oxide (S_80), Uranium(IV) chloride (UCL).

All ligands receive a separate subject entry, e.g., 2,4-Pentanedione, iron complex. The headings Ammines, Carbonyl complexes, Hydride complexes, and Nitrosyl complexes are used for the NH₃, CO, H, and NO ligands.

Acetic acid: cobalt complexes, 23:112 mercury complex, 24:145 , (1,2-cyclohexanediyldinitrilo)tetra-, iron complex, 24:210 __, (1,2-ethanediyldinitrilo)tetra-, iron complexes, 24:207, 208 Acetone: 2-mercapto-, cobalt complex, 21:21 compd. with carbonyltri-µ-chlorochlorotetrakis(triphenylphosphine)diruthenium (2:1), 21:30 compd. with tri-µ-chlorochloro(thiocarbonyl)tetrakis(triphenylphosphine)diruthenium (1:1), 21:29 Acetonitrile: copper, iron, and zinc complexes, 22:108, 110, 111 iridium complex, 21:104 iron complex, 21:39 osmium complex, 24:275 Acetylenedicarboxylic acid, cobalt complexes, 23:115 Acrylaldehyde, 2,3-diphenylruthenium complex, 25:181

Acrylic acid, methyl ester, ruthenium complex, 24:176

- Actinides, 5,10,15,20-tetraphenylporphyrin complexes, 22:156
- Alanine, cobalt complex, 25:137
- Alkali metal alkyldihydroborates, 22:198
- Alkali metal rare earth bromides and chlorides, 22:1, 10
- Alkali metal transition metal oxides, 22:56
- Aluminosilicates, mol. sieves, 22:61
- Aluminum, bromobis[(trimethylsilyl)methyl]-, 24:94
- _____, tris[(trimethylsilyl)methyl]-, 24:92
- , organo derivs., as intermediates in prep. of methylene bridged phosphines, 25:120
- Aluminum lanthanum nickel hydride (AlLa-Ni₄H₄), 22:96
- Aluminum potassium sodium tetramethyl ammonium silicate hydrate [K₂Na-[(CH₃)₄N]Al₄(Si₁₄O₃₆)]·7H₂O, 22:66
- Aluminum sodium silicate hydrate (NaAl-SiO₄·2·25H₂O), 22:61

Aluminum sodium silicate hydrate (Na₂Al₂Si₅-O14-XH2O), 22:64 Aluminum sodium tetrapropylammonium silicate hydrate (Na2.4[(C3H7)4N]3.6Al2.6-(Si100O207)), 22:67 Amine, cobalt(III) trifluoromethylsulfonate complexes, 22:103 Aminocarbyne complexes, of molybdenum and tungsten, 23:9 Ammines: cobalt, 23:78, 79, 107-115 cobalt carbonate complexes, 23:62-73 cobalt(III) trifluoromethanesulfonate complexes, 22:104 metal complexes, 24:250-278 platinum, 22:124; 25:95 rhodium, 24:222-226 Ammonia, intercalate with hydrogen pentaoxoniobatetitanate(1-), 22:89 Ammonium, alkyl-, tetrachlorochromate-(II), ferromagnets, 24:188 , diethyl-, cyclo-octathiotetraphosphate(III) (4:1), 25:5 _, ethyl-, tetrachlorochromate(II) (2:1), ferromagnets, 24:188 ___, methyl-, tetrachlorochromate(II) (2:1), ferromagnets, 24:188 ., tetrabutyl-: hexafluoroarsenate, 24:138 hexafluorophosphate(1-), 24:141 octachlorodirhenate(III), 23:116 perchlorate, 24:135 tetrachlorooxotechnetate(V) (1:1), 21:160 tetrafluoroborate(1-), 24:139 tetrakis(benzenethiolato)tetra-µ-selenotetraferrate(2-) (2:1), 21:36 tetrakis(benzenethiolato)tetra-µ-thio-tetraferrate(2-) (2:1), 21:36 tetrakis(1,1-dimethylethanethiolato)tetra- μ -seleno-tetraferrate(2-), (2:1), 21:37 ., tetraethyl-, tris(µ-benzenethiolato)hexacarbonyldimanganate(I), 25:118 ., tetrafluoro-: hexafluoroantimonate(V) (1:1), 24:41 hexafluoromanganate(IV) (2:1), 24:45 hexafluorosilicate(IV) (3:1), 24:46 (hydrogen difluoride), 24:43 pentafluorooxotungstate(VI) (1:1), 24:47 tetrafluoroborate(III) (1:1), 24:42

____, tetramethyl-: potassium sodium aluminum silicate hydrate $[K_2Na[(CH_3)_4N]Al_4(Si_{14}O_{36})]$ -·7H₂O, 22:66 tetrakis(1,1-dimethylethanethiolato)tetraµ-thio-tetraferrate(2-) (2:1), 21:36 ., tetrapropyl-: bis(pentasulfido)platinate(II) (2:1), 21:13 sodium aluminum silicate (Na24[(C3H7)4- $N_{3,6}Al_{2,6}(Si_{100}O_{207})), 22:67$ Ammonium bis(hexasulfido)palladate(II) (2:1), nonstoichiometric, 21:14 Ammonium chloride, in preparation of rare earth chlorides, 25:146 Ammonium diphosphate ((NH₄)₄(P₂O₇)), 21:157 Ammonium pentafluoromanganate(III) (2:1), 24:51Ammonium pentasulfide($(NH_4)_2S_5$), 21:12 Ammonium tris(pentasulfido)platinate(IV) (2:1), 21:12, 13 Ammonium tris(pentasulfido)rhodate(III) (3:1), 21:15 Antimonate(1-), hexachloro-µ-nitrido-bis-(trichlorophosphorus)(1+), 25:25Antimonate(2-), bis[tartrato(4-)]di-, dipotassium, as resolving agent, 23:76-81 Antimonate(V), hexafluoro-tetrafluoroammonium (1:1), 24:41 Antimony(V), trichlorodiphenyl-, 23:194 Antimonyl potassium tartrate, see Antimonate(2-), bis[taratrato-(4-)], di-, dipotassium, as resolving agent, 23:76-81 Arginine, S-, cobalt complexes, 23:90 Arsenate, hexafluoro-: bis(cyclo-octasulfur)silver(1+), 24:74nitryl, 24:69 silver, 24:74 tetrabutylammonium, 24:138 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolyldene radical ion(1+), (1:2), 24:138 tribromosulfur(IV), 24:76 Arsine, dimethyl-molybdenum complex, 25:169 Arsine, [2-[(dimethylarsino)methyl]-2methyl-1,3-propanediyl]bis(dimethyl-, niobium complex, 21:18 ., o-phenylenebis(dimethyl-: niobium complex, 21:18 rhodium complex, 21:101

....., triphenyl-, chromium complexes, 23:38

- Arsonium, tetraphenyl-, $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -tetrathia-2,3,5,8,9-pentaaza-bicyclo[3.3.1]nona-1(8),-2,3,5-tetraenide, 25:31
- Asymmetric synthesis, resolution of tris(oxalato)chromate ion by second-order, 25:139
- Azide, cesium tetracyanoplatinate (0.25:2:1) hydrate, 21:149 methyl]-, 24:94
 - ____, tris[(trimethylsilyl)methyl]-, 24:92
- Aziridinyl-amino substituted cyclophosphazenes, 25:86
- Barium(II), bis(7,11:20,24-dinitrilodibenzo-[b,m][1,4,12,15]tetrazacyclodocosine)-, diperchlorate, 23:174
- Benzaldehyde, 2,3-dimethoxy-, 5-(α-methylbenzyl)semioxamazone, chromium complex, 23:88
-, 3,4-dimethoxy-, 5-(α-methylbenzyl)semioxamazone, chromium complex, 23:88
- _____, 2-(diphenylphosphino)-, 21:176 _____, 2-methoxy-, 5-(α-methylbenzyl)-
- semioxamazone, chromium complex, 23:88
-, 2-methyl-, 5(α-methylbenzyl)semioxamazone, chromium complex, 23:87
- Benzenamine, rhenium and tungsten complexes, 24:195, 196, 198
- _____, N,4-dimethyl-, tungsten complexes, 23:14
- Benzenamine, 2-(diphenylphosphino)-, and nickel complex, 25:129
- Benzene, chromium complex, 21:1, 2
- _____, 1-chloro-4-isocyano-, molybdenum and tungsten complexes, 23:10
-, 1,3-dichloro-2-isocyano-, molybdenum and tungsten complexes, 23:10
-, ethynyl-, ruthenium complex, 21:82; 22:177
- _____, hexamethyl-, ruthenium complex, 21:74-77
 - ____, isocyano-, molybdenum and tungsten complexes, 23:10
- _____, 1-isocyano-4-methoxy-, molybdenum and tungsten complexes, 23:10

_, 1-isocyano-4-methyl-: molybdenum and tungsten complexes, 23:10 tungsten complex, 24:198 _, 1-isopropyl-4-methyl-, ruthenium complex, 21:75 ., pentafluoro-: cobalt complexes, 23:23-25 lithium and thallium complexes, 21:71, 72 , 1,2,3,5-tetrafluoro-, thallium complex, 21:73 ., 1,2,4,5-tetrafluoro-, thallium complex, 21:73 ., 1,3,5-trifluoro-, thallium complex, 21:73 Benzenesulfonate, 4-methyl-, 4,4',4'',4'''porphyrin-5,10,15,20-tetrayltetrakis-(1-methylpyridinium), 23:57 Benzenethiol: cadmium, cobalt, iron, manganese, and zinc complexes, 21:24-27 iron complex, 21:35 manganese complex, 25:116, 117, 118 tin complex, 25:114 _, 4-ethyl-, gold complexes, 23:192 Benzoic acid, 2-(diphenylphosphino)-, 21:178 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, 24:131, 134 radical ion(1 +): hexafluoroarsenate (2:1), 24:138 hexafluoroborate(1-) (2:1), 24:139 hexafluorophosphate(1 -) (2:1), 24:142 perchlorate(2:1), 24:136 2,2'-Bipyridine: cobalt complex, 21:127 chromium complexes, 23:183 osmium and ruthenium complexes, 24:291-298 palladium complex, 22:170 ruthenium(II) complexes, 25:108, 109 [1,1'-commo-Bis(2,3-dicarba-1-ferra-closoheptaborane)](12), 2,2',3,3'-tetraethyl-1,1-dihydro-, 22:215 Bismuthide(2-), tetra-, bis[(4,7,13,16,21,24-hexaoxa-1,10diazabicyclo[8.8.8]hexa-

cosane)potassium](1+), 22:151

Borane, carboxy-compd. with trimethylamine, 25:81 ., cyano compd. with trimethylamine (1:1), 25:80____, dichlorophenyl-, 22:207 ____, diethylhydroxy-, 22:193 ____, diethylmethoxy-, 22:190 ____, (dimethylamino)diethyl-, 22:209 _, [(2,2-dimethylpropanoyl)oxy]diethyl-, 22:185 ., (ethylcarbamoyl)-trimethylamine (1:1), 25:83 _, ethyldihydroxy, see Boronic acid, ethyl-, 24:83 _, (methoxycarbonyl)-, compd. with trimethylamine, 25:84 ., (pivaloyloxy)diethyl, see Borane, [(2,2-dimethylpropanoyl)oxy]diethyl-, 22:185 ¹⁰B]Borane, dibromomethyl-, 22:223 Borate(1 -), cyanotri $[(^{2}H)$ hydro]-, sodium, 21:167 ., (cyclooctane-1,5-diyl)dihydro-: lithium, 22:199 potassium, 22:200 sodium, 22:200 , dodecahydro-7,8-dicarba-nido-undecapotassium, 22:231 ., dodecahydro-6-thia-arachno-decacesium, 22:227 ., hydrotris(pyrazolato)-, copper complex, 21:108 ___, tetrafluoro-: µ-carbonyl-µ-ethylidyne-bis[carbonyl(n5cyclopentadienyl)ruthenium](1+),25:184 dicarbonyl(n⁵-cyclopentadienyl)(n⁵-2methyl-1-propenyl)iron(1 +), 24:166 pentaammine(pyrazine)ruthenium(II) (2:1), 24:259 tetrabutylammonium, 24:139 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene, radical ion(1 +) (1:2), 24:139 _, tetrakis(pyrazolato)-, copper complex, 21:110 _, tetraphenyl-,: tetrakis(1-isocyanobutane)bis[methylenebis(diphenylphosphine)]dirhodium(I), 21:49

tetrakis(1-isocyanobutane)rhodium(I), 21:50 ., tris(3,5-dimethylpyrazolato)hydro-: boron-copper complexes, 21:109 molybdenum complexes, 23:4-9 Borate(2-), tris[µ-[(1,2-cyclohexanedione dioximato)-O:O']diphenyldi-: iron complex, 21:112 Borate(III), tetrafluoro-, tetrafluoroammonium (1:1), 24:42 Borinic acid, diethyl, see Borane, diethylhydroxy-, 22:193 _, diethyl, methyl ester, see Borane, diethylmethoxy-, 22:190 Bornan-2-one, 3-endo-bromo-3-oxo-nitro-, (1R)-, 25:134 ., 3-aci-nitro-, (1R)-, sodium salt, 25:133 Boron, bis-µ-(2,2-dimethylpropanoato-O,O')-diethyl- μ -oxo-di-, 22:196 ., tris[pentafluorooxotellurate(VI)], 24:35 ¹⁰B] Boron bromide (¹⁰BBr₃), 22:219 Boron compounds, labeling of, with boron-10, 22:218 Boronic acid, ethyl-, 24:83 Boroxin, triethyl-, mixture with tetraethyldiboroxane, (1:3), 24:85 Bromides, of rare earths and alkali metals, 22:1, 10 Bromoimidosulfurous difluoride, 24:20 1-Butanamine, intercalate with hydrogen pentaoxoniobatetitanate(1-), 22:89 Butane: cobalt, iridium, and rhodium complexes, 22:171, 173, 174 palladium complex, 22:167, 168, 169, 170 , isocyano-, rhodium complex, 21:49 1-Butanol, [(N,N-diethylcarbamoyl)methyl]phosphonate ester, 24:101 2-Butanol, 3-oxo-, dimethylcarbamodiselenoate ester, 24:132 Butyl, tin deriv., 25:112, 114 tert-Butyl alcohol, perfluoro-, hypochlorite ester, 24:61 tert-Butylamine, N-(trimethylsilyl)-, 25:8 Cadmate(II), tetrakis(benzenethiolato)-, bis-

(tetraphenylphosphonium), 21:26

1,2-dimethoxyethane, 24:55 pyridine, 24:59 tetrahydrofuran, 24:57 Cadmium(II), aqua(7,11:20,24-dinitrilodibenzo[b,m][1,4,12,15]tetraazacyclodocosine)perchlorato perchlorate, 23:175 Cadmium chalcogenides, on metallic substrates, 22:80 Cadmium selenide (CdSe), on titanium, 22:82 Cadmium selenide telluride, on molybdenum, 22:84 Cadmium selenide telluride (CdSe_{0.65}Te_{0.35}), 22:81 Calcium manganese oxide (Ca₂Mn₃O₈), 22:73 Carbamodiselenoic acid, dimethyl-, 1methyl-2-oxopropyl ester, 24:132 Carbamodithioic acid, N,N-dialkyl-, tungsten tricarbonyl complexes, 25:157 Carbodiphosphorane, hexakis(dimethylamino), see Phosphoranetriamine, P, P'-methanetetraylbis[N, N, N', N']N'', N''-hexamethyl-, 24:114 Carbonato complexes, of cobalt, optically active, 23:61 Carbon dioxide, iridium complex, 21:100 Carbon diselenide, 21:6, 7 Carbonic acid: cobalt complexes, 21:120; 23:107, 112 cobalt complexes, optically active, 23:62 platinum chain complex, 21:153, 154 Carbonyl complexes: chromium, 21:1, 2; 23:38, 86 chromium, molybdenum, and tungsten, 22:81chromium and tungsten, 23:27-29 cobalt, 23:15-17, 23-25; 25:177 cobalt, iron, osmium, and ruthenium, 21:58-65 cobalt-osmium, 25:195-197 cobalt-ruthenium cluster, 25:164 copper, 21:107-110 gold(I), 24:236 hafnium, titanium, and zirconium, 24:149-156 iridium, 21:97 iron, 21:66, 68; 24:157-160, 161, 164, 166; 25:154, 155

Cadmium, bis(trifluoromethyl)-:

iron and ruthenium, 22:163 manganese, 23:33; 25:116, 117, 118 molybdenum, 23:4-9; 25:168, 169 niobium, 23:34 osmium, 26:188-193 palladium, 21:49 rhenium, 23:42-44 rhodium, 23:124; 25:171 ruthenium, 21:30; 24:168, 176; 25:180-185 ruthenium(II), 25:108 Catena-nitrogen-sulfur anions, 25:35 Cerium, porphyrin complexes, 22:156 , bis(2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato-(2-)]-, 22:160 Cerium(II), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 , (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 ., trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 ., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Cerium(IV), tetrachlorobis(triphenylphosphine oxide)-, 23:178 _, tetrakis(2,2'-bipyridine 1,1-dioxide)-, tetranitrate, 23:179 , tetrakis(2,2,7-trimethyl-3,4-octanedionato)-, 23:147 ., tetranitratobis(triphenylphosphine oxide)-, 23:178 Cerium chloride (CeCl), 22:39 Cesium azide tetracyanoplatinate (2:0.25:1), hydrate, 21:149 Cesium chloride tetracyanoplatinate (2:0.30:1), 21:142 Cesium fluorine sulfate (CsF(SO₄)), 24:22 Cesium fluoroxysulfate, see Cesium fluorine sulfate (CsF(SO₄)), 24:22 Cesium hexafluoromanganate(IV) (2:1), 24:48 Cesium [hydrogen bis(sulfate)] tetracyanoplatinate (3:0.46:1), 21:151 Cesium lutetium chloride (Cs₂LuCl₅), 22:6 Cesium lutetium chloride (Cs₃LuCl₆), 22:6 Cesium lutetium chloride (Cs₃Lu₂Cl₉), 22:6

Cesium lithium thulium chloride (Cs₂LiTm-CL), 20:10 Cesium praseodymium chloride (CsPr₂Cl₇), 22:2 Cesium scandium chloride (CsScCl₁), 22:23 Cesium scandium chloride (Cs₁Sc₂Cl₀), 22:25 Chlorides, of rare earths and alkali metals, 22:1.10Chlorine fluoride (ClF), 24:1, 2 Chlorine fluorosulfate, 24:6 Chloroimidosulfurous difluoride, 24:18 Chloryl fluoride, 24:3 Chromate, µ-hydrido-bis[pentacarbonyl-, potassium, 23:27 Chromate(1-), pentacarbonylhydrido-, μ nitrido-bis(triphenylphosphorus)(1 +), 22:183 Chromate(I), pentacyanonitrosyl-, tripotassium, 23:184 Chromate(II), tetrachloro-: bis(alkylammonium), ferromagnets, 24:188 bis(ethylammonium), ferromagnets, 24:188 bis(methylammonium), ferromagnets, 24:188Chromate(III), (1,2-ethanediamine)tetrafluoro-, cis-bis(1,2-ethanediamine)difluorochromium(III), 24:185 ., tris(oxalato)-, resolution of, by asymmetric synthesis, 25:139 tripotassium, (+)-, dihydrate and (-)-, monohydrate, isolation of, 25:141 (+)-, tris[(+)-bis(1,2-ethanediamine)-(oxalato)cobalt(III)], hexahydrate, 25:140 Chromatography, column, in resolution of tris(2,4-pentanedionato)cobalt(III) with Δ -(-)-cis(NO₂),trans(N)-bis(S-argenine)dinitrocobalt(III) chloride, 23:94 Chromium, as substrate for cadmium chalcogenides, 22:80 Chromium, tetracarbonyl(tributylphosphine)(triphenylarsine)-, trans-, 23:38 , tetracarbonyl(tributylphosphine)-(triphenylphosphine)-, trans-, 23:38 , tetracarbonyl(tributylphosphine)-(triphenyl phosphite)-, trans-, 23:38 , tetracarbonyl(trimethyl phosphite)-(triphenylarsine)-, trans-, 23:38

., tetracarbonyl(trimethyl phosphite)-(triphenylphosphine)-, trans-, 23:38 , tetracarbonyl(trimethyl phosphite)-(triphenyl phosphite)-, trans-, 23:38 , tetracarbonyl(triphenylarsine)-(triphenyl phosphite)-, trans-, 23:38 , tetracarbonyl(triphenylphosphine)-(triphenyl phosphite)-, trans-, 23:38 , tricarbonyl[nº-2,3-dimethoxybenzaldehyde 5-(a-methylbenzyl)semioxamazone]-, 23:88 , tricarbonyl[n⁶-3,4-dimethoxybenzaldehyde 5-(a-methylbenzyl)semioxamazone]-, 23:88 ., tricarbonyl[nº-2-methoxybenzaldehyde 5-(a-methylbenzyl)semioxamazone]-, 23:88 , tricarbonyl[n⁶-2-methylbenzaldehyde 5-(a-methylbenzyl)semioxamazone]-, 23:87 Chromium(0), thiourea complexes, 23:1 , (nº-benzene)dicarbonyl(selenocarbonyl), 21:1, 2 ., pentacarbonyl(N,N'-di-tert-butylthiourea)-, 23:3 pentacarbonyl(N, N'-di-p-tolylthiourea)-, 23:3 ., pentacarbonyl(selenocarbonyl)-, 21:1.4 , pentacarbonyl(N, N, N', N')-tetramethylthiourea)-, 23:2 ., pentacarbonyl(thiourea)-, 23:2 Chromium(I), (2,2'-bipyridine)nitrosylbis-(thiocyanato)-, 23:183 , nitrosyl(1,10-phenanthroline)bis-(thiocyanato)-, 23:184 Chromium(II), ferromagnets, 24:188 Chromium(III), bis(1,2-ethanediamine)bis-(trifluoromethanesulfonato-O)-, cis-, trifluoromethanesulfonate, 24:251 , bis(1,2-ethanediamine)difluoro-: cis-, (1,2-ethanediamine)tetrafluorochromate(III), 24:185 (\pm) -cis-, iodide, 24:186 , pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:250 , pentakis(methanamine)(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:280

, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)-, 24:181 Chromium fluoride oxide (CrO_2F_2), 24:67 Chromium potassium oxide (KCrO₂), 22:59 Chromium potassium oxide (K_{0.5}CrO₂), bronze, 22:59 Chromium potassium oxide (K_{0.6}CrO₂), bronze, 22:59 Chromium potassium oxide (K_{0.7}CrO₂), bronze, 22:59 Chromium potassium oxide $(K_{0.77}CrO_2)$, bronze, 22:59 Chromyl fluoride, see Chromium fluoride oxide (CrO₂F₂), 24:67 Cluster compounds: cobalt, iron, molybdenum, ruthenium, and osmium, 21:51-68 cobalt-ruthenium carbonyl, 25:164 molybdenum-sulfur, 23:118, 121 Cobalt, (1,4-butanediyl)(n⁵-cyclopentadienyl)(triphenylphosphine)-, 22:171 _, μ-carbonyl-nonacarbonyl(η⁵-cyclopentadienyl)-di-µ-hydrido-triosmium-, 25:195 ., dodecacarbonylhydridorutheniumtri-, 25:164 ., nonacarbonyl(n⁵-cyclopentadienyl)tetra-µ-hydrido-triosmium, 25:197 _, nonacarbonyl(η⁵-cyclopentadienyl)tri-µ-hydrido-triosmium, 25:197 _, tetracarbonylbis(µ-di-tert-butylphosphido)di-, (Co2Co), 25:177 Cobalt(I), $bis(\eta^2$ -ethene)(η^5 -pentamethylcyclopentadienyl)-, 23:19 ., (n⁵-cyclopentadienyl)bis(trimethylphosphine)-, 25:160 ., (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:162 ., dicarbonyl(pentafluorophenyl)bis-(triphenylphosphine)-, 23:25 _, dicarbonyl(η⁵-pentamethylcyclopentadienyl)-, 23:15 ., tetracarbonyl(pentafluorophenyl)-, 23:23 , tricarbonyl(pentafluorophenyl)-(triphenylphosphine)-, 23:24 Cobalt(II), aqua(methanol)(5,5a-dihydro-24-methoxy-6,10:19, 23-dinitrilo-24Hbenzimidazo[2,1-h][19,17]benzotriazacyclononadecine)-, diperchlorate, 23:176

- _____, bis(1,3-dihydro-1-methyl-2*H*-imidazole-2-thione)dinitrato-, 23:171
- _____, bis(thiocyanato-N)-bis-μ-(1H-1,2,4triazole-N²:N⁴)-, poly-, 23:158
-, tetraaqua(o-sulfobenzoimidato)-, dihydrate, 23:49
- , tetrakis(1,3-dihydro-1-methyl-2*H*-imidazole-2-thione)dinitrato-, 23:171

Cobalt(III), µ-acetato-di-µ-hydroxobis-[triammine-, triperchlorate dihydrate, 23:112

- μ₄-(acetylenedicarboxylato)tetra-μhydroxo-tetrakis[triammine-, hexaperchlorate, pentahydrate, 23:115
- _____, (2-aminoethanethiolato-N,S)bis(1,2ethanediamine)-, diperchlorate, 21:19
-, [N-(2-aminoethyl)-1,2-ethanediamine]tris(trifluoromethylsulfonato)-, fac-, 22:106
- _____, [2-[1-[(2-aminoethyl)imino]ethyl]phenolato](1,2-ethanediamine)ethyl-: bromide, 23:165

iodide, 23:167

- perchlorate, 23:169
- _____, [2-[1-[(3-aminopropyl)amino]ethyl]phenolato]ethyl(1,3-propanediamine)-, iodide, 23:169
-, [2-[1-[(3-aminopropyl)imino]ethyl]phenolato]methyl(1,3-propanediamine)-, iodide, 23:170
- _____, ammine(glycinato)(1,4,7-triazacyclononane)-, iodide, monohydrate, 23:78
- _____, aquabromobis(1,2-ethanediamine)-: dibromide, *cis*-, monohydrate, 21:123

dithionate, *trans*-, monohydrate, 21:124 _____, aquachlorobis(1,2-ethanediamine)-,

- dithionate, *trans*-, monohydrate, 21:125 _____, aqua(glycinato)(1,4,7-triazacyclo-
- nonane)-, perchlorate, dihydrate, 23:76 _____, bis(S-arginine)dinitro-, Δ -(-)-cis-
- (NO₂), trans(N)-, chloride, as resolving agent for tris(2,4-pentanedionato)cobalt(III), 23:91, 94
-, bis(1,2-ethanediamine)bis(trifluoromethanesulfonato)-, *cis*-, trifluoromethanesulfonate, 22:105

., bis(1,2-ethanediamine)(2-mercaptoacetato(2-)-O,S)-, perchlorate, 21:21 _, bis(1,2-ethanediamine)oxalato-, as resolving agent, 23:65, 68 (+)-, (+)-tris)oxalato)chromate(III) (3:1), hexahydrate, 25:140 , (carbonato)bis(1,2-ethanediamine)-, bromide, 21:120 ., carbonyldiiodo(n³-pentamethylcyclopentadienyl)-, 23:16 ., µ-(carboxylato)-di-µ-hydroxobis-[triammine-, triperchlorate, 23:107, 112 diammine[N,N'-bis(2-aminoethyl)-1,2-ethanediamine]-, trans-, 23:79 __, diamminecarbonatobis(pyridine)-, cis, cis-, chloride monohydrate, 23:73 ., dibromobis(1,2-ethanediamine)-, bromide, cis-, monohydrate, 21:121 bromide, trans-, 21:120 ., di-µ-hydroxo-bis[triammineaqua-, tetraperchlorate, pentahydrate, 23:111 ., di-µ-hydroxo-µ-(pyrazinecarboxylato)-bix[triammine-, tetraperchlorate, monohydrate, 23:114 di-µ-hydroxo-µ-(4-pyridinecarboxylato)-bis[triammine-, tetraperchlorate, 23:113 ., di-μ-iodo-bis[iodo(η⁵-pentamethylcyclopentadienyl)-, 23:17 ., (glycinato)nitro(1,4,7-triazacyclononane)-, chloride, monohydrate, 23:77 µ-(hydrogenoxalato)di-µ-hydroxobis[triammine-, triperchlorate, hemihydrate, 23:113 ., pentaammine(trifluoromethanesulfonato)-, trifluoromethanesulfonate, 22:104 pentakis(methanamine)(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:281 ., tetra-µ-hydroxo-µ4-oxalatotetrakis-[triammine-, hexaperchlorate, tetrahydrate, 23:114 _, triammineaquadichloro-, mer-, chloride, 23:110 _, triamminetrinitro-, mer-, 23:109 _, tri-µ-hydroxo-bis[triammine-, fac-, triperchlorate, dihydrate, 23:110 ., tris(alaminato)-, fac- and mer-, 25:137

_, tris(1,2-ethanediamine)-, cis-dicarbonatodicyanocobaltate(III)dihydrate, 23:66 _, tris(glycinato)-, fac- and mer-, 25:135 ., tris(2,4-pentanedionato)-, resolution of, with Δ -(-)-cis(NO₂),-trans(N)bis(S-arginine)dinitrocobalt(III) chloride, by column chromatography, 23:94Cobaltate(1-), tridecacarbonyltriruthenium-, µ-nitrido-bis(triphenylphosphorus)(1+), 21:61 Cobaltate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:24 Cobaltate(III), bis(glycinato)dinitro-, cis-(NO₂), trans(N)-, silver(I), 23:92 ., [N,N'-1,2-cyclohexanediylbis[N-(carboxymethyl)glycinato](4-)]-,trans-, cesium, 23:96 [[R,R-(-)]-N,N-1,2-cyclohexanediylbis[N-(carboxymethyl)glycinato-(4-)]-: $[\Delta - (+) -]$, cesium, 23:97 $[\Delta - (+)]$ -, potassium, 23:97 $[\Delta - (+)]$ -, rubidium, 23:97 _, diamminecarbonatodicyano-, cis,cis-, sodium, dihydrate, 23:67 _, diamminecarbonatodinitro-, cis,cis-, potassium hemihydrate, 23:70 ____, diamminedicarbonato-, cis-, lithium, resolution of, 23:63 cis-, potassium, 23:62 ., diamminedicyanooxalato-, cis, cis-, sodium, dihydrate, 23:69 _, diamminedinitrooxalato-, cis, cis-, potassium, hemihydrate, 23:71 , dicarbonatodicyano-, tris(1,2-ethanediamine)cobalt(III), dihydrate, 23:66 ., dicarbonato(1,2-ethanediamine)-, potassium, 23:64 _, (1,2-ethanediamine)bis(oxalato)-, as resolving agent, 23:74 ., [N, N'-1, 2-ethanediylbis[N-(carboxymethyl)glycinato](4-)-: potassium, 23:99 rubidium, 23:101 trans-, cesium, 23:99 , [N,N'-(1-methyl-1,2-ethanediyl)bis-[N-(carboxymethyl)glycinato](4-)]-,cesium, 23:101

chromium, 23:184

[[R-(-)]-N, N'-(1-methyl-1, 2-)]ethanediyl)bis[N-(carboxymethyl)glycinato](4 -)]-: $[\Delta - (+)]$ -, cesium, 23:101 $[\Delta - (+)]$ -, potassium, 23:101 $[\Delta - (+)]$ -, rubidium, 23:101 , [[S-(-)]-N, N'-(1-methyl-1, 2-)]ethanediyl)bis[N-(carboxymethyl)glycinato](4-)]-, $[\Lambda-(-)]$ -, cesium, 23:101 , tricarbonato-, potassium, 23:62 Cobalt potassium oxide (KCoO₂), 22:58 Cobalt potassium oxide (K_{0.5}CoO₂), bronze, 22:57 Cobalt potassium oxide $(K_{0.67}CrO_2)$, bronze, 22:57 Cobalt sodium oxide (NaCoO₂), 22:56 Cobalt sodium oxide (Na_{0.6}CoO₂), 22:56 Cobalt sodium oxide (Na_{0.64}CoO₂), 22:56 Cobalt sodium oxide (Na_{0.74}CoO₂), 22:56 Cobalt sodium oxide $(Na_{0.77}CoO_2)$, 22:56 Containers, tantalum, as high-temp., for reduced halides, 20:15 Copper(I), carbonyl[hydrotris(pyrazolato)borato]-, 21:108 , carbonyl[tetrakis(pyrazolato)borato]-, 21:110 ., carbonyl[tris(3,5-dimethylpyrazolato)hydroborato]-, 21:109 Copper(II), bis(thiocyanato)-bis-µ-(1H-1,2,4-triazole-N2:N4)-, poly-, 23:159 , bis(2,2,7-trimethyl-3,5-octanedionato)-, 23:146 ., (2,9-dimethyl-3,10-diphenyl-1,4,8,-11-tetraazacyclotetradeca-1,3,8,10tetraene)-, bis[hexafluorophosphate-(1-)]-, 22:110 ., (1,10-phenanthroline)[serinato-(1-)]-, sulfate (2:1), 21:115 ., [1,4,8,11-tetraazacyclotetradecane-5,7-dionato(2-)]-, 23:83 Copper iodide (CuI), 22:101 Crystal growth: of Li₃N, 22:51 of oxides, by skull melting, 22:43 of silver tungstate Ag₈(W₄O₁₆), 22:78 Cyanato complexes, silicon, 24:99 Cyanide complexes: boron, 21:167 cobalt, 23:66-73

platinum chain complexes, 21:142-156 Cyclic nitrogen-sulfur anions, 25:30 Cyclodiphosphazane, 1,3-di-tert-butyl-2,4dichloro-, 25:8 ., 2,4-dichloro-1,3-diisopropyl-, 25:10 $1,3,2\lambda^3,4\lambda^3$ -Cyclodiphosphazane, 2-chloro-1,3-diisopropyl-4-[isopropyl(trimethylsilyl]amino]-, 25:10 1,3-Cycloheptadiene, ruthenium complex, 22:179 1,3-Cyclohexadiene, ruthenium complex, 21:77; 22:177 1,2-Cyclohexanedione, dioxime, boron-iron complex, 21:112 1,5-Cyclooctadiene: iridium complexes, 23:128 rhodium complexes, 23:127, 129; 25:172 ruthenium complex, 22:178 Cyclooctane, boron complex, 22:199 1,3,5-Cyclooctatriene, ruthenium complex, 22:178 1.3-Cyclopentadiene: cobalt complex, 22:171, 235 cobalt and rhodium complexes, 25:158-163 cobalt-osmium complexes, 25:195-197 hafnium, titanium, and zirconium complexes, 24:149-151 iron complexes, 21:37-46; 24:161, 164, 166, 170, 172 molybdenum complexes, 25:168, 169 osmium complex, 25:191 ruthenium complex, 21:78; 22:180; 25:180-185 thallium complex, 24:97 titanium and vanadium complexes, 21:84, 85 ., 1,2,3,4,5-pentamethyl-, 21:181 cobalt complexes, 23:15-19 hafnium, titanium, and zirconium complexes, 24:152-156 osmium complex, 25:191 1,5-Cyclopentadiene, iridium complexes, 24:173, 174, 175 Cyclopentaphosphine, pentamethyl-, 25:4 Cyclophosphanes, 25:1 Cyclophosphazenes, aziridinyl-, amino substituted derivs., 25:86

Cyclotetraphosphazene, bis(1-aziridinyl)hexakis(methylamino)-, trans-, 25:91 Cyclotetraphosphazenes, amino-, 25:15 Cyclotriphosphazene, bis(1-aziridinyl)tetrakis(methylamino)-, 25:86 ____, pentachloro(vinyloxy)-, 25:75 ____, tetrachloromethyl[(trimethylsilyl)methyl]-gem, 25:61 ., tri-tert-butyl-, 25:2 L-Cysteine, gold complex, 21:31 Cytidine, palladium(II) complexes, 23:54 DC510150, see Poly(dimethylsiloxane-comethylphenylsiloxane), 22:116 Decaborane(14), 22:202 diars, see Arsine, o-phenylenebis(dimethyl-, 21:181H,5H-[1,4,2,3]Diazadiphospholo[2,3-b]-[1,4,2,3]diazadiphosphole-2,6-(3H,7H)dione, 1,3,5,7-tetramethyl-, 24:122 molybdenum complex, 24:122 Diboroxane, tetraethyl-, 22:188 mixture with triethylboroxin (3:1), 24:85 1,2-Dicarba-3-cobalta-closo-dodecaborane-(11)3-(n⁵-cyclopentadienyl-, 22:235 1,2-Dicarba-closo-dodecaborane(12)-9-thiol, 22:241 2,3-Dicarba-nido-hexaborane(8),2,3-diethyl-, 22:211 2,6-Dicarba-nido-nonaborane(11), 22:237 7,8-Dicarba-nido-undecaborane(11), 9-(dimethyl sulfide)-, 22:239 Difluorodioxouranium(VI), 25:144 Dimethylamine, N-fluoro-, 24:66 Dimethyl sulfide: boron complex, 22:239 niobium complex, 21:16 platinum(II) complexes, 22:126, 128 6,10:19,23-Dinitrilo-24H-benzimidazo[2,1h][1,9,17]benzotriazacyclononadecine, 5,5a-dihydro-24-methoxy-, 23:176 7,11:20,24-Dinitrilodibenzo[b,m][1,4,12,15]tetraazacyclodocosine, barium and cadmium complexes, 23:174 4,7-Dioxa-1,10-diphosphadecane, 1,1,10,10tetraphenyl-, gold complexes, 23:193 diphos, see Phosphine, 1,2-ethane-divlbis-(diphenyl-, palladium complex,

22:167

Diphosphate, tetraammonium ((NH4)4-(P₂O₇), 21:157 Diphosphine, tetramethyl-disulfide, hazards in preparation of, 23:199 Diphosphorous acid, platinum complex, 24:211 Diselenocarbamic acid, N,N-diethyl-, nickel complex, 21:9 1,3-Diselenole-2-selone, 4,5-dimethyl-, 24:133 Disilaselenane, see Disilyl selenide, 24:127 Disilyl selenide, 24:127 Disulfide complexes, molybdenum, 23:120, 121 1,3λ4,2,4,5-Dithiadiazastannole, 5,5-dimethyl-, 25:53 Dithiazolone (S₂N₂CO), 25:53 1,3λ⁴,2,4-Dithiadiazol-5-one, 25:53 Dithionate: aquabis(1,2-ethanediamine)hydroxorhodium(III), 24:230 cis-tetraammineaquahydroxorhodium-(III), 24:225 Divanadium, polymer-stabilized, 22:116 dppe, see Phosphine, 1,2-ethanediylbis(diphenyl-, niobium complex, 21:18 Dysprosium, porphyrin complexes, 22:156 _, (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 ., (2,2,6,6-tetramethyl-3,5-heptanedionato) [5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160 Dysprosium(III), dodecanitratotris(1,4,7,-10,13-pentaoxoacyclopentadecane)tetra-, 23:153 ., hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 ., (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 , trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 ., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Dysprosium chloride (DyCl₃), 22:39 Dysprosium potassium chloride (KDy₂Cl₇), 22:2

Erbium, porphyrin complexes, 22:156 _____, (2,4-pentanedionato)[5,10,15,20-

tetrakis(3-fluorophenyl)porphyrinato-(2-)]-, 22:160 ., (2,4-pentanedionato) [5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 Erbium(III), dodecanitratotris(1,4,7,10,13pentaoxacyclopentadecane)tetra-, 23:153 ., hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 _, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 _, tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Erbium chloride (ErCl₃), 22:39 Ethanamine: intercalate with hydrogen pentaoxoniobatetitanate(1 -), 22:89 molybdenum complexes, 23:8 Ethane, ruthenium complexes, 25:184, 185 1,2-bis(dichlorophosphino), see 1,2-Ethanediylbis(dichlorophosphine), 23:141 ., 1,2-dimethoxy-, bis(trifluoromethyl)cadmium, 24:55 ., 1,1'-[thiobis(2,1-ethanediylthio)]bis-[2-chloro-, 25:124 1,2-Ethanediamine: chromium complexes, 24:185, 186 chromium, iridium, and rhodium complexes, 24:251, 283-290 cobalt complex, 25:140 cobalt complexes, 23:64, 165 cobalt(III) trifluoromethanesulfonate complexes, 22:105 rhodium complex, 24:227, 229-231 ., N-(2-aminoethyl)-: cobalt(III) trifluoromethanesulfonate complexes, 22:106 cobalt complex, 21:19, 21, 120-126 _, N,N'-bis(2-aminoethyl)-, cobalt complexes, 23:79 ., N, N-bis[2-(dimethylamino)ethyl-N', N'-dimethylpalladium complex, 21:129-132

., N, N'-bis[2-(dimethylamino)ethyl]-N, N'-dimethyl-, palladium complex, 21:133 _, N,N'-bis(1-methylethyl)-, platinum complex, 21:87 (S,S)-N,N'-bis(1-phenylethyl)-, platinum complex, 21:87 , N,N'-dimethyl-N,N'-bis(1-methylethyl)-, platinum complex, 21:87 ., N,N'-dimethyl-N,N'-bis(1-phenylethyl)-, (R,R)-, platinum complex, 21:87 N, N, N', N'-tetraethyl-, platinum complexes, 21:86 , N, N, N', N'-tetramethyl-, palladium complex, 22:168 1,2-Ethanediol, iron complex, 22:88 Ethanethiol, iron complex, 21:39 ., 2-amino-, cobalt complex, 21:19 ., 1,1-dimethyl-, iron complex, 21:36, 37 Ethanol: [(N,N-diethylcarbamoyl)methyl]phosphonate ester, 24:101 phosphorofluoridate diester, 24:65 uranium complex, 21:165 ., 1-methyl, [(N,N-diethylcarbamoyl)methyl]phosphonate ester, 24:101 , 2,2'-[thiobis(2,1-ethanediylthio)]bis-(, 25:123 Ethene: cobalt complexes, 23:19 iron complex, 21:91 platinum complexes, 21:86-89 platinum(O) complexes, 24:213-216 ruthenium complex, 21:76; 25:183 Ethyl, cobalt complexes, 23:165 Ethylamine, see Ethanamine, molybdenum complexes, 23:8 Ethylene glycol, see 1,2-Ethanediol, iron complex, 22:88 Europium, porphyrin complexes, 22:156 _, (2,4-pentanedionato)[5,10,15,20tetrakis(3,5-dichlorophenyl)porphyrinato(2-)-, 22:160 , (2,4-pentanedionato)[5,10,15,20tetrakis(4-methylphenyl)porphyrinato-(2-)]-, 22:160 ., (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2)]-, 22:160

Europium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180

____, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153

____, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

_____, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151

- ____, tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- Europium chloride (EuCl₃), 22:39
- Ferrate(1-), tricarbonylnitrosyl-, µ-nitridobis(triphenylphosphorus)(1+), 22:163, 165
 -, tridecacarbonylhydridotriruthenium-, μ-nitrido-bis(triphenylphosphorus)(1 +), 21:60

Ferrate(2-), octacarbonyldi-, disodium, 24:157

_____, tetracarbonyl-, disodium, 24:157
_____, tetrakis(benezenethiolato)tetra-μseleno-tetra-bis(tetrabutylammonium), 21:36

tetrakis(benzenethiolato)tetra-μthio-tetra-, bis(tetrabutylammonium), 21:35

_____, tetrakis(1,1-dimethylethanethiolato)tetra-μ-seleno-tetra-,bis(tetrabutylammonium), 21:37

<u>, tetrakis(1,1-dimethylethanethio-</u> lato)tetra-µ-thio-tetra-, bis(tetramethylammonium), 21:36

_____, tridecacarbonyltetra-, μ-nitrido-bis-(triphenylphosphorus)(1 +), 21:66, 68 _____, undecacarbonyltri-, bis[μ-nitrido-

bis(triphenylphosphorus)(1+)], 24:157 Ferrate(II), [[(1,2-cyclohexanediyldinitrilo)-

tetraacetato](4 –)](dinitrogen-, disodium, dihydrate, 24:210

____, (dinitrogen)[[(1,2-ethanediyldinitrilo)tetraacetato](4 –)-, disodium, dihydrate, 24:208

_____, tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:24

Ferrate(II, III), tetrakis(benzenethiolato)tetra-µ₃-thio-tetra-, bis(tetraphenylphosphonium), 21:27

Ferrate(III), tetrakis(benzenethiolato)di-µ-

thio-di-, bis(tetraphenylphosphonium), 21:26 Ferromagnets, of organic intercalated ionic chromium(II), 24:188 Fluorine cesium sulfate (CsF(SO₄)), 24:22 (Fluorocarbonyl)imidosulfurous difluoride, 24:10 Fluorosulfate, chlorine, 24:6 Formic acid, (formyloxy)-, iridium complex, 21:102 Furan, tetrahydro-: bis(trifluoromethyl)cadmium, 24:57 hafnium, niobium, scandium, titanium, vanadium, and zirconium complexes, 21:135-139 iron-magnesium complexes, 24:172

molybdenum complexes, 24:193

Gadolinium, porphyrin complexes, 22:156 _____, (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato]-, 22:160

Gadolinium(III), dodecanitratotris(1,4,7,-10,13-pentaoxacyclopentadecane)tetra-, 23:153

_____, hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180

____, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

_____, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151

_____, tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

Gadolinium chloride (GdCl₃), 22:39

Gallate(1-), tetrabromo-: tetrabutylammonium, 22:139

tetraethylammonium, 22:141 _____, tetrachloro-, tetrabutylammonium, 22:139

____, tetraiodo-, tetrabutylammonium, 22:140

Gallate(2-), hexabromodi-: bis(tetraphenylphosphonium), 22:139 bis(triphenylphosphonium), 22:135, 138

____, hexachlorodi-, bis(triphenylphosphonium), 22:135, 138

____, hexaiododi-, bis(triphenyl-

phosphonium), 22:135, 138

Glycine:

cobalt complex, 25:135

cobalt complexes, 23:75, 92 , N, N'-1,2-cyclohexanediylbis[N-(carboxymethyl)-, cobalt complexes, 23:96 ., N,N'-1,2-ethanediylbis[N-(carboxymethyl)-, cobalt complexes, 23:99 _, N, N'-(1-methyl-1,2-ethanediyl)bis-[N-(carboxymethyl)-, cobalt complexes, 23:101 Gold(I), carbonylchloro-, 24:236 __, (L-cysteinato)-, 21:31 _, dichloro-µ-(1,1,10,10-tetraphenyl-4,7-dioxa-1,10-diphosphadecane)-di-, 23:193 , (4-ethylbenzenethiolato)-, 23:192 Guanidinium (hydrogen difluoride)tetracyanoplatinate (2:0.27:1) hydrate (1:1.8), 21:146 Guanosine, palladium(II) complexes,

23:51-54

Hafnium, dicarbonylbis(n⁵-cyclopentadienyl)-, 24:151 _, dicarbonylbis(η⁵-pentamethylcyclopentadienyl)-, 24:155 _, dichlorobis(η⁵-pentamethylcyclopentadienyl)-, 24:154 Hafnium(IV), tetrachlorobis(tetrahydrofuran)-, 21:137 Heptadecatungstodiphosphate, (P₂W₁₇-O₆₁¹⁰⁻), thorium and uranium complexes, 23:188 3,5-Heptanedione, 2,2,6,6-tetramethyl-: actinide and lanthanide complexes, 22:156 chromium complex, 24:181 2,4,6,8,9,10-Hexaaza-1λ³,3λ³,5λ³,7λ³-tetraphosphatricyclo[5.1.1.13.5]decane, 2,4,-6,8,9,10-hexaisopropyl-, 25:9 1-Hexanol, [(N,N-diethylcarbamoyl)methyl]phosphonate ester, 24:101 1,4,7,10,13,16-Hexaoxacyclooctadecane, lanthanoid complexes, 23:149

potassium complex, 25:126 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosane, potassium complex, 22:151

Hexasulfide, palladium complex, nonstoichiometric, 21:14

1,4,7,10,13,16-Hexathiacyclooctadecane, 25:123

Holmium, porphyrin complexes, 22:156 ., (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 _, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160Holmium(III), dodecanitratotris(1,4,7,10,-13-pentaoxacyclopentadecane)tetra-, 23:153 , hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 _, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 , tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Holmium chloride (HoCl₃), 22:39 Hydrido complexes: chromium, molybdenum, and tungsten, 22:181 chromium and tungsten, 23:27-29 cobalt, iron, osmium, and ruthenium, 21:58-65cobalt-osmium, 25:195-197 cobalt-ruthenium cluster, 25:164 iron complexes, 21:92 osmium, 25:193 rhodium, 25:171, 172 ruthenium, 24:168 [hydrogen bis(sulfate)], cesium tetracyanoplatinate (0.46:3:1), 21:151 Hydrogen difluoride, potassium tetracyanoplatinate (0.30:2:1), trihydrate, 21:147 Hydrogen difluoride, tetrafluoroammonium, 24:43 Hydrogen pentafluorooxotellurate(VI), 24:34 Hydrogen pentaoxoniobatetitanate(1-), 22:89 Hydroxo complexes: cobalt, 23:107, 111-115 molybdenum, 23:135-139 platinum, 25:100, 102-105 rhodium, 23:129 Hypochlorous acid, perfluoro-tert-butyl ester, 24:61 _, trifluoromethyl ester, 24:60

2H-Imidazole-2-thione, 1.3-dihydro-1methyl-, cobalt complexes, 23:171 Imidosulfurous difluoride: bromo-, 24:20 chloro-, 24:18 (fluorocarbonyl)-, 24:10 mercury complex, 24:14 Indium(III), [[4,4',4'',4'''-porphyrin-5,10,-15,20-tetrayltetrakis(1-methylpyridiniumato)(2 -)]pentaperchlorate, 23:55, 57 ., tris[(trimethylsilyl)methyl]-, 24:89 Indium iodide (InI₃), 24:87 Inosine, palladium(II) complexes, 23:51-54Insertion compounds, lithium, 24:200 Intercalation compounds, 22:86, 89 organic ionic containing chromium(II), 24:188 Iridium, (1,3-butanediyl)(n⁵-pentamethylcyclopentadienyl)(triphenylphosphine)-, 22:174 ., chloro(n²-cyclooctene)tris(trimethylphosphine)-, 21:102 ., chloro[(formyl-KC-oxy)formato-KO(2-)]thio(trimethylphosphine)-, 21:102 Iridium(1+), bis[1,2-ethanediylbis(dimethylphosphine)]-, chloride, 21:100 , (carbon dioxide)bis[1,2-ethanediylbis(dimethylphosphine)]-, chloride, 21:100 Iridium(I), bis(n⁵-1,5-cyclooctadiene)-di-µmethoxy-di-, 23:128 ., carbonylchlorobis(dimethylphenylphosphine)-, trans-, 21:97 , (η⁴-1,5-cyclooctadiene)bis(pyridine)-, hexafluorophosphate(1-), 24:174 , (n⁵-1,5-cyclooctadiene)(pyridine)-(tricyclohexylphosphine)-, hexafluorophosphate(1-), 24:173, 175 Iridium(III), bis(1,2-ethanediamine)bis(trifluoromethanesulfonato-O)-, cis-, trifluoromethanesulfonate, 24:290 chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-O)-, trans-, trifluoromethanesulfonate, 24:289 _, dichlorobis(1,2-ethanediamine)-: cis-, chloride, monohydrate, 24:287

trans-, chloride, monohydrochloride, dihydrate, 24:287 ... hexaamine-: trichloride, 24:267 tris(trifluoromethanesulfonate), 24:267 ., pentaammineaqua-, tris(trifluoromethanesulfonate), 24:265 , pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:264 ., tris(acetonitrile)nitrosylbis(triphenylphosphine)-, bis[hexafluorophosphate], 21:104 Iron, bis (n⁵-cyclopentadienyl)-µ-(disulfur)bis-µ-(ethanethiolato)-di-, 21:40, 41 _, bis[1,2-ethanediylbis(diphenylphosphine)](ethene)-, 21:91 ., bis[1,2-ethanediylbis(diphenylphosphine)](trimethylphosphite)-, 21:93 ., bromo(n⁵-cyclopentadienyl)[1,2ethanediylbis(diphenylphosphine)]-, 24:170 ., bromo(n^s-cyclopentadienyl)[1,2ethanediylbis(diphenylphosphine)]bis-(tetrahydrofuran)-magnesium-, (Fe-Mg), 24:172 ., dicarbonyl(n⁵-cyclopentadienyl)(2methyl-l-propenyl- κC^1)-, 24:164 ., {2-[2-(diphenylphosphino)ethyl]phenylphosphino}phenylC,P,P'][1,2ethanediylbis(diphenylphosphine)]hydrido-, 21:92 , [1,2-ethanediolato(2-)]dioxodi-, 22:88 , [1,2-ethanediylbis(diphenylphosphine)]bis(2,4-pentanedionato)-, 21:94 ____, methoxyoxo-, 22:87 __, tetracarbonyl(tri-tert-butylphosphine)-, 25:155 , tetrakis(n⁵-cyclopentadienyl)-µ₃-(disulfur)-di-µ3-thiotetra-, 21:42 ., tetrakis(n⁵-cyclopentadienyl)-µ₃-(disulfur)-tri-µ3-thiotetra-, 21:42 ., tricarbis(tricyclohexylphosphine)-, 25:154 _, tricarbonylbis(tributylphosphine)-, 25:155 ., tricarbonylbis(trimethylphosphine), 25:155 ., tricarbonylbis(triphenylphosphine)-, 25:154

____, tridecacarbonyldihydridotriosmium-, 21:63

____, tridecacarbonyldihydridotriruthenium-, 21:58

- Iron(1+), dicarbonyl(η³-cyclopentadienyl)-(η⁵-2-methyl-1-propenyl)-, tetrafluoroborate(1-), 24:166
- _____, tricarbonyl(η⁵-cyclopentadienyl)-, trifluoromethanesulfonate, 24:161
- Iron(2+), bis(acetonitrile)bis(η⁵-cyclopentadienyl)bis-μ-(ethanethiolato)-di-, bis-(hexafluorophosphate), 21:39 _____, tetrakis(η⁵-cyclopentadienyl)μ₁-

(disulfur)tri- μ_3 -thio-tetra-, bis(hexafluorophosphate), 21:44

Iron(II), bis(acetonitrile)(2,9-dimethyl-3,10diphenyl-1,4,8,11-tetrazacyclotetradeca-1,3,8,10-tetraene)-, bis[hexafluorophosphate(1-)], 22:108

_____, bis(thiocyanato-N)-bis-μ-(1H-1,2,4triazole-N²:N⁴)-, poly-, 23:158

____, tetraaquabis(o-sulfobenzoimidato)-, dihydrate, 23:49

- Iron(III), aqua[(1,2-ethanediyldinitrilo)tetraacetato](3-)]-, monohydrate, 24:207
- ______, {[tris[µ-[(1,2-cyclohexanedionedioximato)-O:O']]diphenyldiborato-(2-)]-N,N',N'',N''',N'''',N''''}-, 21:112
- Iron chloride oxide (FeClO), intercalate: with 4-aminopyridine (4:1), 22:86 with pyridine (4:1), 22:86 with 2,4,6-trimethypyridine, 22:86
- Iron oxide (Fe₂O₄), magnetite, crystal growth of, by skull melting, 22:43 Iron titanium hydride (FeTiH₁₉₄), 22:90
- Labeling, of boron compounds, with boron-10, 22:218
- Lanthanides, 5,10,15,20-tetraphenylporphyrin complexes, 22:156
- Lanthanium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- decane)trinitrato-, 23:153
- ____, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- _____, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151

....., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

- Lanthanium iodide (LaI₂), 22:36 Lanthanum, (2,4-pentanedionato)[5,10,15,-
 - 20-tetraphenylporphyrinato(2-)]-, 22:160
- Lanthanum aluminum nickel hydride (AlLaNi,H₄), 22:96
- Lanthanum chloride (LaCl₃), 22:39
- Lanthanum iodide (LaI₃), 22:31
- Lead oxide (PbO₂), solid solns. with ruthenium oxide (Ru₂O₃), pyrochlor, 22:69
- Lead ruthenium oxide (Pb_{2.67}Ru_{1.33}O_{6.5}), pyrochlore, 22:69
- Lithium, insertion compounds, 24:200 _____, (pentafluorophenyl)-, 21:72
 - _____, [(trimethylsilyl)methyl]-, 24:95

Lithium cesium thulium chloride (Cs₂LiTm-Cl₆), 20:10

- Lithium nitride (Li₃N), 22:48
- Lithium rhenium oxide (LiReO₃), 24:205
- Lithium rhenium oxide ($Li_{0.2}ReO_3$), 24:203, 206
- Lithium rhenium oxide (Li_2ReO_3), 24:203 Lithium vanadium oxide (LiV_2O_3),
- 24:202
- Lutetium, porphyrin complexes, 22:156, (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160
- Lutetium(III), dodecanitratotris(1,4,7,10,-13-pentaoxacyclopentadecane)tetra-, 23:153
-, hexakis(diphenylphosphinicamide)-, tris(hexafluorophosphate), 23:180
- _____, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153

______, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

- _____, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- _____, tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

Lutetium cesium chloride (Cs_2LuCl_3), 22:6 Lutetium cesium chloride (Cs_3LuCl_6), 22:6 Lutetium cesium chloride (Cs_3LuCl_9), 22:6 Lutetium chloride ($LuCl_3$), 22:39 Macrocyclic complexes, crown ether, lanthanoid, 23:149 Magnesium, bromo(n⁵-cyclopentadienyl)-[1,2-ethanediylbis(diphenylphosphine)]bis(tetrahydrofuran)iron-, (Fe-Mg), 24:172 Magnetite (Fe_2O_4), crystal growth of, by skull melting, 22:43 Manganate(I), tris(µ-benzenethiolato)-, hexacarbonyldi-, tetraethylammonium, 25:118Manganate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:25 Manganate(III), pentafluoro-: diammonium, 24:51 dipotassium, monohydrate, 24:51 Manganate(IV), hexafluoro-: bis(tetrafluoroammonium), 24:45 dicesium, 24:48 Manganese, dibromooctacarbonyldi-, 23:33 ., octacarbonyldiiododi-, 23:34 Manganese(I), bis(µ-benzenethiolato)-, octacarbonyldi-, 25:116 _, tetrakis(µ₃-benzenethiolato)-, dodecacarbonyltetra-, 25:117 Manganese(II), bis(thiocyanato-N)-bis-µ-(1H-1,2,4-triazole-N²:N⁴)-, poly-, 23:158 Manganese(III), tris(2,2,7-trimethyl-3,5octanedionato)-, 23:148 Manganese calcium oxide (Ca₂Mn₃O₈), 22:73 Manganese thiolate, bridged carbonyl complexes, 25:115 Mercury, acetatomethyl-, 24:145 _, bis(trifluoromethyl)-, 24:52 Mercury(II), bis(imidosulfurousdifluoridato-N)-, 24:14 ____, iodomethyl-, 24:143 ___, methyl-: acetate, see Mercury, acetatomethyl-, 24:145 iodide, see Mercury(II), iodomethyl-, 24:143 nitrate, see Mercury(II), methylnitrato-, 24:144 _, methylnitrato-, 24:144 Methanamine: chromium, cobalt, and rhodium complexes, 24:280-281

intercalate with hydrogen pentaoxoniobatetitanate(1 -), 22:89 ., N-methyl-: molybdenum complex, 21:54 molybdenum and tungsten complexes, 23:11-13 Methanaminium, N-(4,5-dimethyl-1,3-diselenol-2-ylidene)-N-methyl-iron(1 +), 24:161 hexafluorophosphate, 24:133 Methane, fluorotriphenyl-, 24:66 ., isocyano, molybdenum and tungsten complexes, 23:10-13 _, trifluoro-: cadmium complex, 24:55, 59 mercury complex, 24:52 Methanesulfonate, trifluoro-: metal complexes and salts, 24:243-306 silver, reactions, 24:247 tricarbonyl(n5-cyclopentadienyl)iron-(1+), 24:161Methanesulfonic acid, trifluoro-, cobalt(III) amine complexes, 22:104, 105 Methanol: iridium complexes, 23:128 rhodium complex, 23:127, 129 ., [(N,N-dimethylcarbamoyl)methyl]phosphonate ester, 24:101 ., trifluoro-, hypochlorite ester, 24:60 Methyl: cobalt complexes, 23:170 mercury complexes, 24:143-145 platinum complex, 25:104, 105 Methyl acrylate, ruthenium complex, 24:176 Methylene, ruthenium complex, 25:182 Microcrystals, of platinum, 24:238 Molecular sieves, 22:61 Molybdate(1-), pentacarbonylhydrido-µnitrido-bis(triphenylphosphorus)(1 +), 22:183 Molybdate(V), pentafluorooxodipotassium, 21:170 Molydbenum, as substrate for cadmium chalcogenides, 22:80 ., dicarbonylnitrosyl{tris(3,5-di-methylpyrazolyl)hydroborato}-, 23:4, 5 ., dichlorotetrakis(dimethylamido)-di-, (Mo≡Mo), 21:56 ., diodonitrosyl{tris(3,5dimethylpyrazolyl)hydroborato}-, 23:6

- _____, ethoxyiodonitrosyl{tris(3,5-di-methylpyrazolyl)hydroborato}-, 23:7
-, (ethylamido)iodonitrosyl{tris(3,5dimethylpyrazolyl)hydroborato}-, 23:8
- _____, hexacarbonyl-tris[μ-1,3,5,7-tetramethyl-1*H*,5*H*-[1,4,2,3]diazadiphospholo[2,3-*b*][1,4,2,3]diazadiphosphole-2,6-(3*H*,7*H*)-dione]-di-, 24:124

____, hexakis(dimethylamido)di-, (Mo=Mo), 21:54

- _____, tetracarbonylbis(η⁵-cyclopentadienyl)(μ-di-tert-butylphosphido)-μ-hydrido-di-, 25:168
- _____, tetracarbonylbis(η⁵-cyclopentadienyl)(μ-dimethylarsino)-μ-hydrido-di-, 25:169
- Molybdenum(O), bis(1-chloro-4-isocyanobenzene)bis[1,2-ethanediylbis(diphenylphosphine)]-, trans-, 23:10
- _____, bis(1,3-dichloro-2-isocyanobenzene)bis[1,2-ethanediylbis(diphenylphosphine)], trans, 23:10
- _____, bis[1,2-ethanediylbis(diphenylphosphine)]bis(isocyanobenzene)-, trans-, 23:10
- _____, bis[1,2-ethanediylbis(diphenylphosphine)]bis(isocyanomethane)-, trans-, 23:10
- ____, bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-isocyano-4-methoxybenzene)-, trans-, 23:10
- , bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-isocyano-3-methylbenzene)-, trans-, 23:10
- _____, bis[1,2-ethanediylbis(diphenylphosphine)]bis(2-isocyano-2-methylpropane)-, trans-, 23:10
- Molybdenum(II), octaaquadiion, 23:131
- Molybdenum(III), di-µ-hydroxo-di-, ion, hydrate, 23:135
- _____, hexaaqua-, ion, 23:133 _____, trichlorotris(tetrahydrofuran)-,
 - 24:193
- Molybdenum(IV), bis[1,2-ethanediylbis(diphenylphosphine)]bis[(methylamino)methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:14
 - ____, bis{1,2-ethanediylbis(diphenylphosphine)](isocyanomethane)-[(methylamino)methylidyne]-, *trans*-, tetrafluoroborate(1-), 23:12

- _____, nonaaqua-tetra-μ₃-oxo-tri-, ion, 23:135
- _____, tetra-μ₃-oxo-tri-, ion, hydrate 23:135
- Molybdenum(V), µ-(diethylphosphinodithioato)-tris(diethylphosphinodithioato)-tri-µ-thio-µ₃-thio-*triangulo*-tri, 23:121
-, di-µ-oxo-dioxodi-, ion, hydrate, 23:137
- _____, hexaaqua-di-μ-oxo-dioxodi-, ion, 23:137
- _____, tris(diethylphosphinodithioato)trisμ-(disulfido)-μ₃-thio-*triangulo*-tri-, diethylphosphinodithioate, 23:120
- Molybdenum(VI), dihydroxotetraoxodiion, 23:139
 - _____, hydroxodioxo-, ion, 23:139
- _____, hydroxopentaoxodi-, ion, 23:139
-, trihydroxotrioxodi-, ion, 23:139
- Molybdenum(VI) oxide (MoO₃), dihydrate, 24:191
- Molybdenum chloride oxide(MoCl₄O), 23:195
- Neodymate(III), tetranitrato-, (1,4,7,10,13,-16-hexaoxacyclooctadecane)dinitratoneodymium(III), (2:1), 23:150
- Neodymium, (2,4-pentanedionato)[5,10,15,-20-tetraphenylporphyrinato(2-)]-, 22:160
- Neodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- _____, (1,4,7,10,13,16-hexaoxacyclooctadecane)dinitrato-, bis[tetranitratoneodymate(III)], 23:150
-, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- _____, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- _____, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
 - tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- Neodymium chloride (NdCl₃), 22:39

Nickel, bis(µ-tert-butylphosphido)tetrakis-(trimethylphosphine)di-, (Ni-Ni), 25:176 Nickel(II), bis[2-(diphenylphosphino)benzenamine]-, dinitrate, 25:132 , bis(thiocyanato)-bis-µ-(H-1,2,4-triazole-N²:N⁴)-, β-poly-, 23:159 , chloro(N,N-diethyldiselenocarbamato)(triethylphosphine)-, 21:9 ., dibromobis(3,3',3''-phosphinidynetripropionetrile)-, 22:113, 115 polymer, 22:115 ., dichlorobis(3,3',3''-phosphinidynetripropionitrile)-, 22:113 , hexakis(thiocyanato-N)-hexakis-µ-(4H-1,2,4-triazole-N':N2)tri-, 23:160 _, tetraaquabis(o-sulfobenzo-, imidato)-, dihydrate, 23:48 Nickel aluminum lanthanum hydride (AlLaNi4H4), 22:96 Niobate(-I), hexacarbonyl-, sodium, 23:34 Niobium(III), di-µ-chloro-tetrachloro-µ-(dimethyl sulfide)bis(dimethyl sulfide)di-, 21:16 ., hexachlorobis[1,2-ethanediylbis(diphenylphosphine)]di-, 21:18 , hexachlorobis[[2-[(dimethylarsino)methyl]-2-methyl-1,3-propanediyl]bis(dimethylarsine)]-, 21:18 _, hexachlorobis[o-phenylenebis(dimethylarsine)]di-, 21:18 Niobium(IV), tetrachlorobis(tetrahydrofuran)-, 21:138 Nitrate(1-), bis(disulfido)-µ-nitrido-bis(triphenylphosphorus)(1 +), 25:35 ., sulfido(disulfido)-µ-nitrido-bis-(triphenylphosphorus)(1 +), 25:37 _, tetrathiopenta-, 25:31 ____, trithiotri-, 25:32 Nitric acid: cerium complexes, 23:178 cobalt complexes, 23:171 lanthanoid complexes, 23:151 Nitro complexes, cobalt, 23:70, 71, 77, 91, 109 Nitrogen, osmium complex, 24:270 Nitrogen (N₂) iron complexes, 24:208, 210 Nitrogen fluoride sulfide (NSF), see Thiazyl fluoride (NSF), 24:12 Nitrogen fluoride sulfide (NSF₃), see Thiazyl trifluoride (NSF₃), 24:12

Nitrogen-phosphorus ring compounds, 25:7 Nitrogen sulfide (NS), see Sulfur nitride (SN), polymer, 22:143 Nitrogen-sulfur catena anions, 25:35 Nitrogen-sulfur cyclic anions, 25:30 Nitrogen-sulfur cyclic compounds, 25:49 Nitrogen sulfur oxide (N₂S₃O), 25:52 Nitrogen sulfur oxide $(N_4S_4O_2)$, 25:50 Nitrosyl complexes: chromium, 23:183 iridium, 21:104 iron and ruthenium, 22:163 molybdenum, 23:4-9 Nitrosyl hexachloroplatinate(IV) (2:1), 24:217 Nitryl hexafluoroarsenate, 24:69 3,5-Octanedione, 2,2,7-trimethyl-, cerium, copper, and manganese complexes, 23:144 cyclo-Octasulfur monoxide, 21:172 Offretite, tetramethylammonium substituted [K₂Na[(CH₃)₄N]Al₄- $(Si_{14}O_{3.6})$]1·7H₂O, 22:66 Osmate(1-), µ-carbonyl-decacarbonyl-µhydrido-tri-µ-nitrido-bis(triphenylphosphorus)(1+), 25:193Osmium, µ-carbonyl-nonacarbonyl(n⁵-cyclopentadienyl)di-µ-hydridocobalttri-, 25:195 , dicarbonyl(n³-cyclopentadienyl)-, iodo-, 25:191 ., dicarbonyliodo(n⁵-pentamethylcyclopentadienyl)-, 25:191 _, nonacarbonyl(ŋ⁵-cyclopentadienyl)tetra-µ-hydrido-cobalttri-, 25:197 ., nonacarbonyl(n⁵-cyclopentadienyl)tri-µ-hydrido-cobalttri-, 25:197 , tridecacarbonyldihydridoirontri-, 21:63 ., tridecacarbonyldihydridorutheniumtri-, 21:64 Osmium(I), bis[tetracarbonyliodo-, 25:190 , hexacarbonyl-di-µ-iododi-, 25:188 Osmium(II), aqua(2,2'-bipyridine-N,N')-(2,2':6',2''-terpyridine-N,N',N'')-, bis(trifluoromethanesulfonate), monohydrate, 24:304

_, (2,2'-bipyridine-N,N')(2,2':6'2''terpyridine-N, N', N'')(trifluoromethanesulfonato-O-, trifluoromethanesulfonate, 24:303 _, bis(2,2'-bipyridine-N,N')dichloro-, cis-, 24:294 _, pentaamine(dinitrogen, dichloride, 24:270 Osmium(III), (acetonitrile)pentaammine-, tris(trifluoromethanesulfonate), 24:275 _, aqua(2,2'-bipyridine-N,N')-(2,2':6',2''-terpyridine-N,N',N'')-, tris(trifluoromethanesulfonate), dihydrate, 24:304 (2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301 ___, bis(2,2'-bipyridine-N,N')bis(trifluoromethanesulfonato-O)cis-, trifluoromethanesulfonate, 24:295 _, bis(2,2'-bipyridine-N,N')dichlorocis-, chloride, 24:293 dihydrate, 24:293 ., diaquabis(2,2'-bipyridine-N,N')cis-, tris(trifluoromethanesulfonate), 24:296 ., hexaamminetrichloride, 24:273 tris(trifluoromethanesulfonate), 24:273 _, pentaammineaquatris(trifluoromethanesulfonate), 24:273 , pentaammine(trifluoromethanesulfonato-O)-bis(trifluoromethanesulfonate), 24:271 Osmium fluoride (OsF₆), 24:79 Oxalic acid chromium complex, resolution of, 25:139, 141, 142 cobalt complexes, 23:69, 113, 114 rhodium complex, 24:227 Palladate(II), bis(hexasulfido)-, diammonium, nonstoichiometric, 21:14 Palladium, (2,2'-bipyridine)(1,4butanediyl)-, 22,170 ., (1,4-butanediyl)bis(triphenylphosphine)-, 22:169 ., (1,4-butanediyl)[1,2-ethane-diylbis-(diphenylphosphine)]-, 22:167

., (1,4-butanediyl)(N,N,N',N'-tetramethyl-1,2-ethanediamine)-, 22:168 Palladium(I), µ-carbonyl-dichlorobis-[methylenebis(diphenylphosphine)]di-. 21:49 , dichlorobis-µ-[methylenebis(diphenylphosphine)]-di-, (Pd-Pd), 21:48 Palladium(II), [N,N'-bis[2-(dimethylamino)ethyl]-N,N'-dimethyl-1,2-ethanediamine]-, bis(hexafluorophosphate), 21:133 , [N,N-bis[2-(dimethylamino)ethyl]-N',N'-dimethyl-1,2-ethanediamine]bromo-, bromide, 21:131 ., [N,N-bis[2-(dimethylamino)ethyl]-N', N'-dimethyl-1,2-ethanediamine]chloro-, chloride, 21:129 ., [N,N-bis[2-(dimethylamino)ethyl]-N', N'-dimethyl-1,2-ethanediamine]iodo-, iodide, 21:130 ., [N,N-bis[2-(dimethylamino)ethyl]-N', N'-dimethyl-1,2-ethanediamine]-(thiocyanato-N-), thiocyanate, 21:132 , bis(guanosinato)-, cis- and trans-, 23:52, 53 _, bis(inosinato)-, cis- and trans-, 23:52, 53 _, chloro(N,N-diethyldiselenocarbamato)(triphenylphosphine)-, 21:10 _, dichlorobis(guanosine)-, cis- and trans-, 23:52, 53 _, dichlorobis(inosine)-, cis- and trans-, 23:52, 53 2,4,6,8,9-Pentaaza-1λ⁵,3λ⁵,5λ⁵,7λ⁵-tetraphosphabicyclo[3.3.1]nona-1,3,5,7-tetraene: 9-ethyl-1,3,3,5,7,7-hexakis(ethylamino)-, 25:20 3,3,5,7,7-pentakis(dimethylamino)-9ethyl-1-(ethylamino)-, 25:18 2.4-Pentanedione: actinide and lanthanide complexes, 22:156 cobalt complex, resolution of, with cobalt S-arginine complex by column chromatography, 23:94 iron complex, 21:94 Pentanitrogen tetrasulfide chloride, 25:38 1,4,7,10,13-Pentaoxacyclopentadecane, lanthanoid, 23:149 Pentasulfide, platinum and rhodium complexes, 21:12

Perchloric acid, cadmium complexes, 23:175 1,10-Phenanthroline: chromium complexes, 23:185 copper complex, 21:115 ruthenium complex, 25:108 Phenol, 2-[1-[(2-aminoethyl)imino]-ethyl]-, cobalt complexes, 23:165 2-[1-[(3-aminopropyl)imino]-ethyl]-, cobalt complexes, 23:169 Phenyl: antimony complexes, 23:194 platinum complexes, 25:102, 103 tin deriv., 25:111 Phosphane, difluorotris (2,2,2-trifluoroethoxy)-, trans-, 24:63 Phosphate, hexafluoro-N-(4,5-dimethyl-1,3diselenol-2-ylidene)-N-methylmethanaminium, 24:133 Phosphate(1-), hexafluoro-: (2,2'-bipyridine)bis(1,10-phenanthroline)ruthenium(II) (2:1), 25:108 bis(acetonitrile)bis(n⁵-cyclopentadienyl)bis- μ -(ethanethiolato)diiron(2+) (2:1), 21:39 (n⁴-1,5-cyclooctadiene)bis(pyridine)iridium(I), 24:174 (n⁴-1,5-cyclooctadiene)(pyridine)(tricyclohexylphosphine)iridium, 24:173, 175 tetrabutylammonium, 24:141 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene radical ion(1 +) (1:2), 24:142 tris(2,2'-bipyridine)ruthenium(II) (2:1), 25:109 ., (n⁵-cyclopentadienyl)(phenylvinylene)bis(triphenylphosphine)ruthenium-(II), 21:80 ., tetrakis(n⁵-cyclopentadienyl)-µ3-(disulfur)tri- μ_3 -thio-tetrairon(2+) (2:1), 21:44 Phosphazenes, cyclic and poly-, 25:60 Phosphide, dicyano-, (1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(1+),25:126 Phosphine, iridium complex, 21:104 ., [bis(trimethylsilyl)methylene] [chlorobis(trimethylsilyl)methyl]-, 24:119 _, tert-butyl-nickel and rhodium complexes, 25:174, 176 ., chlorobis[(dichlorophosphino)methyl]-, 25:121

_, chloro[phenyl(trimethylsilyl)methylene, see Phosphinous chloride, [phenyl-(trimethylsilyl)methylene]-, 24:111 _, di-tert-butyl-: cobalt complex, 25:177 molybdenum complex, 25:168 rhodium complexes, 25:171, 172 , diethylphenyl-, platium(0) complex, 24:216 _, dimethyl-, 21:180 ____, dimethylphenyl-, 22:133 iridium complex, 21:97 tungsten complexes, 24:196, 198 ., 1,2-ethanediylbis(dichloro-, 23:141 ., 1,2-ethanediylbis(dimethyl-, iridium complex, 21:100 _, 1,2-ethanediylbis(diphenyl-: iron complexes, 21:90-94; 24:170, 172 molybdenum and tungsten complexes, 23:10-13 niobium complex, 21:18 palladium complex, 22:167 platinum(0) complex, 24:216 , ethylenebis(dimethyl-, hazards in preparation of, 23:199 ., methyldiphenyl-, tungsten complex, 24:198 _____, methylenebis(dichloro-, 25:121 ____, methylenebis(dimethyl-, 25:121 ___, methylenebis(diphenyl-, palladium and rhodium complexes, 21:47-49 ., 1,3-propanediylbis(diphenyl-, platinum complex, 25:105 _, tributyl-, 25:155 chromium complexes, 23:38 _, tri-tert-butyl-, 25:155 ____, tricyclohexyl-: iridium complex, 24:173, 175 iron complex, 25:154 platinum complex, 25:104 _, triethyl-: nickel complex, 21:9 platinum complex, 25:102 platinum(0) complexes, 24:214 tungsten complexes, 24:196, 198 _, trimethyl-: cobalt and rhodium complexes, 25:158-160 iron complex, 25:155 iridium complex, 21:102

nickel and rhodium complexes, 25:174, 176 tungsten complexes, 24:196, 198 __, triphenyl-: chromium complexes, 23:38 cobalt complexes, 23:24-25 cobalt, iridium, and rhodium complexes, 22:171, 173, 174 iron complex, 25:154 platinum complex, 25:103 platinum(0) complex, 24:216 rhenium and tungsten complexes, 24:196 ., oxide: cerium complexes, 23:178 palladium complex, 22:169 ruthenium complexes, 21:29, 78 ., tris(1-methylethyl)-, platinum(0) complex, 24:215 Phosphines, methylene bridged, 25:120 Phosphines, triaryl, 21:175 Phosphinic amide, diphenyl-, lanthanoid complexes, 23:180 Phosphinimidic acid, P, P-dimethyl-N-(trimethylsilyl)-, 2,2,2-trifluoroethyl ester, 25:71 ., P-methyl-P-phenyl-N-(trimethylsilyl)-, 2,2,2-trifluoroethyl ester, 25:72 Phosphinodithioic acid, diethylmolybdenum complexes, 23:120, 121 Phosphinous amide, P, P-dimethyl-N, N-bis-(trimethylsilyl)-, 25:69 , P-methyl-P-phenyl-N, N-bis(trimethylsilyl)-, 25:72 Phosphinous chloride, [phenyl(trimethylsilyl)methylene]-, 24:111 Phosphonic acid, [(N,N-diethylcarbamoyl)methyl]-: bis(1-methylethyl) ester, 24:101 dibutyl ester, 24:101 diethyl ester, 24:101 dihexyl ester, 24:101 dimethyl ester, 24:101 Phosphonium, (2-aminophenyl)triphenyl-, chloride, 25:130 , tetraphenyl-: tetrakis(benzenethiolato)cadmate(II) (2:1), 21:26 tetrakis(benzenethiolato)cobaltate(II) (2:1), 21:24tetrakis(benzenethiolato)di-µ-thiodiferrate(III) (2:1), 21:26

tetrakis(benzenethiolato)ferrate(II) (2:1), 21:24 tetrakis(benzenethiolato)manganate(II) (2:1), 21:25tetrakis(benzenethiolato)tetra-µ3-thiotetraferrate(II, III) (2:1), 21:27 tetrakis(benzenethiolato)zincate(II) (2:1), 21:25 , triphenyl(trichloromethyl)-, chloride, 24:107 Phosphorane, bis[bis(trimethylsilyl)methylene]chloro-, 24:120 ., (dichloromethylene)triphenyl-, 24:108 ., methanetetraylbis[triphenyl-, 24:115 Phosphoranetriamine, P, P'-methanetetraylbis[N, N, N', N', N'', N''-hexamethyl-, 24:114 Phosphorimide bromide, P, P-dimethyl-N-(trimethylsilyl)-, 25:70 Phosphorofluoridic acid, diethyl ester, 24:65 Phosphorotrithious acid, tributyl ester, 22:131 Phosphorus(1+), μ -nitrido-bis(trichloro-, hexachloroantimonate(1-), 25:25 ., μ-nitrido-bis(triphenyl-: bis(disulfido)nitrate(1-), 25:35µ-carbonyldecacarbonyl-µ-hydridotriosmate(1-), 25:193decacarbonyl-µ-nitrosyl-triruthenate(1-), 22:163, 165 hexafluorouranate(V), 21:166 nitrite, 22:164 pentacarbonylhydridochromate(1-), 22:183 pentacarbonylhydridomolybdate(1 -), 22:183 pentacarbonylhydridotungstate(1 -), 22:182 sulfido(disulfido)nitrate(1-), 25:37 $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -tetrathia-2,3,5,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenide, 25:31 tricarbonylnitrosylferrate(1 -), 22:163, 165 tridecacarbonylcobalttriruthenate(1-), 21:61 tridecacarbonylhydridoirontriruthenate-(1-), 21:60

Phosphorus(1+) (Continued) tridecacarbonyltetraferrate(2-) (2:1), 21:66, 68 undecacarbonyltriferrate(2-) (2:1), 24:157 ., 1,1,2-trichloro-1-methyl-2,2-diphenyl-µ-nitrido-di-, chloride, 25:26 Phosphorous diamide, N, N, N', N'-tetramethyl-P-[phenyl(trimethylsilyl)methyl]-, 24:110 Phosphorus-nitrogen ring compounds, 25:7 Platinate, tetracyano: cesium azide (1:2:0.25), hydrate, 21:149 cesium chloride (1:2:0.30), 21:142 cesium [hydrogen bis(sulfate)] (1:2:0.46), 21:151 guanidinium (hydrogen difluoride) (1:3:0.27), hydrate (1:1.8), 21:146 potassium (hydrogen difluoride) (1:2:0.30), trihydrate, 21:147 rubidium chloride (1:2:0.30), trihydrate, 21:145 Platinate(II), bis(pentasulfido)-, bis(tetrapropylammonium)-, 20:13 __, tetrakis[dihydrogen diphosphito-(2-)]-, tetrapotassium, 24:211 ., tetracyano-: dithallium, 21:153 thallium carbonate (1:4:1), 21:153, 154 ., tetraiodo-, dipotassium, dihydrate, 25:98 _, trichloro(dimethyl sulfide)-, tetrabutylammonium, 22:128 Platinate(IV), hexachloro-, dinitrosyl, 24:217 , tris(pentasulfido)-, diammonium, 21:12, 13 Platinum, microcrystals, 24:238 Platinum(0), bis(diethylphenylphosphine)-(ethene)-, 24:216 ., [1,2-ethanediylbis(diphenylphosphine)(ethene)-, 24:216 ., (ethene)bis(triethylphosphine)-, 24:214 ., (ethene)bis(triphenylphosphine)-, 24:216 _, (ethene)bis[tris(1-methylethyl)phosphine]-, 24:215 Platinum(2.25+), bis[bis(μ -2-pyridonato- $N':O^2$)bis(diammine-, pentanitrate, monohydrate, 25:95

Platinum(II), [N,N'-bis(1-methylethyl)-1,2ethanediamine]dichloro(ethene)-, 21:87 [(S,S)-N,N'-bis(1-phenylethyl)-1,2ethanediamine|dichloro(ethene)-, 21:87 _, chloro(N, N-diethyldiselenocarbamato)(triphenylphosphine)-, 21:10 _, chlorotris(dimethyl sulfide)-, tetrafluoroborate(1-), 22:126__, diammineaquachloro-, trans-, nitrate, 22:125 _, dianiminechloroiodo-, trans-, chloride, 22:124 _, di-µ-chloro-, dichlorobis(dimethyl sulfide)di-, 22:128 __, dichloro[N,N'-dimethyl-N,N'-bis(1methylethyl)-1,2-ethanediamine]-(ethene)-, 21:87 _, dichloro[(R,R)-N,N'-dimethyl-N,N-bis(1-phenylethyl)-1,2-ethanediamine](ethene)-, 21:87 _, dichloro(ethene)(N,N,N',N'tetraethyl-1,2-ethanediamine)-, 21:86.87 , (N, N-diethyldiselenocarbamato)methyl(triphenylphosphine)-, 20:10 , hydroxomethylbis(tricyclohexylphosphine)-, trans-, 25:104 _, hydroxomethyl[1,3-propanediylbis(diphenylphosphine)]-, trans-, 25:105 ___, hydroxophenylbis(triethylphosphine)-, trans-, 25:102 _, hydroxophenylbis(triphenylphosphine)-, trans-, 25:103 _, tetraaqua-, 21:192 ., triamminechlorochloride, 22:124 Platinum(IV), pentaamminechloro-, trichloride, 24:277 pentaammine(trifluoromethanesulfonato-O-), tris(trifluoromethanesulfonate), 24:278 Plumbate(IV), hexachloro-, dipyridinium, 22:149 Poly[chloro-gem-methyl[trimethylsilyl)methyl]phosphazene], 25:63 Poly(dimethylphosphazene), 25:69, 71 Poly(dimethylsiloxane-co-methylphenylsiloxane), in divanadium stabilization, 22:116

- Poly[2,2-dimethyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6diyl], 25:67
- Poly[gem-dimethyl(2,2,2-trifluoroethoxy)phosphazene], 25:67
- Poly(methylphenylphosphazene), 25:69, 72, 73
- Poly[methylphenylsilylene), 25:56
- Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)-2-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl], 25:64
- Poly[gem-methyl[(trimethylsilyl)methyl]-(2,2,2-trifluoroethoxy)phosphazene, 25:64
- Poly[nitrilo(dimethylphosphoranylidene)], 25:69, 71
- Poly[nitrilo(methylphenylphosphoranylidyne)], 25:69, 72, 73
- Polyorganosilanes, 25:59
- Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77
- Poly[pentachloro(vinyloxy)cyclotriphosphazene], 25:77
- Poly[2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl]-, 25:63
- Polythiazyl, see Sulfur nitride (SN), polymer, 22:143

Porphyrin:

- actimide and lanthanide complexes, 22:156
- indium(III) complexes, 23:55
- _____, 5,10,15,20-tetrakis(4-methylphenyl)-, actinide and lanthanide complexes, 22:156
- _____, 5,10,15,20-tetrakis(4-pyridinyl)-, 23:56
- _____, 5,10,15,20-tetraphenyl-, actinide and lanthanide complexes, 22:156
- Potassium(1+), (1,4,7,10,13,16-hexaoxacyclooctadecane)dicyanophosphide(1-), 25:126
-, (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-, tetrabismuthide(2-) (2:1), 22:151
- Potassium chromium oxide (KCrO₂), 22:59
- Potassium chromium oxide (K_{0.5}CrO₂), bronze, 22:59
- Potassium chromium oxide (K_{0.6}CrO₂), bronze, 22:59
- Potassium chromium oxide (K_{0.7}CrO₂), bronze, 22:59 Potassium chromium oxide (K_{0.77}CrO₂), bronze, 22:59 Potassium cobalt oxide (KCoO₂), 22:58 Potassium cobalt oxide $(K_{0.5}CoO_2)$, bronze, 22:57 Potassium cobalt oxide (K_{0.67}CoO₂), bronze, 22:57 Potassium dysprosium chloride (KD_{v2}Cl₂), 22:2 Potassium hexafluorouranate(V), 21:166 Potassium (hydrogen difluoride)tetracyanoplatinate (2:0.30:1), trihydrate, 21:147 Potassium pentafluoromanganate(III)(1:2), monohydrate, 24:51 Potassium pentafluorooxomolybdate(V) (2:1), 21:170 Potassium pentaoxoniobatetitanate(1 -), 22:89 Potassium sodium tetramethylammonium aluminum silicate hydrate $[K_2Na[CH_3)_4N]$ - $Al_4(Si_{14}O_{3.6})$]·7H₂O, 22:66 Potassium tetraiodoplatinate(II) (2:1), dihydrate, 25:98 Potassium tributylstannate(1-), 25:112 Potassium triphenylstannate(1 -), 25:110 Praseodymium, prophyrin complexes, 22:156 ., (2,4-pentanedionato)[5,10,15,20tetrakis(4-methylphenyl)porphyrinato(2-)]-, 22:160 , (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 , [5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2 -)]-, 22:160 Praseodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 ., (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 , tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Praseodymium cesium chloride (CsPr₂Cl₇), 22:2

Praseodynium chloride (PrCl₃), 22:39 1-Propanamine, intercalate with hydrogen pentaoxoniobatetitanate(1 -), 22:89 Propane, 2-isocyano-2-methylmolybdenum and tungsten complexes, 23:10-12 tungsten complex, 24:198 1,3-Propanediamine, cobalt complexes, 23:169 2-Propanethiol, 2-methylrhodium complex, 23:123.124 1-Propene, 2-methyl-, iron complexes, 24:164 Propionitrile, 3,3',3"-phosphinidynetri-, nickel complexes, 22:113, 115 Pyrazine, ruthenium complexes, 24:259 Pyrazinecarboxylic acid, cobalt complexes, 23:114 1H-Pyrazole, boron-copper complex, 21:108, 110 _, 3,5-dimethyl-, boron-copper complex, 21:109 Pyridine: bis(trifluoromethyl)cadmium, 24:57 cobalt complex, 23:73 intercalate with FeClO (1:4), 22:86 iridium complexes, 24:173, 174, 175 rhenium complex, 21:116, 117 , 4-amino-, intercalate with FeClO (1:4), 22:86., 2,4,6-trimethyl-, intercalate with FeClO, 22:86 4-Pyridinecarboxylic acid, cobalt complexes, 23:113 Pyridinium, 4,4'4,",4"'-porphyrin-5,10,15,20-tetrayltetrakis(1-methyl-: indium(III) complexes, 23:55, 57 tetrakis(4-methylbenzenesulfonate), 23:57 2-Pyridone, platinum diammine complexes, 25:95 Rare earth alkali metal bromides and chlorides, 22:1, 10 Rare earth chlorides, anhydrous, 25:146 Rare earth trichlorides, 22:39 Rare earth triiodide, 22:31 Resolution: of ammine(glucinato)(1,4,7-triazacyclononane)cobalt(III), 23:75 of aqua(glucinato)(1,4,7-triazacyclononane)cobalt(III), 23:76

of trans-diammine[N,N'-bis(2-aminoethyl)-1,2-ethanediamine]cobalt(III), 23:79 of cis, cis-diamminecarbonatobis(pyridine)cobalt(III), 23:73 of cis, cis-diamminecarbonatodicyanocobaltate(III), 23:68 of cis, cis-diamminecarbonatodinitrocobaltate(III), 23:71 of cis, cis-diamminedicyanooxalatocobalt(III), 23:69 of cis, cis-diamminedinitrooxalatocobaltate(III), 23:73 of (glycinato)nitro(1,4,7-triazacyclononane)cobalt(III), 23:77 of lithium cis-diamminedicarbonatocobaltate(III) and cis-dicarbonato(1,2ethanediamine)cobaltate(III), 23:63 of silver(I) cis(NO₂), trans(N)bis(glycinato)nitrocobaltate(III), 23:92 of tris(oxalato)chromate ion by secondorder asymmetric synthesis, 25:139 of tris(2,4-pentanedionato)cobalt with Δ -(-)-cis(NO₂), trans-(N)-bis(Sargenine)dinitrocobalt(III) chloride, by column chromatography, 23:94 Rhenate(III), octachlorodi-, bis(tetrabutylammonium), 23:116 Rhenium, bromopentacarbonyl-, 23:44 _, pentacarbonylchloro-, 23:42, 43 _, pentacarbonyliodo-, 23:44 Rhenium(V), dioxotetrakis(pyridine)-: chloride, trans-, 21:116 perchlorate, trans-, 21:117 , trichloro(phenylimino)bis(triphenylphosphine)-, 24:196 Rhenium(VI), tetrachloro(phenylimino)-, 24:195 Rhenium lithium oxide (LiReO₃), 24:205 Rhenium lithium oxide (Li_{0.2}ReO₃), 24:203, 206 Rhenium lithium oxide (Li₂ReO₃), 24:203 Rhodate(III), tris(pentasulfido)-, triammonium, 21:15 Rhodium, bis(u-tert-butylphosphido)tetrakis(trimethylphosphine)di-, (Rh²Rh), 25:174 ., (1,4-butanediyl)(n⁵-pentamethylcyclopentadienyl)(triphenylphosphine)-,

22:173

____, μ-chloro-bis(η⁴-1,5-cyclooctadiene)-(μ-di-*tert*-butylphosphido)-di-, 25:172 ____, dicarbonylbis(di-*tert*-butylphos-

phine)(μ-di-*tert*-butylphosphino)-μ-hydrido-di-, 25:171

Rhodium(1 +), bis[o-phenylenebis(dimethylarsine)]-, chloride, 21:101 , (carbon dioxide)bis[o-phenylenebis(dimethylarsine)]-, chloride,

21:101

- Rhodium(I), bis(η^s-1,5-cyclooctadiene)-diμ-hydroxo-di-, 23:129
- ____, bis(η⁴-1,5-cyclooctadiene)-di-μ-methoxy-di, 23:127
- _____, bis-μ-(2-methyl-2-propanethiolato)tetrakis(trimethyl phosphite)di-, 23:123
- ____, (n⁵-cyclopentadienyl)bis(trimethylphosphine)-, 25:159

_____, (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:163

_____, dicarbonyl-bis-µ-(2-methyl-2-propanethiolato)-bis(trimethyl phosphite)di-, 23:124

____, tetrakis(1-isocyanobutane)-, tetraphenylborate(1-), 21:50

_____, tetrakis(1-isocyanobutane)bis-[methylenebis(diphenylphosphine)]di-, bis[tetraphenylborate(1-)], 21:49

- Rhodium(III), aquabis(1,2-ethanediamine)hydroxo-, dithionate, 24:230
 - ____, bis(1,2-ethanediamine)bis(trifluoromethanesulfonato-O)-, cis-, trifluorosulfonate, 24:285

____, bis(1,2-ethanediamine)(oxalato)-, perchlorate, 24:227

____, chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-O)-, trans-, trifluoromethanesulfonate, 24:285

____, dichlorobis(1,2-ethanediamine)

- chloride perchlorate (2:1:1), 24:229 cis-, chloride, monohydrate, 24:283
- trans-, chloride, monohydrochloride, dihydrate, 24:283
-, di- -hydroxo-bis[bis(1,2-ethanediamine)-, tetrabromide, 24:231

....., di-µ-hydroxobis([tetraammine-, tetrabromide, 24:226

- , hexammine-:
- triperchlorate, 24:255

tris(trifluoromethanesulfonate), 24:255

_, pentaammineaqua-, triperchlorate, 24:254 , pentaamminechloro-, dichloride, 24:222 _, pentaammine(trifluoromethanesulfonato-O)-bis(trifluoromethanesulfonate), 24:253 , pentakis(methanamine)(trifluoromethanesulfonato-O), bis(trifluoromethanesulfonate), 24:281 _, tetraammineaquahydroxo-, cis-, dithionate, 24:225 _, tetraamminedichloro-, cis, chloride, 24:223 Ring compounds, phosphorus-nitrogen, 25:7 Rubidium chloride tetracyanoplatinate (2:0.30:1), trihydrate, 21:145 Ruthenate(1-), µ-carbonyl-1KC:2KC-decacarbonyl-1K3C,2K3C,3K4C-µ-hydrido-1K:2K-triangulo-tri-tetraethylammonium, 24:168 _, decacarbonyl-μ-nitrosyl-tri-, μ-nitrido-bis(triphenylphosphorus(1+), 22:163.165 __, tridecacarbonylcobalttri-, μ-nitridobis(triphenylphosphorus)(1+), 21:61., tridecacarbonylhydridoirontri-, µnitrido-bis(triphenylphosphorus)(1 +), 21:60 Ruthenium, (nº-benzene)(nº-1,3-cyclohexadiene)-, 22:177 _, bis(η^s-cycloheptanedienyl)-, 22:179 ____, bis(η⁵-cyclopentadienyl)-, 22:180 _, μ-carbonylcarbonylbis(η⁵-cyclopentadienyl)(µ-3-oxo-1,2-diphenyl-1-η:1,-2,3-n-1-propen-1,3-diyl)di-, (Ru-Ru), 25:181 _, µ-carbonyl-µ-ethenylidene-bis[carbonyl(n⁵-cyclopentadienyl)-, 25:183 ., µ-carbonyl-µ-ethylidene-bis[carbonyl(n⁵-cyclopentadienyl)-, 25:185 _, μ-carbonyl-μ-methylene-bis[carbonyl(n⁵-cyclopentadienyl)-, 25:182 ., carbonyltri-µ-chloro-chlorotetrakis-(triphenylphosphine)di-, compd. with acetone (1:2), 21:30 ., (n⁴-1,5-cyclooctadiene)(n⁶-1,3,5-cyclooctatriene), 22:178

_____, dodecacarbonylhydridotricobalt-, 25:164

., pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:258 ., tetracarbonylbis(n⁵-cyclopentadienyl)di-, 25:180 ., tetracarbonyl(η^2 -methyl acrylate)-, 24:176 _, tri-µ-chloro-chloro(thiocarbonyl)tetrakis(triphenylphosphine)di-, compd. with acetone (1:1), 21:29 ., tridecacarbonyldihydridoirontri-, 21:58 ,tridecacarbonyldihydridotriosmium-, 21:64 Ruthenium(O), $bis(\eta^2-ethene)(\eta^6-hexame$ thylbenzene)-, 21:76 _, (η⁴-1,3-cyclohexadiene)(η⁶-hexamethylbenzene)-, 21:77 Ruthenium(1+), μ -carbonyl- μ -ethylidynebis[carbonyl(n⁵-cyclopentadienyl-), tetrafluoroborate(1 -), 25:184 Ruthenium(5+), decaamine(μ -pyrazine)di-, pentaiodide, 24:261 Ruthenium(II), (2,2'-bipyridine)bis(1,10phenanthroline)-, bis[hexafluorophosphate(1-)], 25:108., (2,2'-bipyridine-N,N')-chloro-2,2': 6',2''-terpyridine-N,N',N'')chloride, 2.5 hydrate, 24:300 _, (2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N, N', N'')(trifluoromethanesulfonato-O)-, trifluoromethanesulfonate, 24:302 _, bis(2,2'-bipyridine-N,N')dichloro-, cis-, dihydrate, 24:292 ., chloro(n⁵-cyclopentadienyl)bis(triphenylphosphine)-, 21:78 , (n⁵-cyclopentadienyl)(phenylethynyl)bis(triphenylphosphine)-, 21:82 , (n⁵-cyclopentadienyl)(phenylvinylidene)bis(triphenylphosphine), hexafluorophosphate(1-), 21:80., dicarbonyldichloro(2,2'-bipyridine)-, 25:108 ., di-µ-chloro-bis[chloro-n⁶-hexamethylbenzene)-, 21:75 ., pentaammine(pyrazine)-: bis[tetrafluoroborate(1-)], 24:259 dichloride, 24:259 ., tris(2,2'-bipyridine)-, dichloride, hexahydrate, 21:127

., tris(2,2'-bipyridine)bis[hexafluorophosphate(1-)], 25:109 Ruthenium(III), aqua(2,2'-bipyridine-N,-N')(2,2':6',2''-terpyridine-N, N', N'')-, tris(trifluoromethanesulfonate), trihydrate, 24:304 , (2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N, N', N'')-(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301 ., bis(2,2'-bipyridine-N,N')bis(trifluoromethanesulfonato-O)-, cis-, trifluoromethanesulfonate, 24:295 , bis(2,2'-bipyridine-N,N')dichloro-, cis-, chloride, dihydrate, 24:293 _, pentaamminechloro-, dichloride, 24:258 Ruthenium lead oxide (Pb_{2.67}Ru_{1.33}O_{6.5}), pyrochlor, 22:69 Ruthenium oxide (Ru₂O₃), solid solns. with lead oxide (PbO₂), pyrochlor, 22:69 Ruthenocene, see Ruthenium, bis-(n⁵-cyclopentadienyl)-, 22:180 Samarium, porphyrin complexes, 22:156 ., (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 ., (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160 Samarium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 __, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 , tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Saramium chloride (SmCl₃), 22:39 Scandium(III), trichlorotris(tetrahydrofuran)-, 21:139 Scandium cesium chloride (CsScCl₃), 22:23 Scandium cesium chloride (Cs₃Sc₂Cl₉), 22:25 Scandium chloride (ScCl₃), 22:39 Selenate(VI), pentafluorooxoxenon(2+) (2:1), 24:29Selenide, iron complex, 21:36, 37 Seleninyl fluoride, see Selenium fluoride oxide (SeOF₂), 24:28

Selenium, iron polynuclear complexes, 21:33-37 Selenium fluoride (SeF₄), 24:28 Selenium fluoride oxide (SeOF₂), 24:28 Selenocarbonyls, chromium, 21:1, 2 Semioxamazide, 5-(α -methylbenzyl), (S)-(-)-, 23:86 Serine, copper complex, 21:115 Silanamine, 1,1,1-trimethyl-N-sulfinyl-, 25:48 Silane, (dichloromethylene)bis[trimethyl-, 24:118_, tetraisocyanato-, 24:99 ____, tetramethyl-, 24:89 aluminum complex, 24:92, 94 indium complex, 24:89 lithium complex, 24:95 Silicate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:46 Silicon, tin sulfur-nitrogen compounds, 25:43 Siloxane, dimethyl-, copolymer with methylphenylsiloxane, in divanadium stabilization, 22:116 ., methylphenyl-, copolymer with dimethylsiloxane, in divanadium stabilization, 22:116 Silver(1 +), bis(cyclo-octasulfur)-, hexafluoroarsenate, 24:74 μ_3 -thio-tri-, nitrate, 24:234 Silver hexafluoroarsenate, 24:74 Silver trifluoromethanesulfonate, reactions, 24:247 Silver tungstate (Ag₈(W₄O₁₆)), 22:76 Sodium aluminum silicate hydrate (NaAl-SiO₄·2·25H₂O), 22:61 Sodium aluminum silicate hydrate $(Na_2Al_2Si_5O_{14} \cdot XH_2O), 22:64$ Sodium cobalt oxide (NaCoO₂), 22:56 Sodium cobalt oxide (Na_{0.6}CoO₂), 22:56 Sodium cobalt oxide (Na0.64CoO2), 22:56 Sodium cobalt oxide (Na_{0.24}CoO₂), 22:56 Sodium cobalt oxide (Na_{0.77}CoO₂), 22:56 Sodium cyanotri $({}^{2}H)$ hydro]borate(1-), 21:167 Sodium [[(1,2-cyclohexanediyldinitrilo)tetraacetato](4-)](dinitrogen)ferrate(II)(2:1), dihydrate, 24:210 Sodium (dinitrogen)[[(1,2-ethanediyldinitrilo)tetraacetato[(4-)]ferrate(II)(2:1), dihydrate, 24:208

Sodium hexafluorouranate(V), 21:166 Sodium octacarbonyldiferrate(2-), 24:157 Sodium potassium tetramethylammonium aluminum silicate hydrate [K2Na[(CH3)- $_{4}N]Al_{4}(Si_{14}O_{36})]\cdot 7H_{2}O, 22:66$ Sodium tetracarbonylferrate(2-), 24:157 Sodium tetrapropylammonium aluminum silicate $(Na_{2.4}(C_3H_7)_4N]_{3.6}$ $Al_{2.6}(Si_{100}O_{207})),$ 22:67 Sodium undecacarbonyltriferrate(2-), 24:157 Stannate(1-), tributyl-, potassium, 25:112 _, triphenyl-, potassium, 25:111 Stannates, trialkyl-, and triaryl-, 25:110 Styrene, see Benzene, vinyl-, 21:80 Sulfur: iron cyclopentadienyl complexes, 21:37-46 iron polynuclear complexes, 21:33-37 silver complex, 24:234 ., chloropentafluoro, see Sulfur chloride fluoride (SCIF₅), 24:8 Sulfur(IV), tribromo-, hexafluoroarsenate, 24:76 Sulfur chloride fluoride (SCIF₅), 24:8 Sulfur dicyanide, 24:125 Sulfur diimide, bis(trimethylsilyl)-, 25:44 ____, bis(trimethylstannyl)-, 25:44 ____, mercapto-, tin complex, 25:44 Sulfur nitride (SN), polymer, 22:143 Sulfur-nitrogen catena anions, 25:35 Sulfur-nitrogen cyclic anions, 25:30 Sulfur-nitrogen cyclic compounds, 25:49 Sulfur nitrogen oxide (N₂S₃O), 25:52 Sulfur nitrogen oxide $(N_4S_4O_2)$, 25:50 Sulfur oxide (S_8O) , 21:172 Tantalum, as high-temp. container for reduced halides, 20:15 Technetate(V), tetrachlorooxo-, tetrabutylammonium (1:1), 21:160 Tellurate(VI), pentafluorooxo-: boron(3+) (3:1), 24:35 hydrogen, 24:34 xenon(2+) (2:1), 24:36 Tellurium chloride fluoride (TeClF₅), 24:31 Terbium, porphyrin complexes, 22:156 ., (2,4-pentanedionato) [5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160

, (2,2,6,6-tetramethyl-3,5-heptanedionato) [5,10,15,10-tetraphenylporphyrinato(2 -)]-, 22:160 Terbium(III), dodecanitratotris(1,4,7,10,13pentaoxacyclopentadecane)tetra-, 23:153 , hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 ., (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 ., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Terbium chloride (TbCl₃), 22:39 2,2':6',2''-Terpyridine, osmium and ruthenium complexes, 24:291-298 1,4,8,11-Tetraazacyclotetradecane-5,7dione, copper complexes, 23:82 1,4,8,11-Tetraazacyclotetradeca-1,3,8,10tetraene, 2,9-dimethyl-3,10-diphenyl-, copper, iron, and zinc complexes, 22:107, 108, 110, 111 $1,3,5,7.2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -Tetraazatetraphosphocine, 2-(1-aziridinyl)-2,4,4,6,6,8,8heptachloro, 25:91 ., 2,2-bis(1-aziridinyl)-4,4,6,6,8,8hexachloro-, 25:91 ., 2,4-bis(1-aziridinyl)-2,4,6,6,8,8hexachloro-, cis- and trans-, 25:91 ., 2,6-bis(1-aziridinyl)-2,4,4,6,8,8hexachloro-, cis- and trans-, 25:91 ., 2,6-bis(1-aziridinyl)-2,4,4,6,8,8hexakis(methylamino)-, cis- and trans-, 25:91 ., 2,4-bis(tert-butylamino)-2,4,6,6,8,8hexachloro-, 25:21 ., 2,6-bis(tert-butylamino)-2,4,4,6,8,8hexachloro-, 25:21 ., 2,4,4,6,8,8-hexachloro-trans-2,6bis(ethylamino)-, 25:16 _, 2,4,4,6,8,8-hexakis(dimethylamino)-2,6-bis(ethylamino)-, trans-, 25:19 ., 2,2,4,4,6,6,8,8-octakis(tert-butylamino)-, 25:23 ., 2,2,6-tris(1-aziridinyl)-4,4,6,8,8pentachloro-, 25:91

 _____, 2,4,6-tris(1-aziridinyl)-2,4,6,8,8pentachloro-, 2,6-*cis*-4-trans- and 2,4*cis*-6-trans-, 25:91
 2,3,7,8-Tetracarbadodecaborane(12), 2,3,7,-8-tetraethyl-, 22:17
 1,4,7,10-Tetraoxacyclocyclododecane, lan-

thanoid complexes, 23:149

Tetraphosphate(III), cyclo-octathio-, diethylammonium (1:4), 25:5

Tetraselenafulvalene, tetramethyl, see 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, 24:131

1λ⁴,3λ⁴,5λ⁴,7-Tetrathia-2,3,5,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5,7-tetraenide, μ-nitrido-bis(triphenylphosphorous)(1+), tetraphenylarsonium, 25:31

1λ⁴,3λ⁴,5λ⁴,7λ⁴-Tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]-1(9),-2,3,5,7-pentaenylium, 25:38

Thallium(I), cyclopentadienyl-, 24:97

Thallium(III), chlorobis(pentafluorophenyl)-, 21:71, 72

____, chlorobis(2,3,4,6-tetrafluorophenyl)-, 21:73
 ____, chlorobis(2,3,5,6-tetrafluorophenyl)-, 21:73

_____, chlorobis(2,4,6-trifluorophenyl)-, 21:73

Thallium carbonate tetracyanoplatinate(II) (4:1:1), 21:153, 154

Thallium chloride (TICl₃), 21:72

Thallium tetracyanoplatinate(II) (2:1), 21:153

- 1-Thia-closo-decaborane(9), 22:229
- 6-Thia-nido-decaborane(11), 22:228
- $1\lambda^4, 2, 4, 6, 3\lambda^5, 5\lambda^5$ -Thiatriazadiphosphorine, 1-chloro-3, 3, 5, 5-tetraphenyl-, 25:40
- Thiazyl fluoride (NSF), 24:16
- Thiazyl trifluoride (NSF₃), 24:12

Thiocarbonyl complexes, ruthenium, 21:29

Thio complexes, molybdenum, 23:120, 121 Thiocyanate complexes, cobalt, copper, iron, manganese, nickel, and zinc,

23:157 Thiocyanic acid:

chromium complexes, 23:183

palladium complex, 21:132

Thioethers, crown, 25:122

Thiourea, chromium(0) complexes, 23:2

_____, N,N'-di-tert-butylchromium(0) complexes, 23:3

., N,N'-di-p-tolylchromium(0) complexes, 23:3 , N, N, N', N'-tetramethylchromium-(0) complexes, 23:2 Thorate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:190 , bis(undecatungstoborato)-, tetradecapotassium, 23:189 ., bis(undecatungstophosphato) decapotassium, 23:189 Thorium, porphyrin complexes, 22:156 _, bis(2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 , (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160 Thulium, hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 Thulium(III), dodecanitratotris(1,4,7,10,13pentaoxacyclopentadecane)tetra-, 23:153 _, (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 ., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Thulium cesium lithium chloride $(Cs_2LiTmCl_6), 20:10$ Thulium chloride (TmCl₃), 22:39 Tin, pentatitanium tetrasulfide preparation in liquid, 23:161 ____, (benzenethiolato)tributyl-, 25:114, bis[µ-mercaptosulfur diimidato-(2-)]tetramethyldi-, 25:46 ___, dibromodiphenyl-, 23:21 ., silicon sulfur-nitrogen compounds, 25:43 Titanate(1-), pentaoxoniobate-: hydrogen, 22:89 hydrogen, intercalate with 1-butanamine, 22:89 hydrogen, intercalate with ethanamine, 22:89 hydrogen, intercalate with methanamine, 22:89 hydrogen, intercalate with NH₃, 22:89

hydrogen, intercalate with 1-propanamine, 22:89 potassium, 22:89 Titanium, as substrate for cadmium chalcogenides, 22:80 ., dicarbonylbis(n⁵-cyclopentadienyl)-, 24:149 ., dicarbonylbis(n⁵-pentamethylcyclopentadienyl)-, 24:152 Titanium(III), chlorobis(n⁵-cyclopentadienyl)-, 21:84 ., trichlorotris(tetrahydrofuran)-, 21:137 Titanium(IV), tetrachlorobis(tetrahydrofuran)-, 21:135 Titanium chloride (TiCl₂), 24:181 Titanium iron hydride (FeTiH₁₉₄), 22:90 Titanium sulfide (Ti_3S_4) , preparation in liquid tin, 23:161 TMTSF, see 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, 24:131 Transition metal alkali metal oxides, 22:56 triars, see Arsine, [2-[(dimethylarsino)methyl]-2-methyl-1,3-propanediyl]bis(dimethyl-, niobium complex, 21:18 1,4,7-Triazacyclononane, cobalt complexes, 23:75 1,3,5,2λ⁵,4λ⁵-Triazadiphosphinine, 2-chloro-2-methyl-4,4,6-triphenyl-, 25:29 ., 2,4-dichloro-2,4,6-triphenyl-, 25:28 ., 2,2,4,4-tetrachloro-6-(dimethylamino)-, 25:27 $1,3,5,2\lambda^5,4\lambda^5$ -Triazadiphosphinines, 25:24 1,3,5,2,4,6-Triazatriphosphorinane, 2,4,6trichloro-1,3,5-triethyl-, 25:13 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2-(1aziridinyl)-2,4,4,6,6-pentachloro-, 25:87 , 2,2-bis(1-aziridinyl)-4,4,6,6-tetrachloro-, 25:87 ., 2,4-bis(1-aziridinyl)-2,4,6,6-tetrachloro-, cis- and trans-, 25:81 _, 2,2-bis(1-aziridinyl)-4,4,6,6-tetrakis(methylamino)-, 25:89 ., 2,4-bis(1-aziridinyl)-2,4,6,6-tetrakis(methylamino)-, cis- and trans-, 25:86, 89 ., 2,2,4,4,6-pentachloro-6-(ethenyloxy)-, 25:75 ., 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]-, 25:61

., 2,2,4-tris(1-aziridinyl)-4,6,6-trichloro-, 25:87 1H-Triazole, cobalt, copper, iron, manganese, nickel, and zinc complexes, 23:157 Triflate, see Methanesulfonate, trifluoro-, metal complexes and salts, 24:243-306 Trimethylamine-carboxyborane, 25:81 Trimethylamine-cyanoborane, 25:80 Trimethylamine-(ethylcarbamoyl)borane, 25:83 Trimethylamine-(methoxycarbonyl)borane, 25:84 Trimethyl phosphite: chromium complexes, 23:38 cobalt and rhodium complexes, 25:162, 163 iron complex, 21:93 rhodium complex, 23:123, 124 Triphenyl phosphite, chromium complexes, 23:38 ¹⁰B₂-1,2,4,3,5-Trithiadiborolane, 3,5-dimethyl-, 22:225 $1\lambda^4$,3,5,2,4,6-Trithiatriazenide, μ -nitridobis(triphenylphosphorus)(1+), tetramethyl-ammonium, 25:32 Tungstate, µ-hydrido-bis[pentacarbony]-, potassium, 23:27 Tungstate(1-), pentacarbonylhydrido-, µnitrido-bis(triphenylphosphorus)(1 +), 22:182 Tungstate(VI), pentafluoroo⁻⁻o-, tetrafluoroammonium (1:1), 24.4/ Tungsten, tricarbonylbis(N,N-dialkylcarbamodithioato)-, 25:157 , tricarbonylbis(N,N-diethylcarbamodithioato)-, 25:157 Tungsten(0), bis(1-chloro-4-isocyanobenzene)bis[1,2-ethanediyl(diphenylphosphine)]-, trans-, 23:10 ., bis(1,3-dichloro-2-isocyanobenzene)bis[1,2-ethanediyl(diphenylphosphine)]-, trans-, 23:10 , bis[1,2-ethanediylbis(diphenylphosphine)]bis(isocyanobenzene)-, trans-, 23:10 ., bis[1,2-ethanedivlbis(diphenvlphosphine)]bis(isocyanomethane)-, trans-, 23:10

., bis[1,2-ethanedivlbis(diphenylphosphine)]bis(1-isocyano-4-methoxybenzene)-, trans-, 23:10 ., bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-isocyano-4-methylbenzene)-, trans-, 23:10 , bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-isocyano-2-methylpropane)-, trans-, 23:10 Tungsten(IV), bis[1,2-ethanediylbis(diphenylphosphine)]bis[(methylamino)methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:12 , bis[1,2-ethanediylbis(diphenylphosphine)]bis[[(4-methylphenyl)amino|methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:14 , bis[1,2-ethanediylbis(diphenylphosphine)](isocyanomethane)-{(methylamino]methylidyne]-, trans-, tetrafluoroborate(1-)], 23:11, bis[1,2-ethanediylbis(diphenylphosphine)](2-isocyano-2-methylpropane)[(methylamino)(methylidyne]-, trans-, tetrafluoroborate(1-)], 23:12 ., dichloro(phenylimido)tris(triethylphosphine)-, 24:198 , dichloro(phenylimido)tris(trimethylphosphine)-, 24:198 , dichlorotris(dimethylphenylphosphine)(phenylimido)-, 24:198 dichlorotris(1-isocyano-4-methylbenzene)(phenylimido)-, 24:198 ., dichlorotris(2-isocyano-2-methylpropane)(phenylimido)-, 24:198 ., dichlorotris(methyldiphenylphosphine)(phenylimido)-, 24:198 Tungsten(V), trichlorobis(dimethenphenylphosphine)(phenylimino)-, 24:196 , trichloro(phenylimido)bis-(triethylphosphine)-, 24:196 , trichloro(phenylimido)bis-(trimethylphosphine)-, 24:196 trichloro(phenylimino)bis-(triphenylphosphine)-, 24:196 Tungsten(VI), tetrachloro(phenylimido)-, 24:195

Tungsten chloride oxide (WCLO), 23:195 Tungsten fluoride oxide (WF4O), 24:37 Undecatungstoborate $(BW_{11}O_{39}^{4-})$ thorium complexes, 23:189 Undecatungstophosphate $(PW_{11}O_{39}^{7-})$ thorium and uranium complexes, 23:186 Uranate(IV), bis(heptadecatungstodiphosphato)hexadecapotassium, 23:188 ., bis(undecatungstophosphato)-, decapotassium, 23:186 Uranate(V), hexafluoro-, μ -nitrido-bis-(triphenylphosphorus)(1+), 21:166potassium, 21:166 sodium, 21:166 Uranate(VI), trifluorodioxo-, hydrogen, dihydrate, 25:145 Uranium(IV) chloride (UCL), 21:187 Uranium(V), pentaethoxy-, 21:165 Uranium(V) fluoride (UF₅), 21:163 Urea, N, N'-dimethyl-N, N'-bis(trimethylsylyl)-, 24:120 Vanadium(III), chlorobis(n⁵-cyclopentadienyl)-, 21:85 , trichlorotris(tetrahydrofuran)-, 21:138

Vanadium chloride (VCl₂), 21:185 Vanadium lithium oxide (LiV_2O_5), 24:202 Vanadium sulfide (VS₂), 24:201

Water:

cadmium and cobalt complexes, 23:175 cobalt complexes, 21:123-126; 23:76, 110 iridium, osmium, and rhodium complexes, 24:254, 265 molybdenum complexes, 23:130-139 platinum complex, 21:192; 22:125 Welding, of tantalum, 20:7

Xanthosine, palladium(II) complexes, 23:54
Xenon bis[pentafluorooxoselenate(VI)], 24:29
Xenon bis[pentafluorooxotellurate(VI)], 24:36

Ytterbium, porphyrin complexes, 22:156 , (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153

., (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:156 ., [5,10,15,20-tetrakis(3-fluorophenyl)porphyrinato(2-)](2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:160 ., [5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2-)](2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:156 Ytterbium(III), dodecanitratotris(1,4,7,10,-13-pentaoxacyclopentadecane)tetra-, 23:153 ., hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180 _, trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151 _, trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151 ., tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155 Ytterbium chloride (YbCl₃), 22:39 Yttrium, porphyrin complexes, 22:156 , (2,4-pentanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160 Yttrium chloride (YCl₃), 22:39 anhydrous, 25:146 Zeolite, 22:61 Zeolite A (NaAlSiO₄.2.25H₂O), 22:63 Zeolite Y (Na₂Al₂Si₅O₁₄.XH₂O), 22:64 Zinc(II), bis(thiocyanato-N)-bis-µ-(1H-1,2,4-triazole-N²:N⁴)-, poly-, 23:160 ., chloro(2,9-dimethyl-3,10-diphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)- hexafluorophosphate(1-), 22:111 ., tetraaquabis(o-sulfobenzoimidato)-,

dihydrate, 23:49

Zincate(II), terakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:25

Zirconium, dicarbonylbis(η⁵-cyclopentadienyl)-, 24:150 dicarbonylbis(π⁵-pentamethyloyd

_____, dicarbonylbis(η⁵-pentamethylcyclopentadienyl)-, 24:153

Zirconium(IV), tetrachlorobis(tetrahydrofuran)-, 21:136

- Zirconium bromide (ZrBr), 22:26
- Zirconium chloride (ZrCl), 22:26
- ZSM-5 (Na_{2.4} [(C₃H₇)₄N]_{3.6} Al_{2.6}(Si₁₀₀O₂₀₇)), 22:67

FORMULA INDEX

The Formula Index, as well as the Subject Index, is a Cumulative Index for Volumes 21–25. The Index is organized to allow the most efficient location of specific compounds and groups of compounds related by central metal ion or ligand grouping.

The formulas entered in the Formula Index are for the total composition of the entered compound, e.g., F_6NaU for sodium hexafluorouranate(V). The formulas consist solely of atomic symbols (abbreviations for atomic groupings are not used) and arranged in alphabetical order with carbon and hydrogen always given last, e.g., $Br_3CoN_4C_4H_{16}$. To enhance the utility of the Formula Index, all formulas are permuted on the symbols for all metal atoms, e.g., $FeO_{13}Ru_3C_{13}H_{13}$ is also listed at $Ru_3FeO_{13}C_{13}H_{13}$. Ligand groupings are also listed separately in the same order, e.g., $N_2C_2H_8$, 1,2-Ethanediamine, cobalt complexes. Thus individual compounds are found at their total formula in the alphabetical listing; compounds of any metal may be scanned at the alphabetical position of the metal symbol; and compounds of a specific ligand are listed at the formula of the ligand, e.g., NC for Cyano complexes.

Water of hydration, when so identified, is not added into the formulas of the reported compounds, e.g., $Cl_{0.30}N_4PtRb_2C_4 \cdot 3H_2O$.

- AgAsF₆, Arsenate, hexafluoro-, silver, 24:74
- AgAsF₆S₁₆, Silver(1+), bis(cyclo-octasulfur)-, hexafluoroarsenate, 24:74
- AgCoN₄O₈C₄H₈, Cobaltate(III), bis-(glycinato)dinitro-, *cis*-(No₂), trans(N)-, silver(I), 23:92
- AgF₃O₃SC, Silver trifluoromethanesulfonate, reactions, 24:247
- Ag₃NO₃S, Silver(1+), μ_3 -thio-tri-, nitrate, 24:234
- Ag₈O₁₆W₄, Silver tungstate, 22:76
- AlBrSi₂C₈H₂₂, Aluminum, bromobis-[(trimethylsilyl)methyl]-, 24:94
- AlH₄LaNi₄, Aluminum lanthanum nickel hydride, 22:96
- AlNaO₄Si · 2.25H₂O, Sodium aluminum silicate, 22:61
 - ____, Zeolite A, 22:63
- AlSi₃C₁₂H₃₃, Aluminum, tris[(trimethylsilyl)methyl]-, 24:92
- Al₂Na₂O₁₄Si · XH₂O, Sodium aluminum silicate hydrate, 22:64 _____, Zeolite Y, 22:64

- Al₂₆N₃₆Na₂₄O₂₀₇Si₁₀₀C₄₃H₁₀₀, Sodium tetrapropylammonium aluminum silicate, 22:67
 - ____, ZSM-5, 22:67
- Al₄K₂NNaO_{3.6}Si₁₄C₄H₁₂ · 7H₂O, Offretite, tetramethylammonium substituted, 22:65
- —, Potassium sodium tetramethylammonium aluminum silicate hydrate, 22:65
- AsAgF₆, Arsenate, hexafluoro-, silver, 24:74
- AsAgF₆S₁₆, Arsenate, hexafluoro-, bis-(cyclo-octasulfur)silver(1+), 24:74

AsBr₃F₆S, Arsenate, hexafluoro-, tribromosulfur(IV), 24:76

- AsC₂H₇, Arsine, dimethylmolybdenum complex, 25:169
- AsC₁₈H₁₅, Arsine, triphenylchromium complexes, 23:38
- AsC₂₄H₁₀, Arsonium, tetraphenyl-
 - 1λ⁴,3λ⁴,5λ⁴,7-tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenide, 25:31

AsF₆NC₁₆H₃₆, Arsenate, hexafluoro-, tetrabutylammonium, 24:138

AsF₆NO, Arsenate, hexafluoro-, nitryl, 24:69

 $\begin{array}{l} \text{AsF}_6\text{Se}_8\text{C}_{20}\text{H}_{24}, \text{ Arsenate, hexafluoro,} \\ & 4,4',5,5'\text{-tetramethyl-}2,2'\text{-bi-}1,3\text{-diselenolyldene radical ion}(1+) (1:2), \\ & 24\text{:}138 \end{array}$

AsMo₂O₄C₁₆H₁₇, Molybdenum, tetracarbonylbis(η⁵-cyclopentadienyl)(μdimethylarsino)-μ-hydrido-di-, 25:169

As₂C₁₀H₁₆, Arsine, *o*-phenylenebis-(dimethyl)-rhodium complex, 21:101

As₄ClO₂RhC₂₁H₃₂, Rhodium(1+), (carbon dioxide)bis[o-phenylenebis(dimethylarsine)]-, chloride, 21:101

As₄ClRhC₂₀H₃₂, Rhodium(1+), bis[o-phenylenebis(dimethylarsine)]-, chloride, 21:101

As₄Cl₆Nb₂C₂₀H₃₂, Niobium(III), hexachlorobis[o-phenylenebis(dimethylarsine)]di-, 21:18

As₆Cl₆Nb₂C₂₂H₃₄, Niobium(III), hexachlorobis[[2-[(dimethylarsino)methyl]-2methyl-1,3-propanediyl]bis(dimethylarsine)]-, 21:18

AuClOC, Gold(I), carbonylchloro-, 24:236

 $\begin{array}{l} AuCl_2O_2P_2C_{30}H_{32}, \ Gold(I), \ dichloro-\mu-\\ (1,1,10,10-tetraphenyl-4,7-dioxa-1,10-\\ diphosphadecane)-di-, \ 21:193 \end{array}$

AuNO₂SC₃H₆, Gold(I), (L-cysteinato)-, 21:31

AuSC₈H₉, Gold(I), (4-ethylbenzenethiolato)-, 23:192

BBr₂CH₃, [¹⁰B]Borane, dibromomethyl-, 22:223

BBr₃, [¹⁰B]Boron bromide, 22:219

BCIF₄PtS₃C₆H₁₈, Platinum(II), chlorotris-(dimethyl sulfide)-, tetrafluoroborate-(1-), 22:126

BCl₂C₆H₅, Borane, dichlorophenyl-, 22:207

BCuN₆OC₁₀H₁₀, Copper(I), carbonyl [hydrotris(pyrazolato)borato]-, 21:108

BCuN₆OC₁₆H₂₂, Copper(I), carbonyl-[tris(3,5-dimethylpyrazolato)hydroborato]-, 21:109

BCuN₈OC₁₃H₁₂, Copper(I), carbonyl [tetrakis(pyrazolato)borato]-, 21:110

 $BF_4FeO_2C_{11}H_{13}$, Borate(1-), tetrafluoro-,

dicarbonyl(η^{5} -cyclopentadienyl)(η^{2} -2methyl-1-propenyl(iron(1 +), 24:166

- BF₄MoN₂P₄C₅₅Holybdenum(III), bis-[1,2-ethanediylbis(1,2-diphenylphosphine)](isocyanomethane)[(methylamino)methylidyne]-, trans-, tetrafluoroborate(1-), 23:12
- BF₄NC₁₆H₃₆, Borate(1-), tetrafluoro-, tetrabutylammonium, 24:139
- BF₄N₂P₄WC₅₆H₅₅, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]-(isocyanomethane)[(methylamino)methylidyne]-, *trans*-, tetrafluoroborate(1-), 23:11
- BF₄N₂P₄WC₅₅H₆₁, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)](2isocyano-2-methylpropane)[(methylamino)methylidyne]-, *trans*-, tetrafluoroborate(1-), 23:12

BF₄O₃Ru₂C₁₅H₁₃, Ruthenium(1 +), μ -carbonyl- μ -ethylidyne-bis[carbonyl(η^{5} -cy-clopentadienyl)-, tetrafluoroborate-(1 -), 25:184

 $BF_4Se_8C_{20}O_{24}$, Borate(1 -), tetrafluoro-, 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene, radical ion(1 +) (1:2), 24:139

BF₈N, Borate(III), tetrafluoro-, tetrafluoroammonium (1:1), 24:42

BF₁₅O₃Te₃, Tellurate(VI), pentafluorooxo-, boron(3+) (3:1), 24:35

BKC₈H₁₆, Borate(1 –), (cyclooctane-1,5diyl)dihydro-, potassium, 22:200

- BLiC₈H₁₆, Borate(1-), (cyclooctane-1,5diyl)dihydro-, lithium, 22:199
- BNC₆H₁₆, Borane, (dimethylamino)diethyl-, 22:209
- BNNaC²H₃, Borate(1-), cyanotri[(²H)hydro]-, sodium, 21:167

BNO₂C₄H₁₂, Borane, carboxycompd. with trimethylamine (1:1), 25:81

BNO₂C₃H₁₄, Borane, (methoxycarbonyl)compd. with trimethylamine (1:1), 25:84

BN₂C₄H₁₁, Borane, cyanocompd. with trimethylamine (1:1), 25:80

BN₃OC₆H₁₇, Borane, (ethylcarbamoyl)compd. with trimethylamine (1:1), 25:83

BN4RhC44H56, Rhodium(I), tetrakis(1-isocyanobutane)-, tetraphenylborate(1-), 21:50 BN₅C,H₁₀, Borate(1-), hydrotris(pyrazolato)-

copper complex, 21:108

- BN₆C₁₅H₂₂, Borate(1-), tris(3,5-dimethylpyrazolato)hydro
 - copper complex, 21:109
 - ____, Borate(1), tris(3,5-dimethylpyrazolyl)hydro-
- molybdenum complexes, 23:4-9 BN₈C₁₂H₁₂, Borate(1-), tetrakis-(pyrazolato)
 - copper complex, 21:110
- BNaC₈H₁₆, Borate(1-), (cyclooctane-1,5diyl)dihydro-, sodium, 22:200
- BOC_sH₁₁, Borane, diethylhydroxy-, 22:193
- BOC₃H₁₃, Borane, diethylmethoxy-, 22:190
- BOC₄H₂₀, Diboroxane, tetraethyl-, 22:188
- BO₂C₂H₇, Boronic acid, ethyl-, 24:83
- BO₂C₉H₁₉, Borane[(2,2-dimethylpropanoyl)oxy]diethyl-, 22:185
- BO₃₉W₁₁, Undecatungstoborate(9-) thorium complexes, 23:189
- B₂F₈MoN₂P₄C₅₆H₅₆, Molybdenum(IV), bis[1,2-ethanediylbis(diphenylphosphine)]bis[(methylamino)methylidyne]-, *trans*-, bis[tetrafluoroborate(1-)], 23:14
- B₂F₈N₂P₄WC₅₆H₅₆, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]bis[(methylamino)methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:12
- B₂F₈N₂P₄WC₆₈H₆₄, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]bis[[(4-methylphenyl)amino]methylidyne]-, *trans*-, bis[tetrafluoroborate(1-)], 23:14
- B₂F₈N₇RuC₄H₁₉, Borate(1-), tetrafluoro-, pentaamine(pyrazine)ruthenium(II) (2:1), 24:259
- B₂FeN₆O₆C₃₀H₃₄, Iron(II), {[tris[μ-[(1,2-cyclohexanedione dioximato)-O:O']diphenyldiborato(2-)]-N,N',N'',N''',-N'''',N''''}-, 21:112
- B₂K₁₄O₇₈ThW₂₂, Thorate(IV), bis(undecatungstoborato)-, tetradecapotassium, 23:189
- B₂N₄P₄Rh₂C₁₁₈H₁₂₀, Rhodium(I), tetrakis(1isocyanobutane)bis[methylenebis(diphenylphosphine)]di-, bis[tetraphenylborate(1-)], 21:49

- B₂N₆O₆C₃₀H₃₄, Borate(2-), tris[μ-[(1,2-cyclohexanedione dioximato)-*O*,*O'*]diphenyldiiron complex, 21:112
- B₂OC₈H₂₀, Diboroxane, tetraethyl-, 24:85
- $B_2O_3C_{14}H_{28}$, Boron, bis- μ -(2,2-dimethylpropanoato-O,O')-diethyl- μ -oxodi-, 22:196
- B₂S₃C₂H₆, [¹⁰B₂]-1,2,4,3,5-Trithiadiborolane, 3,5-dimethyl-, 22:225
- B₃O₃C₆H₁₅, Boroxin, triethyl-, 24:85
- B₄C₆H₁₆, 2,3-Dicarba-*nido*-hexaborane(8), 2,3-diethyl-, 22:211
- B₄FeC₁₂H₃₀, [1,1'-commo-Bis(2,3-dicarba-1ferra-closo-heptaborane)](12), 2,2',3,3'-tetraethyl-1,1-dihydro-, 22:215
- $B_7C_2H_{16}$, 2,6-Dicarba-*nido*-nonaborane, 22:237
- B₈C₁₂H₂₈, 2,3,7,8-Tetracarbadodecarborane-(12), 2,3,7,8-tetraethyl-, 22:217
- B₉CoC₇H₁₆, 1,2-Dicarba-3-cobalta-closo-dodecaborane(11), 3-(η⁵-cyclopentadienyl)-, 22:235
- B₉CsH₁₂S, Borate(1-), dodecahydro-6thia-arachno-deca-, cesium, 22:227
- B₉H₉S, 1-Thia-closo-decaborane(9), 22:22
- B₉H₁₁S, 6-Thia-nido-decaborane(11), 22:228
- B₉KC₂H₁₂, Borate(1-), dodecahydro-7,8dicarba-*nido*-undeca-, potassium, 22:231
- B₉SC₄H₁₇, 7,8-Dicarba-*nido*-undecaborane-(11), 9-(dimethyl sulfide)-, 22:239
- B₁₀H₁₄, Decaborane(14), 22:202
- B₁₀SC₂H₁₂, 1,2-Dicarba-closo-dodecaborane-(12)-9-thiol, 22:241
- BaCh₂C₂₆H₁₈O₈N₆, Barium(II), bis(7,11: 20,24-dinitrilodibenzo[b,m][1,4, 12,15]tetraazacyclodocosine)-, diperchlorate, 23:174
- Bi₄K₂N₂O₁₂C₃₆H₇₂, Potassium, (4,7,13, 16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-, tetrabismuthide(2-) (2:1), 22:151
- BrAlSi₂C₈H₂₂, Aluminum, bromobis[(trimethylsilyl)methyl]-, 24:94
- BrCoN₄OC₁₄H₂₆, Cobalt(III), [2-[1-[(2-aminoethyl)imino]ethyl]phenolato](1,2ethanediamine)ethyl-, bromide, 23:165
- BrCoN₄O₃C₅H₆, Cobalt(III), (carbonato)bis(1,2-ethanediamine)-, bromide, 21:120

- BrCoN₄O₇S₂C₄H₁₈ · H₂O, Cobalt(III), aquabromobis(1,2-ethanediamine)-, dithionate, *trans*-, monohydrate, 21:124
- BrF₂NS, Imidosulfurous difluoride, bromo-, 24:20
- BrFeMgO₂PC₃₉H₄₅, Magnesium, bromo(η⁵cyclopentadienyl)[1,2-ethanediylbis-(diphenylphosphine)]bis(tetrahydrofuran)iron-, (*Fe-Mg*), 24:172
- BrFeP₂C₃₁H₂₉, Iron, bromo(η⁵-cyclopentadienyl)[1,2-ethanediylbis(diphenylphosphine)]-, 24:170
- BrNO₃C₁₀H₁₄, Bornan-2-one, 3-*endo*bromo-3-*exo*-nitro-(1*R*)-, 25:132
- BrNPSiC₅H₁₅, Phosphorimide bromide, P,Pdimethyl-N-(trimethylsilyl)-, 25:70
- BrZr, Zirconium bromide, 22:26

Br₂Mn₂O₈C₈, Manganese, dibromooctacarbonyldi-, 23:33

- Br₂N₄PdC₁₂H₃₀, Palladium(II), [*N*,*N*-bis[2-(dimethylamino)ethyl]-*N'*,*N'*-dimethyl-1,2-ethanediamine]bromo-, bromide, 21:131
- Br₂N₆NiP₂C₁₈H₂₄, Nickel(II), dibromobis-(3,3',3"-phosphindynetripropionitrile)-, 22:113, 115
- (Br₂N₆NiP₂C₁₈H₂₄)x, Nickel(II), dibromobis-(3,3',3"-phosphindynetripropionitrile)-, polymer, 22:115
- Br₃AsF₆S, Sulfur(IV), tribromohexafluoroarsenate, 24:76
- Br₃CoN₄C₄H₁₆, Cobalt(III), dibromobis(1,2ethanediamine)-, bromide, trans-, 21:120

Br₃CoN₄C₄H₁₆ · H₂O, Cobalt(III), dibromobis(1,2-ethanediamine)-, bromide, *cis*-, monohydrate, 21:121

Br₃CoN₄OC₄H₁₈ · H₂O, Cobalt(III), aquabromobis(1,2-ethanediamine)-, dibromide, *cis*-, monohydrate, 21:123

 $Br_4GaNC_8H_{20}$, Gallate(1-), tetrabromo-, tetraethylammonium, 22:141

Br₄GaNC₁₆H₃₆, Gallate(1-), tetrabromo-, tetrabutylammonium, 22:139

Br₄H₂₆N₈O₂Rh₂, Rhodium(III), di-μ-hydroxo-bis[tetraamine-, tetrabromide, 24:226

Br₄N₈O₂Rh₂C₈H₃₄, Rhodium(III), di-µ-hydroxo-bis[bis(1,2-ethanediamine)-, tetrabromide, 24:231

- Br₆Ga₂P₂C₃₆H₃₂, Gallate(2-), hexabromodi-, bis(triphenylphosphonium), 22:135, 138
- Br₆Ga₂P₂C₄₈H₄₀, Gallate(2), hexabromodi-, bis(tetraphenylphosphonium), 22:139
- CF₃H, Methane, trifluorocadmium complex, 24:55 mercury complex, 24:52 CF₃NOS, Imidosulfurous difluoride, (fluorocarbonyl)-, 24:10 CH₂, Methylene ruthenium complex, 25:182 CH₂Cl₄P₂, Phosphine, methylenebis-(dichloro)-, 25:121 CH₃, Methyl cobalt complexes, 23:170 mercury complexes, 24:143-145 platinum complex, 25:104, 105 CNO, Cyanato silicon complex, 24:99 CN_2OS_2 , 1,3 λ^4 ,2,4-Dithiadiazol-5-one, 25:53 CO, Carbon monoxide chromium complexes, 21:1, 2; 23:87 cobalt complex, 25:177 cobalt, iron, osmium, and ruthenium complexes, 21:58-65 cobalt-osmium complexes: 25:195-197 cobalt-ruthenium cluster complexes, 25:164 copper complex, 21:107-110 gold(I), 24:236 hafnium, titanium, and zirconium, 24:149-156 iridium complex, 21:97 iron complex, 21:66, 68 iron complexes, 24:257-160; 25:154, 155 iron and ruthenium complexes, 22:163 manganese complexes, 25:116-118 molybdenum complexes, 25:168-169 osmium complexes, 25:188-193 palladium complex, 21:49 rhodium complex, 25:171 ruthenium complex, 21:30; 25:108, 180 - 185C₂H₃Cl₅N₃OP₃, Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77

C₂H₄, Ethene

cobalt complexes, 23:19

iron complex, 21:91

platinum complexes, 21:86-89; 24:213-216

ruthenium complex, 21:76; 25:183

- C₂H₄Cl₅N₄P₃, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2-(1-aziridinyl)-2,4,4,6,6pentachloro-, 25:87
- C₂H₄Cl₅P₃, Phosphine, chlorobis[(dichlorophosphino)methyl]-, 25:121
- C₂H₄Cl₇N₅P₄, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-Tetraazatetraphosphocine, 2-(1-aziridinyl)-2, 4,4,6,6,8,8-heptachloro-, 25:91

C₂H₅, Ethyl

cobalt complexes, 23:165, 167

 C_2H_6 , Ethane

- ruthenium complexes; 25:184-185C₂H₆FN, Dimethylamine, *N*-fluoro-, 24:66
- C₂H₆NP, Poly[nitrilo(dimethylphosphoranylidene)], 25:69, 71

 $C_2H_6N_2S_2Sn_2$, 1,3 λ^4 ,2,4,5-Dithiadiazastannole

5,5-dimethyl-, 25:53

C₃H₆Cl₄N₄P₂, 1,3,5,2λ⁵,4λ⁵-Triazadiphosphinine, 2,2,4,4-tetrachloro-6-(dimethylamino)-, 25:27

- C₃H₉NOSSi, Silanamine, 1,1,1-trimethyl-*N*sulfinyl-, 25:48
- C₄H₆O₂, Acrylic acid, methyl ester ruthenium complex, 24:176
- C₄H₈, 1-Propene, 2-methyl
 - iron complexes, 24:161, 164, 166

 $C_4H_8Cl_4N_5P_3$, 1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -Triazatriphosphorine

- 2,2-bis(1-aziridinyl)-4,4,6,6-tetrachloro-, 25:87
- 2,4-bis(1-aziridinyl)-2,4,6,6-tetrachloro-, cis- and trans-, 25:87
- $C_4H_8Cl_6N_6P_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,2-bis(1-aziridinyl)-4,4,6,6,8,8-hexachloro-, 25:91
 - 2,4-bis(1-aziridinyl)-2,4,6,6,8,8-hexachloro-, cis- and trans-, 25:91
 - 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexachloro-, cis- and trans-, 25:91

C₄H₉, Butyl tin deriv., 25:112, 114 C₄H₁₀, Butane cobalt, iridium and rhodium complexes, 22:171, 173, 174 palladium complex, 22:167, 168, 169, 170 C₄H₁₁BN₂, Borane, cyanocompd. with trimethylamine (1:1), 25:80 C₄H₁₂BNO₂, Borane, carboxycompd. with trimethylamine (1:1), 25:81 $C_4H_{12}Cl_6N_6P_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine 2,4,4,6,8,8-hexachloro-trans-2,6bis(ethylamino)-, 25:16 C₄H₁₂N₄S₃, Ammonium, tetramethyl- $1\lambda^4$, 3, 5, 2, 4, 6-trithiatriazenide, 25:32 $C_4H_{12}N_4S_4Sn_2$, Tin, bis[μ -mercaptosulfur diimidato(2-)]tetramethyldi-, 25:46 C₄N₄O₄Si, Silane, tetraisocyanato-, 24:99 C₅H₄NO, 2-Pyridone platinum diammine complex, 25:95 C₅H₆, 1,3-Cyclopentadiene cobalt complex, 22:171, 235 cobalt and rhodium complexes, 25:158-163 cobalt-osmium complexes, 25:195-197 iron complexes, 21:39-46; 24:161, 164, 166, 170, 172 molybdenum complexes, 25:168 osmium complex, 25:191 ruthenium complex, 21:78; 22:180; 25:180-185 thallium complex, 24:97 titanium complexes, 24:149-151 titanium and vanadium complexes, 21:84, 85 C₅H₁₄BNO₂, Borane, (methoxycarbonyl)compd. with trimethylamine (1:1), 25:84 C₅H₁₄Cl₄N₃P₃Si, Poly[2,2,4,4-tetrachloro-6methyl-6-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl]-, 25:63 ., 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]-, 25:61 C₅H₁₄P₂, Phosphine, methylenebis(dimethyl-, 25:121 C₅H₁₅BrNPSi, Phosphorimide bromide P,P-dimethyl-N-(trimethylsilyl)-, 25:70

C₅H₁₅P₅, Cyclopentaphosphine, pentamethyl-, 25:4

- C₆H₅, Phenyl antimony complexes, 23:194 platinum complexes, 25:102–103 tin deriv., 25:111
- C₆H₆, Benzene chromium complex, 21:1, 2 ruthenium complex, 22:177
- C₆H₈, 1,3-Cyclohexadiene ruthenium complex, 21:77; 22:177
- C₆H₁₂Cl₃N₆P₃, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4-tris(1-aziridinyl)-4, 6,6-trichloro-, 25:87
- $C_6H_{12}Cl_5N_7P_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine,
 - 2,2,6-tris(1-aziridinyl)-4,4,6,8,8-pentachloro-, 25:91
 - 2,4,6-tris(1-aziridinyl)-2,4,6,8,8-pentachloro-, 2,6-cis-4-trans- and 2,4-cis-6trans-, 25:91
- C₆H₁₄Cl₂N₂P₂, Cyclodiphosphazane, 2,4dichloro-1,3-diisopropyl-, 25:10
- C₆H₁₅Cl₃N₃P₃, 1,3,5,2,4,6-Triazaphosphorinane, 2,4,6-trichloro-1,3,5-triethyl-, 25:13
- C₆H₁₇BN₂O, Borane, (ethylcarbamoyl)compd. with trimethylamine (1:1), 25:83
- C₆H₁₈N₂SSn₂, Sulfur diimide, bis(trimethylstannyl)-, 25:44
- C₆H₁₉N₂SSi₂, Sulfur diimide, bis(trimethylsilyl)-, 25:44
- C₇H₅NO₃S, o-Benzosulfimide (saccharin) metal complexes, 23:47
- C₇H₈NP, Poly[nitrilo(methylphenylphosphoranylidyne)], 25:69, 72–73
- C7H8Se, Poly(methylphenylsilylene), 25:56
- C₇H₁₀, 1,3-Cycloheptadiene
- ruthenium complex, 22:179
- C₇H₁₇F₃NOPSi, Phosphinimidic acid, P,Pdimethyl-N-(trimethylsilyl)-
- 2,2,2-trifluoroethyl ester, 25:71
- C7H17NSi, tert-Butylamine,
- N(trimethylsilyl)-, 25:8
- C₈H₆, Benzene, ethynyl-
- ruthenium complex, 21:82
- C₈H₈, Benzene, vinyl-
- ruthenium complex, 21:80 _____, Styrene see _____ Benzene,
- vinyl-, 21:80
- C₈H₁₀, 1,3,5-Cyclooctatriene ruthenium complex, 22:178

- C₈H₁₂, 1,5-Cyclooctadiene iridium complexes, 23:127; 24:173, 174, 175
 - rhodium complex, 23:127, 129; 25:172
 - ruthenium complex, 22:178
- C₈H₁₄, Cyclooctene iridium complex, 21:102
- C₈H₁₆, Cyclooctane boron complex, 22:199
- C₈H₁₆Cl₂S₃, Ethane, 1,1'-[thiobis(2,1-ethanediylthio)]-bis[2[2-chloro-, 25:124
- C₈H₁₈Cl₂N₂P₂, Cyclodiphosphazane, 1,3-ditert-butyl-2,4-dichloro-, 25:8
- C₈H₁₈O₂S₃, Ethanol, 2,2'-[thiobis(2,1-ethanediylthio)]-bis, 25:123
- $C_{8}H_{20}Cl_{6}N_{6}P_{4}$, 1,3,5,7,2 λ^{5} ,4 λ^{5} ,6 λ^{5} ,8 λ^{5} -Tetraazatetraphosphocine
 - 2,4-bis(*tert*-butylamino)-2,4,6,6,8,8-hexachloro-, 25:21
- 2,6-bis(tert-butylamino)-2,4,4,6,8,8-hexachloro-, 25:21
- C₈H₂₄NPSi₂, Phosphinous amide, P, P-didimethyl-N, N-bis(trimethylsilyl)-, 25:69
- $C_8H_{24}N_9P_3$, 1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -Triazatriphosphorine
 - 2,2-bis(1-aziridinyl)-4,4,6,6-tetrakis(methylamino)-, 25:89
- 2,4-bis(1-aziridinyl)-2,4,6,6-tetrakis-(methylamino)-, cis- and trans-, 25:89
- C₁₀H₂O₁₀Os₃C₁₅H₃, Osmium, μ-carbonylnoncarbonyl(η⁵-cyclopentadienyl)-di-μhydrido-cobalttri-, 25:195
- C₁₀H₃O₉OS₃C₁₄H₅, Osmium, nonacarbonyl(η⁵cyclopentadienyl)-tri-µ-hydrido-cobalttri-, 25:197
- C₁₀H₄O₉Os₃C₁₄H₁₅, Osmium, nonacarbonyl-(η⁵-cyclopentadienyl)-*tetra*-μ-hydridocobalt-tri-, 25:197
- C₁₀H₁₄, Benzene, 1-isopropyl-4-methylruthenium complex, 21:75
- C₁₀H₁₄BrNO₃, Bornan-2-one, 3-endobromo-3-exo-nitro-
 - (1R)-, 25:134
- C₁₀H₁₄F₁₂N₃O₄P₃, Poly[2,2-dimethyl-4,4,6,6tetrakis-(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl], 25:67
- $C_{10}H_{14}NNaO_3$, Bornan-2-one, 3-aci-nitro-(1R)-, sodium salt, 25:133
- C₁₀H₁₆, 1,3-Cyclopentadiene, 1,2,3,4,5-pentamethyl-, 21:181

cobalt complexes, 23:15-19

hafnium, titanium, and zirconium complexes, 24:152-156

iridium and rhodium complexes, 22:173, 174

osmium complex, 25:191

C₁₀H₃₂N₁₂P₄, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-Tetraazatetraphosphocine, 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexakis(methylamino)*trans*-, 25:91

C₁₂H₁₈, Benzene, hexamethyl-

ruthenium complexes, 21:74–77 C₁₂H₁₉NOPSi, Phosphinimidic acid, *P*methyl-*P*-phenyl-*N*-(trimethylsilyl)-

2,2,2-trifluoroethyl ester, 25:72

C₁₂H₂₄O₆, 1,4,7,10,13,16-Hexaoxacyclooctadecane

potassium complex, 25:126

C₁₂H₂₄S₆, 1,4,7,10,13,16-Hexathiacyclooctadecane, 25:123

- C₁₂H₂₇P₃, Cyclotriphosphane, tri-*tert*-butyl-, 25:2
- $C_{12}H_{30}ClN_{3}P_{2}$, 1,3,2 λ^{3} ,4 λ^{3} -Cyclodiphosphazane

2-chloro-1,3-diisopropyl-4-[isopropyl(trimethylsilyl)amino, (trimethylsilyl)amino]-, 25:10

 $C_{13}H_{13}Cl_4NP_2$, Phosphorus(1+)

1,1,2-trichloro-1-methyl-2,2-diphenyl-µnitrido-, chloride, 25:26

C₁₃H₂₂F₁₂N₃O₄P₃Si, Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy-2-[(trimethylsilyl)methyl]catenatriphosphazene-1, 6-diyl], 25:64

C₁₃H₂₇NPSi, Phosphinous amide P-methyl-P-phenyl-N,N-bis(trimethylsilyl)-, 25:72

C₁₄H₄,N₁₁P₄, 2,4,6,8,9-Pentaaza-1λ⁵,3λ⁵,5λ⁵, 7λ⁵-tetraphosphabicyclo[3.3.1]nona-1,3,5,7-tetraene

- 9-ethyl-1,3,3,5,7,7-hexakis(ethylamino)-, 25:20
- 3,3,5,7,7-pentakis(dimethylamino)-9ethyl-1-(ethylamino)-, 25:18

 $C_{16}H_{48}N_{12}P_4,\ 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5\text{-Tetra-azatetraphosphocine}$

2,4,4,6,8,8-hexakis(dimethylamino)-2,6bis(ethylamino)-, trans-, 25:19

 $C_{16}H_{48}N_4P_4S_8$, Tetraphosphate(III), cyclo-octathiodiethylammonium (1:4), 25:5

- C₁₈H₁₆NP, Benzenamine, 2-(diphenylphosphino)-, 25:129
- $\begin{array}{l} C_{18}H_{42}N_6P_6,\ 2,4,6,8,9,10\text{-Hexaaza-}1\lambda^3,3\lambda^3,\\ 5\lambda^3,7\lambda^3\text{-tetraphosphatricyclo}[5.1.1.1^{3.5}] \\ \text{decane} \end{array}$

2,4,6,8,9,10-hexaisopropyl-, 25:9

- $C_{19}H_{13}Cl_2N_3P_2, 1,3,5,2\lambda^5,4\lambda^5-Triazadiphos-phinine, 2,4-dichloro-2,4,6-triphenyl-, 25:28$
- C₁₉H₁₅F, Methane, fluorotriphenyl-, 24:66
- $C_{20}H_{18}ClN_3P_2$, 1,3,5,2 λ^5 ,4 λ^5 -Triazadiphosphinine
 - 2-chloro-2-methyl-4,4,6-triphenyl-, 25:29

 $C_{24}H_{20}ClN_3P_2S$, $1\lambda^4$, 2, 4, 6, $3\lambda^5$, $5\lambda^5$ -Thiatriazadiphosphorine

1-chloro-3,3,5,5,-tetraphenyl-, 25:40 $C_{24}H_{21}CINP$, Phosphonium, (2-amino-

phenyl)triphenylchloride, 25:130

 $C_{32}H_{80}N_{12}P_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine

- 2,2,4,4,6,6,8,8-octakis(*tert*-butylamino)-, 25:23
- $C_{36}H_{30}N_2P_2S_3$, Phosphorus(1 +), μ -nitridobis(triphenyl-

sulfido(disulfido)nitrate(1-), 25:37

 $C_{36}H_{30}N_2P_2S_4$, Phosphorus(1+), μ -nitridobis(triphenyl-

bis(disulfido)nitrate(1-), 25:35 Ca₂Mn₃O₈, Calcium manganese oxide, 22:73

- CdCl₂N₆O₉C₂₆H₂₀, Cadmium(II), aqua(7,11:20,24-dinitrilodibenzo-[b,m][1,4,12,15]tetraazacyclododecosine)perchlorato-, perchlorate, 23:175
- CdF₆C₂ · NC₅H₅, Cadmium, bis(trifluoromethyl)-, -pyridine, 24:57
- CdF₆C₂ · OC₄H₈, Cadmium, bis(trifluoromethyl)-, -tetrahydrofuran, 24:57
- $CdF_6C_2 \cdot O_2C_4H_{10}$, Cadmium, bis(trifluoromethyl)-, -1,2-dimethoxyethane, 24:55
- CdP₂S₄C₇₂H₆₀, Cadmate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:26
- CdSe, Cadmium selenide, 22:82
- CdSe_xTe_{1-x}, Cadmium selenide telluride, 22:84

- CdSe_{0.65}Te_{0.35}, Cadmium selenide telluride, 22:81
- CeCl₃, Cerium chloride, 22:39
- CeCl₄O₂P₂C₃₆H₃₀, Cerium(IV), tetrachlorobis(triphenylphosphine oxide)-, 23:178
- $CeF_{18}N_6O_6P_{12}C_{72}H_{72}$, Cerium(III), hexakis-(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- CeN₃O₁₃C₈H₁₆, Cerium(III), trinitrato(1,4, 7,10-tetraoxacyclododecane)-, 23:151
- CeN₃O₁₄C₁₀H₂₀, Cerium(III), trinitrato(1,4, 7,10,13-pentaoxacyclopentadecane)-, 23:151
- CeN₃O₁₅C₁₂H₂₄, Cerium(III), (1,4,7,10,13, 16-hexaoxacyclooctadecane)trinitrato-, 23:153
- CeN₄O₄C₅₄H₄₂, Cerium, bis(2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- CeN₄O₁₄P₂C₃₆H₃₀, Cerium(IV), tetranitratobis(triphenylphosphine oxide)-, 23:178
- CeN₁₂O₂₀C₄₀H₃₂, Cerium(IV), tetrakis(2,2'bipyridine 1,1'-dioxide)-, tetranitrate, 23:179
- CeO₈C₄₄H₇₆, Cerium(IV), tetrakis(2,2,7-trimethyl-3,5-octanedionato)-, 23:147
- Ce₄N₁₂O₅₄C₃₆H₇₂, Cerium(III), tris(1,4,7,10, 13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- ClCoNO₃C₁₄H₂₆, Cobalt(III), [2-[1-[(2-aminoethyl)imino]ethyl]phenolato](1,2ethanediamine)ethyl-, perchlorate, 23:169
- ClCoN₄O₂SC₆H₁₈, Cobalt(III), bis(1,2ethanediamine)(2-mercaptoacetato(2-)-O,S)-, perchlorate, 21:21
- ClCoN₄O₃C₁₁H₁₆ \cdot H₂O, Cobalt(III), diamine(carbonato)bis(pyridine)-, *cis,cis*-, chloride, monohydrate, 23:77
- ClCoN₄O₇C₈H₂₁ · 2H₂O, Cobaltate(III), aqua(glycinato)(1,4,7-triazacyclononane)-, perchlorate, dihydrate, 23:76
- ClCoN₄O₇S₂C₄H₁₈ · H₂O, Cobalt(III), aquachlorobis(1,2-ethanediamine)-, dithionate, *trans*-, monohydrate, 21:125
- ClCoN₃O₄C₈H₁₉ · H₂O, Cobalt(III), (glycinato)nitro(1,4,7-triazacyclononane)-, chloride, monohydrate, 23:77
- ClF, Chlorine fluoride, 24:1, 2
- ClFO₂, Chloryl fluoride, 24:3

- ClFO₃S, Chlorine fluorosulfate, 24:6
- ClF₂NS, Imidosulfurous difluoride, chloro-, 24:18
- ClF₃OC, Hypochlorous acid, trifluoromethyl ester, 24:60
- ClF₅S, Sulfur chloride pentafluoride, 24:8
- ClF₅Te, Tellurium chloride pentafluoride, 24:31
- CIF₆IrN₄O₆S₂C₆H₁₆, Iridium(III), chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-*O*)-, *trans*-, trifluoromethanesulfonate, 24:289
- CIF₆N₄O₆RhS₂C₆H₁₆, Rhodium(III), chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-*O*)-, *trans*-, trifluoromethanesulfonate, 24:285
- ClF₆N₄PZnC₂₄H₂₈, Zinc(II), chloro(2,9-dimethyl-3,10-diphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)-, hexafluorophosphate(1-), 22:111
- ClF₈TlC₁₂H₂, Thallium(III), chlorobis-(2,3,4,6-tetrafluorophenyl-), 21:73
- ClF₉OC₄, Hypochlorous acid, perfluoro-tertbutyl ester, 24:61
- ClF₁₀TlC₁₂, Thallium(III), chlorobis(pentafluorophenyl)-, 21:71, 72
- ClFeO, Iron chloride oxide intercalate with 4-aminopyridine (4:1), 22:86
- intercalate with pyridine (4:1), 22:86 intercalate with 2,4,6-trimethylpyridine (6:1), 22:86
- ClH₈N₃O₄Pt, Platinum(II), diamineaquachloro-, *trans*-, nitrate, 22:125
- ClIrOPC₁₇H₂₂, Iridium(I), carbonylchlorobis-(dimethylphenylphosphine)-, *trans*-, 21:97
- ClIrO₂P₄C₁₃H₃₂, Iridium(1 +), (carbon dioxide)bis[1,2-ethanediylbis(dimethylphosphine)]-, chloride, 21:100
- ClIrO₄P₃C₁₁H₂₇, Iridium, chloro[(formyl-KC-oxy)formato-KO-(2-)]tris(trimethylphosphine)-, 21:102
- ClIrP₃C₁₇H₄₁, Iridium, chloro(η²-cyclooctene)tris(trimethylphosphine)-, 21:102
- ClIrP₄C₁₂H₃₂, Iridium(1+), bis[1,2-ethandiylbis(dimethylphosphine)]-, chloride, 21:100
- CINC₇H₄, Benzene, 1-chloro-4-isocyano-

molybdenum and tungsten complexes, 23:10

- ClNNiPSe₂C₁₁H₂₅, Nickel(II), chloro(*N*,*N*diethyldiselenocarbamato)(triethylphosphine)-, 21:9
- ClNO₄C₁₆H₃₆, Ammonium, tetrabutyl-, perchlorate, 24:135
- CINPC₂₄H₂₁, Phosphonium, (2-aminophenyl)triphenyl chloride, 25:130

ClNPPdSe₂C₂₃H₂₅, Palladium, chloro-(*N*,*N*diethyldiselenocarbamato)(triphenylphosphine)-, 21:10

ClNPPtSe₂C₂₃H₂₅, Platinum(II), chloro-(N,N-diethyldiselenocarbamato)(triphenylphosphine)-, 21:10

- $ClN_{3}P_{2}C_{12}H_{30}, 1,3,2,2\lambda^{4},4\lambda^{3}-Cyclodiphospha$ zane
 - 2-chloro-1,3-diisopropyl-4-[isopropyl-(trimethylsilyl)amino]-, 25:10

 $ClN_{3}P_{2}SC_{24}H_{20},\ 1\lambda^{4},2,4,6,3\lambda^{5},5\lambda^{5}\text{-Thiatriaza-diphosphorine}$

- 1-chloro-3,3,5,5-tetraphenyl-, 25:40
- $CIN_3P_2C_{20}H_{18}$, 1,3,5,2 λ^5 ,4 λ^5 -Triazadiphosphinine
 - 2-chloro-2-methyl-4,4,6-triphenyl-, 25:29
- ClN₄O₂ReC₂₀H₂₀, Rhenium(V), dioxotetrakis(pyridine)-, chloride, *trans*-, 21:116
- CIN₄O₆ReC₂₀H₂₀, Rhenium(V), dioxotetrakis(pyridine)-, perchlorate, *trans*-, 21:117
- ClN₄O₈RhC₆H₆, Rhodium(III), bis(1,2ethanediamine)(oxalato)-, perchlorate, 24:227
- ClN₅S₄, 1λ⁴,3λ⁴,5λ⁴,7-Tetrathia-2,4,6,8,9pentaazabicyclo[3.3.1]-1(8),2,3,5-tetraenylium chloride, 25:38

ClO₄H, Perchloric acid cadmium complexes, 23:175

- $ClO_4Se_8C_{20}H_{24}$, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, radical ion(1+), perchlorate (2:1), 24:136
- CIPRh₂C₂₄H₄₂, Rhodium, μ-chlorobis(η⁴-1, 5-cyclooctadiene)(μ-di-*tert*-butylphosphido)-di-, 25:172
- ClPSiC₁₀H₁₄, Phosphinous chloride, [phenyl-(trimethylsilyl)methylene]-, 24:111
- ClPSi₄C₁₄H₃₆, Phosphine, bis(trimethylsilyl)methylene][chlorobis(trimethylsilyl)methyl-, 24:119

_____, Phosphorane, bis[bis(trimethylsilyl)methylene]chloro]-, 24:120

- ClP₂RuC₄₁H₃₅, Ruthenium(II), chloro(η⁵-cyclopentadienyl)bis(triphenylphosphine)-, 21:78
- CITiC₁₀H₁₀, Titanium(III), chlorobis(η⁵-cyclopentadienyl)-, 21:84
- ClVC₁₀H₁₀, Vanadium(III), chlorobis(η⁵-cyclopentadienyl)-, 21:85
- ClZr, Zirconium chloride, 22:26
- Cl_{0.30}Cs₂N₄PtC₄, Platinate, tetracyano-, cesium chloride (1:2:0.30), 21:142
- $Cl_{0.30}N_4PtRb_2C_4 \cdot 3H_2O$, Platinate, tetracyano-, rubidium chloride (1:2:0.30), trihydrate, 21:145
- Cl₂CoN₅O₆SC₆H₂₂, Cobalt(III), (2-aminoethanethiolato-N,S)bis(1,2-ethanediamine)-, diperchlorate, 21:19
- Cl₂CoN₆O₁₁C₂₈H₂₈, Cobalt(II), aqua(methanol)(5,5a-dihydro-24-methoxy-6,10: 19,23-dinitrilo-24*H*-benzimidazo[2,1-*h*]-[1,9,17]-benzotriazacyclononadecine)-, diperchlorate, 23:176
- Cl₂H₂IN₂Pt, Platinum(II), diaminechloroiodo-, *trans*-, chloride, 22:124
- Cl₂H₉N₃Pt, Platinum(II), triaminechloro-, chloride, 22:124
- Cl₂H₁₅N₇Os, Osmium(II), pentaammine(dinitrogen)-, dichloride, 24:270
- Cl₂HfC₂₀H₃₀, Hafnium, dichlorobis(η³-pentamethylcyclopentadienyl)-, 24:154
- Cl₂Mo₂N₄C₈H₂₄, Molybdenum, dichlorotetrakis(dimethylamido)di-, $(M^{-4}Mo)$, 21:56
- Cl₂NC₇H₃, Benzene, 1,3-dichloro-2-isocyano
 - molybdenum and tungsten complexes, 23:10
- Cl₂NP₃WC₁₅H₃₂, Tungsten(IV), dichloro-(phenylimido)tris(trimethylphosphine)-, 24:198
- Cl₂NP₃WC₂₄H₅₀, Tungsten(IV), dichloro-(phenylimido)tris(triethylphosphine)-, 24:198
- Cl₂NP₃WC₃₀H₃₈, Tungsten(IV), dichlorotris-(dimethylphenylphosphine)(phenylimido)-, 24:198
- Cl₂NP₃WC₄₅H₄₄, Tungsten(IV), dichlorotris-(methyldiphenylphosphine)(phenylimido)-, 24:198

- Cl₂N₂O₂RuC₁₂H₈, Ruthenium(II), dicarbonyldichloro(2,2'-bipyridine)-, 25:108
- Cl₂N₂P₂C₆H₁₄, Cyclodiphosphazane, 2,4dichloro-1,3-diisopropyl-, 25:10
- Cl₂N₂P₂C₈H₁₈, Cyclodiphosphazane, 1,3-ditert-butyl-2,4-dichloro-, 25:8
- Cl₂N₃P₂C₁₉H₁₅, 1,3,5,2λ⁵,4λ⁵-Triazadiphosphinine, 2,4-dichloro-2,4,6-triphenyl-, 25:28
- Cl₂N₂PtC₁₀H₂₄, Platinum(II), [*N*,*N*'-bis(1methylethyl)-1,2-ethanediamine)dichloro(ethene)-, 21:87
- Cl₂N₂PtC₁₂N₂₈, Platinum(II), dichloro-[N,N'-dimethyl-N,N'-bis(1-methylethyl)-1,2-ethanediamine](ethene)-, 21:87 _____, dichloro(ethene)(N,N,N',N'-tetra-
- ethyl-1,2-ethanediamine)-, 21:86, 87 $Cl_2N_2PtC_{20}H_{28}$, Platinum(II), [(S,S)-N,N'-
- bis(1-phenylethyl)-1,2-ethanediamine]dichloro(ethene)-, 21:87
- Cl₂N₂PtC₂₂H₃₂, Platinum(II), dichloro[(*R*,*R*)-*N*,*N'*-dimethyl-*N*,*N'*-bis(1-phenylethyl)-1,2-ethanediamine](ethene)-, 21:87
- Cl₂N₄OsC₂₀H₁₆, Osmium(II), bis(2,2'-bipyridine-N,N')dichloro-, cis-, 24:294
- Cl₂N₄PdC₁₂H₃₀, Palladium(II), [*N*,*N*-bis[2-(dimethylamino)ethyl]-*N'*,*N'*-dimethyl-1,2-ethanediamine]chloro-, chloride, 21:129
- $Cl_2N_4RuC_{20}H_{16} \cdot 2H_2O$, Ruthenium(II), bis-(2,2'-bipyridine-N, N')dichloro-, *cis*-, dihydrate, 24:292
- Cl₂N₄WC₁₈H₃₂, Tungsten(IV), dichlorotris-(2-isocyano-2-methylpropane)(phenylimido)-, 24:198
- Cl₂N₄WC₃₀H₂₆, Tungsten(IV), dichlorotris-(1-isocyano-4-methylbenzene)(phenylimido)-, 24:198
- $Cl_2N_5RuC_{25}H_{19} \cdot 2.5H_2O$, Ruthenium(II), (2,2'-bipyridine-N, N')chloro(2,2':6',2"terpyridine-N, N', N'')-, chloride, 2.5 hydrate, 24:300
- Cl₂N₆NiP₂C₁₈H₂₄, Nickel(II), dichlorobis(3, 3',3"-phosphinidynetripropionitrile)-, 22:113
- Cl₂N₆RuC₃₀H₂₄ · 6H₂O, Ruthenium(II), tris-(2,2'-bipyridine)-, dichloride, hexahydrate, 21:127
- Cl₂N₇RuC₄H₁₉, Ruthenium(II), pentaammine(pyrazine)-, dichloride, 24:259

- Cl₂OP₄Pd₂C₃₁H₄₄, Palladium(I), μ-carbonyldichlorobis[methylenebis(diphenylphosphine)]di-, 21:49
- Cl₂PC₁₉H₁₅, Phosphorane, (dichloromethylene)triphenyl-, 24:108
- Cl₂P₄Pd₂C₅₀H₄₄, Palladium(I), dichlorobis-µ-[methylenebis(diphenylphosphine)]-di-, (Pd-Pd), 21:48
- Cl₂S₃C₈H₁₆, Ethane, 1,1'-[thiobis(2,1-ethanediylthio)]bis[2-chloro-, 25:124
- Cl₂Si₂C₇H₁₈, Silane, (dichloromethylene)bis-[trimethyl-, 24:118
- Cl₂Ti, Titanium dichloride, 24:181
- Cl₂V, Vanadium chloride, 21:185
- Cl₃CoN₃OH₁₁, Cobalt(III), triammineaquadichloro-, mer-, chloride, 23:110
- Cl₃Co₂N₆O₁₄CH₂₀, Cobalt(III), µ-(carboxylato)di-µ-hydroxo-bis[triammine-, triperchlorate, 23:107, 112
- Cl₃Co₂N₆O₁₅H₂₁ · 2H₂O, Cobalt(III), tri-µhydroxo-bis[triammine-, *fac*-, triperchlorate, dihydrate, 23:100
- Cl₃Co₂N₆O₁₆C₂H₂₃ · 2H₂O, Cobalt(III), (μacetato)di-μ-hydroxo-bis[triammine-, triperchlorate, dihydrate, 23:112
- Cl₃Co₂N₆O_{.18}H₂₁ · 0.5H₂O, Cobalt(III), µ-(hydrogenoxalato)di-µ-hydroxo-bis-[triammine-, triperchlorate, hemihydrate, 23:113
- Cl₃CsSc, Cesium scandium chloride, 22:23
- Cl₃Dy, Dyprosium chloride, 22:39
- Cl₃Er, Erbium chloride, 22:39
- Cl₃Eu, Europium chloride, 22:39
- Cl₃Gd, Gadolinium chloride, 22:39
- Cl₃H₁₂N₄Rh, Rhodium(III), tetraamminedichloro-, *cis*-, chloride, 24:223
- Cl₃H₁₅N₅Rh, Rhodium(III), pentaamminechloro-, dichloride, 24:222
- Cl₃H₁₅N₅Ru, Ruthenium(III), pentaamminechloro-, dichloride, 24:255
- Cl₃H₁₇N₅O₁₃Rh, Rhodium(III), pentaammineaqua-, triperchlorate, 24:254
- Cl₃H₁₈IrN₆, Iridium(III), hexaammine-, trichloride, 24:267
- Cl₃H₁₈N₆O₁₂Rh, Rhodium(III), hexaammine-, triperchlorate, 24:255
- Cl₃H₁₈N₆Os, Osmium(III), hexaammine-, trichloride, 24:273
- Cl₃Ho, Holmium chloride, 22:39
- $Cl_3IrN_4C_4H_{16} \cdot HCl \cdot 2H_2O$, Iridium(III),

dichlorobis(1,2-ethanediamine)-, *trans*-, chloride, monohydrochloride, dihy-drate, 24:287

- Cl₃IrN₄C₄H₁₆ · H₂O, Iridium(III), dichlorobis(1,2-ethanediamine)-, *cis*-, chloride, monohydrate, 24:287
- Cl₃La, Lanthanum chloride, 22:39
- Cl₃Lu, Lutetium chloride, 22:39
- Cl₃MoO₃C₁₂H₂₄, Molybdenum(III), trichlorotris(tetrahydrofuran)-, 24:193

Cl₃NP₂ReC₄₂H₃₃, Rhenium(V), trichloro-(phenylimido)bis(triphenylphosphine)-, 24:196

Cl₃NP₂WC₁₂H₃₂, Tungsten(V), trichloro-(phenylimido)bis(trimethylphosphine)-, 24:196

Cl₃NP₂WC₁₈H₃₅, Tungsten(V), trichloro-(phenylimido)bis(triethylphosphine)-, 24:196

Cl₃NP₂WC₂₂H₂₇, Tungsten(V), trichlorobis(dimethylphenylphosphine)-(phenylimido)-, 24:196

Cl₃NP₂WC₄₂H₃₅, Tungsten(V), trichloro-(phenylimido)bis(triphenylphosphine)-, 24:196

Cl₃NPtSC₁₈H₄₂, Platinate(II), trichloro(dimethyl sulfide)-, tetrabutylammonium, 22:128

- Cl₃N₃P₃C₆H₁₅, 1,3,5,2,4,6-Triazatriphosphorinane, 2,4,6-trichloro-1,3,5-triethyl-, 25:13
- Cl₃N₄OxC₂₀H₁₆, Osmium(III), bis(2,2'-bipyridine-*N*,*N*')dichloro-, *cis*-, chloride, 24:293

Cl₃N₄OsC₂₀H₁₆ · 2H₂O, Osmium(III), bis(2,2'-bipyridine-*N*,*N*')dichloro-, *cis*-, chloride, dihydrate, 24:293

Cl₃N₄RhC₄H₁₆ · HCl · 2H₂O, Rhodium(III), dichlorobis(1,2-ethanediamine)-, *trans*-, chloride, monohydrochloride, dihydrate, 24:283

Cl₃N₄RhC₄H₁₆ · H₂O, Rhodium(III), dichlorobis(1,2-ethanediamine)-, *cis*-, chloride, monohydrate, 24:283

- $Cl_{3}N_{4}RuC_{20}H_{16} \cdot 2H_{2}O, Ruthenium(III),$ bis(2,2'-bipyridine-N,N')dichloro-, cis-,chloride, dihydrate, 24:293
- Cl₃N₆P₃C₆H₁₂, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4-tris(1-aziridinyl)-4,6,6-trichloro-, 25:87
- Cl₃Nd, Neodymium chloride, 22:39

- Cl₃O₃ScC₁₂H₂₄, Scandium(III), trichlorotris(tetrahydrofuran)-, 21:139
- Cl₃O₃TiC₁₂H₂₄, Titanium(III), trichlorotris(tetrahydrofuran)-, 21:137
- Cl₃O₃VC₁₂H₂₄, Vanadium(III), trichlorotris-(tetrahydrofuran)-, 21:138
- Cl₃Pr, Praseodynium chloride, 22:39
- Cl₃SbC₁₂H₁₀, Antimony(V), trichlorodiphenyl-, 23:194
- Cl₃Sc, Scandium chloride, 22:39
- Cl₃Sm, Saramium chloride, 22:39
- Cl₃Tb, Terbium chloride, 22:39
- Cl₃Tl, Thallium chloride, 21:72
- Cl₃Tm, Thulium chloride, 22:39
- Cl₃Y, Yttrium chloride, 22:39 anhydrous, 25:146
- Cl₃Yb, Ytterbium chloride, 22:39
- Cl₄Co₂N₆O₂₀H₂₄ · 5H₂O, Cobalt(III), di-µhydroxo-bis[triammineaqua-, tetraperchlorate, pentahydrate, 23:111
- Cl₄Co₂N₇O₂₀C₆H₂₅, Cobalt(III), di-µ-hydroxo-µ-(4-pyridinecarboxylato)bis[triammine-, tetraperchlorate, 23:113
- Cl₄Co₂N₈O₂₀C₅H₂₄ · H₂O, Cobalt(III), di-µhydroxo-µ-(pyrazinecarboxylato)bis[triammine-, tetraperchlorate, monohydrate, 23:114
- Cl₄CrN₂C₂H₁₂, Chromate(II), tetrachloro-, bis(methylammonium), ferromagnets, 24:188
- Cl₄CrN₂C₄H₁₆, Chromate(II), tetrachloro-, bis(ethylammonium), ferromagnets, 24:188
- Cl₄H₁₅N₅Pt, Platinum(IV), pentaamminechloro-, trichloride, 24:277
- Cl₄HfO₂C₈H₁₆, Hafnium(IV), tetrachlorobis(tetrahydrofuran)-, 21:137
- Cl₄GaNC₁₆H₃₆, Gallate(1-), tetrachloro-, tetrabutylammonium, 22:139
- CLMoO, Molybdenum chloride oxide, 23:195
- Cl₄NOTcC₁₆H₃₆, Technetate(V), tetrachlorooxo-, tetrabutylammonium (1:1), 21:160
- Cl₄NP₂C₁₃H₁₃, Phosphorus(1 +), 1,1,2-trichloro-1-methyl-2,2-diphenyl-µ-nitridodi
 - chloride, 25:26
- Cl₄NReC₆H₅, Rhenium(VI), tetrachloro-(phenylimido)-, 24:195

254 Formula Index

- Cl₄NWC₆H₅, Tungsten(VI), tetrachloro-(phenylimido)-, 24:195
- Cl₄NbO₂₂C₄H₁₆, Niobium(IV), tetrachlorobis(tetrahydrofuran)-, 21:138
- Cl₄N₃P₃SiC₅H₁₄, Poly[2,2,4,4-tetrachloro-6methyl-6-[(trimethylsilyl]catenatriphosphazene-1,6-diyl]-, 25:63
- _____, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]-, 25:61
- Cl₄N₄P₂C₃H₆, 1,3,5,2λ⁵,4λ⁵-Triazadiphosphinine, 2,2,4,4-tetrachloro-6-(dimethylamino)-, 25:27
- Cl₄N₅P₃C₄H₈, 1,3,5, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -Triazatriphosphorine
 - 2,2-bis(1-aziridinyl)-4,4,6,6-tetrachloro-, 25:87
 - 2,4-bis(1-aziridinyl)-2,4,6,6-tetrachloro-, cis- and trans-, 25:87
- Cl₄N₆P₄C₄H₈, 1,3,5,7,2,2λ⁵,4λ⁵,6λ⁵,8λ⁵-Tetraazatetraphosphocine, 2,2-bis(1-aziridinyl)-4,4,6,6,8,8-hexachloro-, 25:91
- Cl₄OP₄Ru₂C₇₃H₃₀, Ruthenium, carbonyltriμ-chloro-chlorotetrakis(triphenylphosphine)di-, compd. with acetone (1:2), 21:30
- Cl₄OW, Tungsten chloride oxide, 23:195
- Cl₄O₂TiC₈H₁₆, Titanium(IV), tetrachlorobis(tetrahydrofuran)-, 21:135
- Cl₄O₂ZrC₈H₁₆, Zirconium(IV), tetrachlorobis(tetrahydrofuran)-, 21:136
- Cl₄PC₁₉H₁₅, Phosphonium, triphenyl(trichloromethyl)-, chloride, 24:107
- Cl₄P₂CH₂, Phosphine, methylenebis(dichloro-, 25:121
- Cl₄P₂C₂H₄, Phosphine, 1,2-ethanediylbis-(dichloro-, 23:141
- Cl₄P₄Ru₂SC₇₃H₆₀, Ruthenium, tri-μ-chlorochloro(thiocarbonyl)tetrakis(triphenylphosphine)di-, compd. with acetone, 21:29
- Cl₄Pt₂S₂C₄H₁₂, Platinum(II), di-µ-chlorodichlorobis(dimethyl sulfide)di-, 22:128
- Cl₄Ru₂C₂₀H₂₈, Ruthenium(II), di-μ-chlorobis[chloro(η⁶-1-isopropyl-4-methylbenzene)-, 21:75
- Cl₄Ru₂C₂₄H₂₆, Ruthenium(II), di-μ-chlorobis[chloro(η⁶-hexamethylbenzene)-, 21:75
- Cl₄U, Uranium(IV) chloride, 21:187

Cl₅Cs₂Lu, Cesium lutetium chloride, 22:6

- Cl₅N₃OP₃C₂H₃, Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77
-, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4,6-pentachloro-6-(ethenyloxy)-, 25:75
- Cl₅N₅P₃C₂H₄, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2-(1-aziridinyl)-2,4,4,6,6pentachloro-, 25:87
- $Cl_5N_7P_4C_6H_{12}$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,2,6-tris(1-aziridinyl)-4,4,6,8,8-pentachloro-, 25:91
 - 2,4,6-tris(1-aziridinyl)-2,4,6,8,8-pentachloro-, 2,6-cis-4-trans- and 2,4-cis-6trans-, 25:91
- Cl₅P₃C₂H₄, Phosphine, chlorobis[(dichlorophosphino)methyl]-, 25:121
- Cl₆Co₄N₁₂O₃₂C₂H₄₀ · 4H₂O, Cobalt(III), tetra-μ-hydroxo(μ₄-oxalato)-tetrakis-[triammine-, hexaperchlorate, tetrahydrate, 23:114
- Cl₆Co₄N₁₂O₃₂C₄H₄₀ · 5H₂O, Cobalt(III), µ₄-(acetylenedicarboxylato)tetra-µ-hydroxo-tetrakis[triammine-, hexaperchlorate, pentahydrate, 23:115
- Cl₆Cs₂LiTm, Cesium lithium thulium chloride, 21:10
- Cl₆Cs₃Lu, Cesium lutetium chloride, 22:6
- Cl₆Ga₂P₂C₃₆H₃₂, Gallate(2-), hexachlorodi-, bis(triphenylphosphonium), 22:135, 138
- Cl₆NP₂, Phosphorus(1+), μ-nitridobis(trichloro
 - hexachloroantimonate(1), 25:25
- Cl₆N₂O₂Pt, Platinate(IV), hexachloro-, dinitrosyl, 24:217
- Cl₆N₂PbC₁₀H₁₂, Plumbate(IV), hexachloro-, dipyridinium, 22:149
- $Cl_6N_5P_4C_4H_8$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,4-bis(1-aziridinyl)-2,4,6,6,8,8-hexachloro-, cis- and trans-, 25:91
 - 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexachloro-, cis- and trans-, 25:91
 - 2,4,4,6,8,8-hexachloro-trans-2,6bis(ethylamino)-, 25:16
- Cl₆N₆P₄C₈H₂₀, 1,3,5,7,2 λ ⁵,4 λ ⁵,6 λ ⁵,8 λ ⁵-Tetraazatetraphosphocine

- 2,4-bis(tert-butylamino)-2,4,6,6,8,8-hexachloro-, 25:21
- 2,6-bis(tert-butylamino)-2,4,4,6,8,8-hexachloro-, 25:21
- Cl₆N₈O₄Rh₂C₈H₃₂, Rhodium(III), dichlorobis(1,2-ethanediamine)-, chloride perchlorate (2:1:1), 24:229
- Cl₆Nb₂P₂C₃₀H₂₄, Niobium(III), hexachlorobis[1,2-ethanediylbis(diphenylphosphine)]di-, 21:18
- Cl₆Nb₂S₃C₆H₁₈, Niobium(III), di-µ-chlorotetrachloro-µ-(dimethyl sulfide)-bis-(dimethyl sulfide)di-, 21:16
- Cl₆Sb, Antimonate(1), hexachloro- μ -nitrido-bis(trichlorophosphorus)(1 +), 25:25
- Cl₇CsPr₂, Cesium praseodymium chloride, 22:2
- Cl₇Dy₂K, Potassium dyprosium chloride, 22:2
- $Cl_7N_5P_4C_2H_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine, 2-(1-aziridinyl)-2,4,4,6,6,8,8-heptachloro-, 25:91
- Cl₈EuN₄O₂C₄₉H₂₇, Europium, (2,4-pentanedionato)[5,10,15,20-tetrakis(3,5-dichlorophenyl)porphyrinato(2 –)]-, 22:160
- Cl₈N₂Re₂C₃₂H₇₂, Rhenate(III), octachlorodi-, bis(tetrabutylammonium), 12:116
- Cl₉Cs₃Lu₂, Cesium lutetium chloride, 22:6
- Cl₉Cs₃Sc₂, Cesium scandium chloride, 22:25
- CoAgN₄O₈C₄H₈, Cobaltate(III), bis(glycinato)dinitro-, cis(NO), trans(N)-, silver(I), 23:92
- CoB₉C₇H₁₆, 1,2-Dicarba-3-cobalta-*closo*-dodecaborane(11), 3-(η⁵-cyclopentadienyl)-, 22:235
- CoBrN₄OC₁₄H₂₆, Cobalt(III), [2-[1-[(2-aminoethyl)imino]ethyl]phenolato](1,2ethanediamine)ethyl-, bromide, 23:165
- CoBrN₄O₃C₅H₁₆, Cobalt(III), (carbonato)bis(1,2-ethanediamine)-, bromide, 21:120
- CoBrN₄O₇S₂C₄H₁₈ · H₂O, Cobalt(III), aquabromobis(1,2-ethanediamine)-, dithionate, *trans*-, monohydrate, 21:124
- CoBr₃N₄C₄H₁₆, Cobalt(III), dibromobis(1,2ethanediamine)-, bromide, *trans*-, 21:120

- CoBr₃N₄C₄H₁₆ · H₂O, Cobalt(III), dibromobis(1,2-ethanediamine)-, bromide, *cis*-, monohydrate, 21:121
- CoBr₃N₄OC₄H₁₈ · H₂O, Cobalt(III), aquabromobis(1,2-ethanediamine)-, dibromide, *cis*-, monohydrate, 21:123
- $CoC_{14}H_{23}$, Cobalt(I), bis(η^2 -ethene)(η^5 -pentamethylcyclopentadienyl)-, 23:19
- CoClN₄O₂SC₆H₁₈, Cobalt(III), bis(1,2ethandiamine)(2-mercaptoacetato(2-)-O,S)-, perchlorate, 21:21
- CoClN₄O₃C₁₁H₁₆ \cdot H₂O, Cobalt(III), diammine(carbonato)bis(pyridine)-, *cis,cis*-, chloride, monohydrate, 23:77
- CoClN₄O₇C₈H₂₁ · 2H₂O, Cobalt(III), aqua(glycinato)(1,4,7-triazacyclononane)-, perchlorate, dihydrate, 23:76
- CoClN₄O₇S₂C₄H₁₈ · H₂O, Cobalt(III), aquachlorobis(1,2-ethanediamine)-, dithionate, *trans*-, monohydrate, 21:125
- $CoClN_5O_4C_8H_{19} \cdot H_2O$, Cobalt(III), (glycinato)nitro(1,4,7-triazacyclononane)-, chloride, monohydrate, 23:77
- CoClN₁₀O₈C₁₂H₂₈, Cobalt(III), bis(S-arginine)dinitro-, Δ -(-)-*cis*(NO₂), *trans*(N)-, chloride, 23:91
- CoCl₂N₅O₈C₆H₂₂, Cobalt(III), (2-aminoethanethiolato-*N*,*S*)bis(1,2-ethanediamine)-, diperchlorate, 21:19
- $CoCl_2N_6O_{11}C_{28}H_{28}$, Cobalt(II), aqua(methanol)(5,5a-dihydro-24-methoxy-6,10:19, 23-dinitrilo-24H-benzimidazo[2,2-h]-[1,9,17]-benzotriazacyclononadecine)-, 23:176
- CoCl₃N₃OH₁₁, Cobalt(III), triammineaquadichloro-, mer-, chloride, 23:110
- $CoCsN_2O_8C_{10}H_{12}$, Cobaltate(III), [N,N'ethanediylbis[N-(carboxymethyl)glycinato](4 -)]-, *trans*-, cesium, 23:99
- CoCsN₂O₈C₁₁H₁₄, Cobaltate(III), [N,N'-(1methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato](4 -)]-, cesium, 23:101
 - _____, [[*R*-(-)-*N*,*N*'-(1-methyl-1,2-ethanediyl)bis[*N*-(carboxymethyl)glycinato]-(4-)]-, [Δ-(+)]-, cesium, 23:101
- _____, [[S-(+)-N,N'-(1-methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato]-(4-)-, [Λ-(-)]-, cesium, 23:101

- $CoCsN_2O_8C_{14}H_{18}$, Cobaltate(III), [N, N'-1, 2cyclohexanediylbis[N-(carboxymethyl)glycinato](4-)]-, *trans*-, cesium, 23:96, [[R, R-(-)]-N, N'-1, 2-cyclohexanediylbis[N-(carboxymethyl)]glycinato]-
- (4-)], [Δ-(+)]-, cesium, 23:97
 CoF₃O₂P₂C₄H₃₀, Cobalt(I), dicarbonyl-(pentafluorophenyl)bis(triphenylphosphine)-, 23:25
- CoF₅O₃PC₂₇H₁₅, Cobalt(I), tricarbonyl-(pentafluorophenyl)(triphenylphosphine)-, 23:24
- CoF₅O₄C₁₀, Cobalt(I), tetracarbonyl (pentafluorophenyl)-, 23:23
- CoF₉N₃O₉S₃C₈H₂₅, Cobalt(III), pentakis-(methanamine)(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:281
- CoF₉N₃O₉S₃C₇H₁₆, Cobalt(III), [N-(2-aminoethyl)-1,2-ethanediamine]tris(tri-fluoromethanesulfonato)-, fac-, 22:106

CoF₉N₄O₉C₇H₁₉, Cobalt(III), bis(1,2-ethanediamine)bis(trifluoromethanesulfonato)-, *cis*-, trifluoromethanesulfonate, 22:105

- CoF₉N₃O₉S₃C₃H₁₅, Cobalt(III), pentaammine(trifluoromethanesulfonato)-, trifluoromethanesulfonate, 22:104
- CoIN₄OC₁₄H₂₆, Cobalt(III), [2-[1-[(2-aminoethyl)imino]ethyl]phenolato](1,2ethanediamine)ethyl-, iodide, 23:167
- CoIN₄OC₁₅H₂₈, Cobalt(III), [2-[1-[(3-aminopropyl)imino]ethyl]phenolato]methyl]-(1,3-propanediamine)-, iodide, 23:170
- CoIN₄OC₁₆H₃₀, Cobalt(III), [2-[1-[(3-aminopropyl)imino]ethyl]phenolato]ethyl(1,3propanediamine)-, iodide, 23:169
- CoIN₅O₂C₈H₂₂ · H₂O, Cobalt(III), ammine-(glycinato)(1,4,7-triaza(glycinato)-(1,4,7-triazacyclononane)-, iodide, monohydrate, 23:78
- CoI₂OC₁₁H₁₅, Cobalt(III), carbonyldiiodo-(η⁵-pentamethylcyclopentadienyl)-, 23:16
- CoKN₂O₆C₂H₆, Cobaltate(III), diamminebis(carbonato)-, *cis*-, potassium, 23:62
- CoKN₂O₆C₄H₈, Cobaltate(III), bis(carbonato)(1,2-ethanediamine)-, potassium, 23:64

- CoKN₂O₈C₁₀H₁₂, Cobaltate(III), [*N*,*N*'-1,2ethanediylbis[*N*-(carboxymethyl)glycinato](4)]-, potassium, 23:99
- CoKN₂O₈C₁₁H₁₄, Cobaltate(III), [[R-(-)]-N,N'-(1-methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato](4–)-, [Δ -(+)]-, potassium, 23:101
- CoKN₂O₈C₁₄H₁₈, Cobaltate(III), [[R,R(-)]-N,N-1,2-cyclohexanediylbis(carboxymethyl)glycinato](4-)]-, [Δ -(+)]-, potassium, 23:97
- CoKn₄O₇CH₆ · 0.5H₂O, Cobaltate(III), diammine(carbonato)dinitro-, *cis,cis*-, potassium, hemihydrate, 23:70
- CoKN₄O₈C₂H₆ · 0.5H₂O, Cobaltate(III), diamminedinitro(oxalato)-, *cis,cis-*, potassium, hemihydrate, 23:71
- CoKO₂, Potassium cobalt oxide, 22:58
- CoK_{0.5}O₂, Potassium cobalt oxide, 22:57
- CoK_{0.67}O₂, Potassium cobalt oxide, 22:57
- CoK₃O₉C₃, Cobaltate(III), tris(carbonato)-, potassium, 23:62
- CoLiN₂O₆C₂H₆, Cobaltate(III), diamminebis(carbonato)-, *cis*-, lithium, resolution of, 23:63
- CoNO₁₃P₂Ru₃C₄₉H₃₀, Ruthenate(1), tridecacarbonylcobalttriµ-nitrido-bis(triphenylphosphorus)(1 +), 21:61
- CoN₂O₆C₄, Cobaltate(III), bis(carbonato)dicyano-, *cis*-, tris(1,2-ethanediamine)cobalt(III), dihydrate, 23:66
- CoN₂O₈C₆H₈, Cobaltate(III), (1,2-ethanediamine)bis(oxalato)-
- as resolving agent, 23:74 CoN₂O₈RbC₁₀H₁₂, Cobaltate(III), [N,N'-1,2-ethanediylbis[N-(carboxy methyl)glycinato](4-)]-, rubidium, 23:100
- $CoN_2O_8RbC_{11}H_{14}$, Cobaltate(III), [[R,(-)]-N,N'-(1-methyl-1,2-ethanediyl)bis-[N-(carboxymethyl)-glycinato](4-)]-, (\Delta-(+)]-, rubidium, 23:101
- $CoN_2O_8RbC_{14}H_{18}$, Cobaltate(III), [[R,R-(-)]-N,N-1,2-cyclohexanediylbis-[N-(carboxymethyl)glycinato](4-)]-, [Δ -(+)]-, rubidium, 23:97
- CoN₃O₆C₆H₁₂, Cobalt(III), tris(glycinato)fac- and mer-, 25:135

CoN₃O₆C₉H₁₈, Cobalt(III), tris-(alaninato)fac-, and mer-, 25:137

CoN₄NaO₃C₃H₆ · 2H₂O, Cobaltate(III), diamine(carbonato)dicyano-, *cis*,*cis*-, sodium dihydrate, 23:67

CoN₄NaO₄C₄H₆ · 2H₂O, Cobaltate(III), diaminedicyano(oxalato)-, *cis,cis*-, sodium, dihydrate, 23:69

CoN₄O₄C₆H₁₆, Cobalt(III), bis(1,2-ethanediammine)(oxalato)as resolving agent, 23:65

CoN₄O₁₀S₂C₁₄H₁₆ · 2H₂O, Cobalt(III), tetraaquabis(o-sulfobenzoimidato)-, dihydrate, 23:49

CoN₆C₆H₂₄, Cobalt(III), diammine[*N*,*N'*bis(2-aminoethyl)-1,2-ethanediammine]-, *trans*-, 23:79

_____, tris(1,2-ethanediamine)-, cis-bis-(carbonato)dicyanocobaltate(III), dihydrate, 23:66

CoN₆O₆H₉, Cobalt(III), triamminetrinitro-, mer-, 23:109

CoN₆O₆S₂C₈H₁₂, Cobalt(II), bis(1,3-dihydro-1-methyl-2*H*-imidazole-2thione)dinitrato-, 23:171

 $CoN_8S_2C_6H_6$, Cobalt(II), bis(thiocyanato-N)-bis-(μ -1H-1,2,4-triazole- N^2 : N^4)-, poly-, 23:159

 $CoN_{10}O_6S_4C_{16}H_{24}$, Cobalt(II), tetrakis-(1,3dihydro-1-methyl-2*H*-imidazole-2thione)dinitrato-, 23:171

- CoNaO₂, Sodium cobalt oxide, 22:56
- CoNa_{0.6}O₂, Sodium cobalt oxide, 22:56
- CoNa_{0.64}O₂, Sodium cobalt oxide, 22:56
- CoNa_{0.74}O₂, Sodium cobalt oxide, 22:56
- CoNa_{0.77}O₂, Sodium cobalt oxide, 22:56
- CoO₂C₁₂H₁₅, Cobalt(I), dicarbonyl(η⁵-pentamethylcyclopentadienyl)-, 23:15

CoO₆C₁₅H₂₁, Cobalt(III), tris(2,4-pentanedionato)-, 23:94

- CoO₆P₂C₁₁H₂₃, Cobalt(I), (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:162
- CoPC₂₈H₂₇, Cobalt, (1,4-butanediyl)(η^{s} -cyclopentadienyl)(triphenylphosphine), 22:171
- CoP₂C₁₁H₂₃, Cobalt(I), (η⁵-cyclopentadienyl)bis(trimethylphosphine)-, 25:160
- CoP₂S₄C₇₂H₆₀, Cobaltate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:24

- Co₂Cl₃N₆O₁₄CH₂₀, Cobalt(III), µ-(carboxylato)di-µ-hydroxo-bis[triammine-, triperchlorate, 23:107, 112
- Co₂Cl₃N₆O₁₅H₂₁ · 2H₂O, Cobalt(III), tri-µhydroxo-bis[triammine, *fac*-, triperchlorate, dihydrate, 23:110
- Co₂Cl₃N₆O₁₆C₂H₂₃ · 2H₂O, Cobalt(III), (μacetato)di-μ-hydroxo-bis[triammine-, triperchlorate, dihydrate, 23:112
- Co₂Cl₃N₆O₁₈H₂₁ · 0.5H₂O, Cobalt(III), (μhydrogenoxalato)di-μ-hydroxobis[triammine-, triperchlorate, hemihydrate, 23:113
- Co₂Cl₄N₆O₂₀H₂₄ · 5H₂O, Cobalt(III), di-µhydroxo-bis[triammineaqua-, tetraperchlorate, pentahydrate, 23:111
- Co₂Cl₄N₇O₂₀C₆H₂₃, Cobalt(III), di-µ-hydroxo-µ-(4-pyridinecarboxylato)bis[triammine-, tetraperchlorate, 23:113
- Co₂Cl₄N₈O₂₀C₅H₂₄ · H₂O, Cobalt(III), di-µhydroxo-µ-(pyrazinecarboxylato)bis[triammine-, tetraperchlorate, monohydrate, 23:114
- Co₂I₄C₂₀H₃₀, Cobalt(III), di-µ-iodo-bis-[iodo(η⁵-pentamethylcyclopentadienyl)-, 23:17
- Co₂N₈O₆C₁₀H₂₄, Cobalt(III), tris(1,2-ethanediamine)-, *cis*-bis(carbonato)dicyanocobaltate(III), 23:66
- Co₂O₄P₂C₂₀H₃₆, Cobalt, tetracarbonylbis(μdi-tert-butylphosphido)di-(Co⁻²-Co), 25:177
- $\begin{array}{l} Co_{3}CrN_{12}O_{24}C_{24}H_{48}\cdot 6H_{2}O, \ Cobalt(III),\\ bis(1,2\text{-ethanediamine})(oxalato)\text{-} \end{array}$
- (+)-,(+)-tris(oxalato)chromate(III) (3:1), hexahydrate, 25:140
- Co₃HO₁₂RuC₁₂, Cobalt, dodecacarbonylhydridorutheniumtri-, 25:164
- Co₄Cl₆N₁₂O₃₂C₂H₄₀ · 4H₂O, Cobalt(III), tetra-μ-hydroxo-(μ₄-oxalato)-tetrakis[triammine-, hexaperchlorate, tetrahydrate, 23:114
- Co₄Cl₆N₁₂O₃₂C₄H₄₀ · 5H₂O, Cobalt(III), μ₄-(acetylenedicarboxylato)tetra-μ-hydroxo-tetrakis[triammine-, hexaperchlorate, pentahydrate, 23:115
- CrAsO₄PC₃₄H₃₂, Chromium, tetracarbonyl(tributylphosphine)(triphenylarsine)-, *trans*-, 23:38

- CrAsO₇PC₂₅H₂₄, Chromium, tetracarbonyl(trimethyl phosphite)(triphenylarsine)-, *trans*-, 23:38
- CrAsO₇PC₄₀H₃₀, Chromium, tetracarbonyl-(triphenylarsine)(triphenyl phosphite)-, *trans*-, 23:38
- CrCl₄N₂C₂H₁₂, Chromate(II), tetrachloro-, bis(methylammonium), ferromagnets, 24:188
- CrCl₄N₂C₄H₁₆, Chromate(II), tetrachloro-, bis(ethylammonium), ferromagnets, 24:188
- $CrCo_3N_{12}O_{24}C_{24}H_{48} \cdot 6H_2O$, Cobalt(III), bis(1,2-ethanediamine)(oxalato)-
- (+)-,(+)-tris(oxalato)chromate(III)(3:1), hexahydrate, 25:140
- $CrF_2IN_4C_4H_{16}$, Chromium(III), bis(1,2-ethanediamine)difluoro-, (±)-*cis*-, iodide, 24:186
- CrF₂O₂, Chromium fluoride oxide, 24:67
- CrF₉N₄O₉S₃C₇H₁₆, Chromium(III), bis-(1,2ethanediamine)-bis(trifluoromethanesulfonato-*O*)-, *cis*-, trifluoromethanesulfonate, 24:251
- CrF₉N₃O₉S₃C₃H₁₅, Chromium(III), pentaammine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:250
- CrF₉N₃O₉S₃C₈H₂₅, Chromium(III), pentakis(methanamine)(trifluoromethanesulfonato-O), bis(trifluoromethanesulfonate), 24:280
- CrKO₂, Potassium chromium oxide, 22:59
- CrK_{0.5}O₂, Potassium chromium oxide, 22:59
- CrK_{0.6}O₂, Potassium chromium oxide, 22:59
- CrK_{0.7}O₂, Potassium chromium oxide, 22:59
- $CrK_{0.77}O_2$, Potassium chromium oxide, 22:59
- CrK₃N₆OC₅, Chromate(I), pentacyanonitrosyl-, tripotassium, 23:184
- $CrK_3O_{12}C_6 \cdot H_2O$ and $2H_2O$, Chromate(III), tris(oxalato)-, tripotassium
- (+)-, dihydrate and (-)-, monohydrate, isolation of, 25:141
- CrNO₅P₂C₄₁H₃₁, Chromate(1-), pentacarbonylhydrido-, μ-nitrido-bis(triphenylphosphorus)(1+), 22:183
- CrN₂O₅SC₆H₄, Chromium(O), pentacarbonyl(thiourea)-, 23:2

- $CrN_2O_5SC_{14}H_{20}$, Chromium(O), pentacarbonyl(N,N'-di-*tert*-butylthiourea)-, 23:3
- CrN₂O₃SC₂₀H₁₆, Chromium(O), pentacarbonyl(*N*,*N*'-di-*p*-tolylthiourea)-, 23:3 _____, pentacarbonyl(*N*,*N*,*N*',*N*'-tetramethylthiourea)-, 23:2
- CrN₃O₃C₂₁H₁₉, Chromium, tricarbonyl[η⁶-2methylbenzaldehyde 5-(α-methylbenzyl)semioxamazone]-, 23:87
- CrN₃O₆C₂₁H₁₉, Chromium, tricarbonyl[η⁶-2methoxybenzaldehyde 5-(α-methyl-benzyl)semioxamazone]-, 23:88
- $CrN_3O_7C_{22}H_{21}$, Chromium, tricarbonyl[η^6 -2,3-dimethoxybenzaldehyde 5-(α -methylbenzyl)semioxamazone]-, 23:88
- _____, tricarbonyl[η⁶-3,4-dimethoxybenzaldehyde 5-(α-methylbenzyl)semioxamazone]-, 23:88
- CrN₅OS₂C₁₂H₈, Chromium(I), (2,2'-bi-pyridine)nitrosylbis(thiocyanato)-, 23:183
- CrN₃OS₂C₁₄H₈, Chromium(I),nitrosyl(1,10phenanthroline)bis(thiocyanato)-, 23:185
- CrO₂SeC₉H₆, Chromium(O), (η⁶-benzene)dicarbonyl(selenocarbonyl)-, 21:1, 2
- CrO₄P₂C₃₄H₃₂, Chromium, tetracarbonyl-(tributylphosphine)(triphenylphosphine)-, trans-, 23:38
- CrO₅SeC₆, Chromium(O), pentacarbonyl-(selenocarbonyl)-, 21:1, 4
- CrO₆C₃₃H₅₇, Chromium(III), tris(2,2,6,6-tetramethyl-3,5-heptane-dionato)-, 24:183
- CrO₇P₂C₂₅H₂₄, Chromium, tetracarbonyl-(trimethyl phosphite)(triphenylphosphine)-, trans-, 23:38
- CrO₇P₂C₃₄H₃₂, Chromium, tetracarbonyl-(tributylphosphine)(triphenyl phosphite)-, *trans*-, 23:38
- CrO₇P₂C₄₀H₃₀, Chromium, tetracarbonyl-(triphenylphosphine)(triphenyl phosphite)-, *trans*-, 23:38
- CrO₁₀P₂C₂₅H₂₄, Chromium, tetracarbonyl-(trimethyl phosphite)(triphenyl phosphite)-, *trans*-, 23:38
- CrO₁₂C₆, Chromate(III), tris(oxalato)- resolution of, by asymmetric synthesis, 25:139
- Cr₂F₆N₆C₆H₂₄, Chromium(III), bis(1,2ethanediamine)difluoro-, *cis*-, (1,2-

ethanediamine)tetrafluorochromate-(III), 24:185

- Cr₂HKO₁₀C₁₀, Chromate, µ-hydrido-bis-[pentacarbonyl-, potassium, 23:27
- CsCl₃Sc, Cesium scandium chloride, 22:23
- CsCl₇Pr₂, Cesium praseodymium chloride, 22:2
- CsFO₄S, Cesium fluorine sulfate, 24:22
- Cs₂Cl_{0.30}N₄PtC₄, Platinate, tetracyano-, cesium chloride (1:2:0.30), 21:142
- Cs₂Cl₅Lu, Cesium lutetium chloride, 22:6
- Cs₂Cl₆LiTm, Cesium lithium thulium chloride, 20:10
- Cs₂F₆Mn, Manganate(IV), hexafluoro-, dicesium, 24:48
- $Cs_2N_{4.75}OPtC_4 \cdot XH_2O$, Platinate, tetracyano, cesium azide (1:2:0.25), hydrate, 21:149
- Cs₃Cl₆Lu, Cesium lutetium chloride, 22:6
- Cs₃Cl₉Lu₂, Cesium lutetium chloride, 22:6
- Cs₃Cl₉Sc₂, Cesium scandium chloride, 22:25

CsCoN₂O₈C₁₀H₁₂, Cobaltate(III), [*N*,*N'*-1,2ethanediylbis[*N*-(carboxymethyl)glycinato](4-)-, trans-, cesium, 23:99

- CsCoN₂O₈C₁₁H₁₄, Cobaltate(III), [*N*,*N'*-(1methyl-1,2-ethanediyl)bis[*N*-(carboxymethyl)glycinato](4-)]-, cesium, 23:101
-, [[*R*-(-)]*N*, *N*'-(1-methyl-1,2-ethanediyl)bis[*N*-(carboxymethyl)glycinato]-(4-)]-, [Δ-(+)]-, cesium, 23:101
-,[[S-(+)]-N,N'-(1-methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato] (4-)]-, [Ω-(-)]-, cesium, 23:101
- CsCoN₂O₈C₁₄H₁₈, Cobaltate(III), [*N*,*N*'-1,2cyclohexanediylbis[*N*-(carboxymethyl)glycinato](4-)]-, trans-, cesium, 23:96
-, [[R,R-(-)]-N,N'-1,2-cyclohexanediylbis[N-(carboxymethyl)glycinato]-(4-)]-, [Δ-(+)]-, cesium, 23:97
- Cs₃N₄O_{3.68}PtS_{0.92}H_{0.46}, Platinate, tetracyano-, cesium [hydrogenbis(sulfate)] (1:3:0.46), 21:151
- CuBN₆OC₁₀H₁₀, Copper(I), carbonyl[hydrotris(pyrazolato)borato]-, 21:108
- CuBN₆OC₁₆H₃₂, Copper(I), carbonyl[tris-(3,5-dimethylpyrazolato)hydroborato]-, 21:109
- CuBN₉OC₁₃H₁₂, Copper (I), carbonyl[tetrakis(pyrazolato)borato]-, 21:110

- CuF₁₂N₄P₂C₂₄H₂₈, Copper(II), (2,9-dimethyl-3,10-diphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)-, bis[hexafluorophosphate(1-)], 22:10
- CuI, Copper iodide, 22:101
- CuN₃O₇SC₁₅H₁₄, Copper(II), (1,10-phenanthroline)[serinato(1-)]-, sulfate, 21:115
- CuN₄O₂C₁₀H₁₈, Copper(II), [1,4,8,11-tetrazacyclotetradecane-5,7-dionato(2-)]-, 23:83
- CuN₈S₂C₆H₆, Copper(II), bis(thiocyanato-N)-bis-(µ1H-1,2,4-triazole-N²: N⁴)-, poly-, 23:159
- CuO₄C₂₂H₂₈, Copper(II), bis(2,2,7-trimethyl-3,5-octanedionato)-, 23:146
- DyCl₃, Dyprosium chloride, 22:39
- DyF₁₈N₆O₆P₁₂C₇₂H₇₂, Dyprosium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $DyN_3O_{13}C_8H_{16}$, Dyprosium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- $DyN_3O_{14}C_{10}H_{20}$, Dysprosium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- DyN₃O₁₅C₁₂H₂₄, Dysprosium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)-trinitrato-, 23:153
- DyN₄O₂C₄₉H₃₅, Dyprosium, (2,4-pentanedionato)[5,10,15,10-tetraphenylporphyrinato(2-)]-, 22:166
- DyN₄O₂C₅₅H₄₇, Dysprosium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160
- Dy₂Cl₇K, Potassium dysprosium chloride, 22:2
- Dy₄N₁₂O₅₁C₃₀H₆₀, Dysprosium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- Dy₄N₁₂O₅₄C₃₆H₇₂, Dysprosium(III), tris(1,4,7, 10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

ErCl₃, Erbium chloride, 22:39

ErF₄N₄O₂C₄₉H₃₁, Erbium, (2,4-pentanedionato)[5,10,15,20-tetrakis(3-fluorophenyl)porphyrinato(2-)]-, 22:160

- ErF₁₈N₆O₆P₁₂C₇₂H₇₂, Erbium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- ErN₃O₁₃C₈H₁₆, Erbium(III), trinitrato(1,4, 7,10-tetraoxacyclododecane)-, 23:151
- ErN₃O₁₄C₁₀H₂₀, Erbium(III), trinitrato(1,4, 7,10,13-pentaoxacyclopentadecane)-, 23:151
- ErN₃O₁₅C₁₂H₂₄, Erbium(III), (1,4,7,10,13,16hexaoxacyclooctadecane)trinitrato-, 23:153
- ErN₄O₂C₄₉H₃₅, Erbium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- Er₄N₁₂O₅₁C₃₀H₆₀, Erbium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- Er₄N₁₂O₅₄C₃₆H₇₂, Erbium(III), tris(1,4,7, 10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- EuF₁₈N₆O₆P₁₂C₇₂H₇₂, Europium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- EuCl₃, Europium chloride, 22:39
- EuCl₈N₄O₂C₄₉H₂₇, Europium, (2,4-pentanedionato)[5,10,15,20-tetrakis(3,5-dichlorophenyl)porphyrinato(2-)]-, 22:160
- EuN₃O₁₃C₈H₁₆, Europium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- EuN₃O₁₄C₁₀H₂₀, Europium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- EuN₃O₁₅C₁₂H₂₄, Europium(III), (1,4,7,10, 13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- EuN₄O₂C₄₉H₃₅, Europium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- EuN₄O₂C₅₃H₄₃, Europium, (2,4-pentanedionato)[5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2-)]-, 22:160
- Eu₄N₁₂O₅₄C₃₆H₇₂, Europium(III), tris(1,4,7, 10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- $FC_{19}H_5$, Methane, fluorotriphenyl-, 24:66 FCl, Chlorine fluoride, 24:1, 2
- FCl0₂, Chloryl fluoride, 24:3
- FClO₃S, Chlorine fluorosulfate, 24:6

FCsO₄S, Cesium fluorine sulfate, 24:22

FNC₂H₆, Dimethylamine, N-fluoro-, 24:66

- FNS, Thiazyl fluoride, 24:16
- FO₃PC₄H₁₀, Phosphorofluoridic acid, diethyl ester, 24:65
- $\begin{array}{l} F_{0.54}N_{10}PtC_6H_{12,27}\cdot 1.8H_2O, \ Platinate, \ tetracyano-, \ guanidinium (hydrogen difluoride) (1:2:0.27), \ hydrate \ (1:1:8), \ 21:146 \end{array}$
- $F_{0.60}K_2N_4PtC_4H_{0.30} \cdot 3H_2O$, Platinate, tetracyano-, potassium (hydrogen difluoride) (1:2:0.30), 21:147
- F₂BrNS, Imidosulfurous difluoride, bromo-, 24:20
- F₂CINS, Imidosulfurous difluoride, chloro-, 24:18
- $F_2CrIN_4C_4H_{16}$, Chromium(III), bis(1,2ethanediamine)difluoro-, (±)-cis-, iodide, 24:186
- F_2CrO_2 , Chromium difluoride dioxide, 24:67
- F₂HNS, Imidosulfurous difluoride mercury complex, 24:14
- F₂OSe, Selenium difluoride oxide, 24:28
- F_2O_2U , Uranium(VI), difluorodioxo-, 25:144
- F₃CH, Methane, trifluorocadmium complex, 24:55, 59 mercury complex, 24:52
- F₃C₆H₂, Benzene, 1,3,5-trifluorothallium complex, 21:73
- F₃ClOC, Hypochlorous acid, trifluoromethyl ester, 24:60
- F₃FeO₆SC₃H₃, Methanesulfonate, trifluoro-, tricarbonyl(η⁵-cyclopentadienyl)iron-(1+), 24:161
- F₃HO₂U · 2H₂O, Uranate(VI), trifluorodioxo-

hydrogen, dihydrate, 25:145

- F₃NOPSiC₇H₁₇, Phosphinimidic acid, P, Pdimethyl-N-(trimethylsilyl)-
 - 2,2,2-trifluoroethyl ester, 25:71
- F₃NOSC, Imidosulfurous difluoride, (fluorocarbonyl)-, 24:10
- F₃NS, Thiazyl trifluoride, 24:12
- F₃O₃SC, Methanesulfonate, trifluorometal complexes and salts, 24:243-306
- F₃O₃SCH, Methanesulfonic acid, trifluoro-, cobalt(II,I)

amine complexes, 22:104, 105

- $F_4FBeO_2C_{11}H_{13}$, Borate(1-), tetrafluoro-, dicarbonyl(η^5 -cyclopentadienyl)(η^5 -2methyl-1-propenyl)iron(1 +), 24:166
- F₄BNC₁₆H₃₆, Borate(1-), tetrafluoro-, tetrabutylammonium, 24:139
- F₄BO₃Ru₂C₁₅H₁₃, Ruthenium(1 +), μ-carbonyl-μ-ethylidyne-bis[carbonyl(η⁵-cyclopentadienyl)-
- tetrafluoroborate(1-), 25:184 F₄BSe₈C₂₀O₂₄, Borate(1-), tetrafluoro-,
- 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene, radical ion(1+) (1:2), 24:139
- F₄C₆H₃, Benzene, 1,2,3,5-tetrafluorothallium complex, 21:73 _____, 1,2,4,5-tetrafluoro-
- thallium complex, 21:73
- F₄HgN₂S₂, Mercury(II), bis(imidosulfurous difluoridato-N)-, 24:14
- F4N4O2YbC35H43, Ytterbium, [5,10,15,20tetrakis(3-fluorophenyl)porphyrinato (2-)][2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:160
- F4OW, Tungsten fluoride oxide, 24:37
- F4SE, Selenium tetrafluoride, 24:28
- F₅C₆H, Benzene, pentafluorocobalt complexes, 23:23–25 lithium and thallium complexes, 21:71, 72
- F₅ClS, Sulfur chloride pentafluoride, 24:8
- F₅ClTe, Tellurium chloride pentafluoride, 24:31
- F₅HOTe, Tellurate(VI), pentafluorooxo-, hydrogen, 24:34
- F₅H₈N₂Mn, Manganate(III), pentafluoro-, diammonium, 24:51
- $F_5K_2Mn \cdot H_2O$, Manganate(III), pentafluoro-, dipotassium, monohydrate, 24:51
- F₅LiC₆, Lithium, (pentafluorophenyl)-, 21:72
- F₅MoOK₂, Molybdate(V), pentafluorooxo-, dipotassium, 21:170
- F₅U, Uranium(V) fluoride, -, 21:163
- F₆AgAs, Arsenate, hexafluoro-, silver, 24:74
- F₆AgAsS₁₆, Arsenate, hexafluoro-, bis(cyclo-octasulfur)silver(1+), 24:74
- F₆AsBr₃S, Arsenate, hexafluoro-, tribromosulfur(IV), 24:76

- F₆AsNC₁₆H₃₆, Arsenate, hexafluoro-, tetrabutylammonium, 24:138
- F₆AsNO, Arsenate, hexafluoro-, nitryl, 24:69
- $F_6AsSe_8C_{20}H_{24}$, Arsenate, hexafluoro-, 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolyldene radical ion(1+) (1:2), 24:138
- F₆CdC₂ · NC₅H₅, Cadmium, bis(trifluoromethyl)-, —pyridine, 24:57
- F₆CdC₂ · OC₄H₈, Cadmium, bis(trifluoromethyl)-, —tetrahydrofuran, 24:57
- F₆CdC₂ · O₂C₄H₁₀, Cadmium, bis(trifluoromethyl)-, −-1,2-dimethoxyethane, 24:55
- F₆Cr₂N₆C₆H₂₄, Chromium(III), bis(1,2ethanediamine)difluoro-, cis-, (1,2ethanediamine)tetrafluorochromate-(III), 24:185
- F₆Cs₂Mn, Manganate(IV), hexafluoro-, dicesium, 24:48
- F₆HN, Ammonium, tetrafluoro-, (hydrogen difluoride), 24:43
- F₆HgC₂, Mercury, bis(trifluoromethyl)-, 24:52
- F₆IrNP₂C₃₁H₃₉, Iridium(I), (η⁴-1,5-cyclooctadiene)(pyridine)(tricyclohexylphosphine)-, hexafluorophosphate(1-), 24:173, 175
- F₆IrN₂PC₁₈H₂₂, Phosphate(1-), hexafluoro-, (η⁴-1,5-cyclooctadiene)bis(pyridine)iridium(I), 24:174
- F₆KU, Uranate(V), hexafluoro-, potassium, 21:166
- F₆NPC₁₆H₃₆, Phosphate(1-), hexafluoro-, tetrabutylammonium, 24:141
- F₆NPSe₂C₇H₁₂, Methanaminium, N-(4,5-dimethyl-1,3-diselenol-2-ylidene)-Nmethyl-, hexafluorophosphate, 24:133
- F₆NP₂UC₃₆H₃₀, Uranate(V), hexafluoro-, μnitrido-bis(triphenylphosphorus)(1+), 21:166
- F₆N₅O₆OsS₂C₂₇H₁₉, Osmium(II), (2,2'-bipyridine-N,N')(2,2':6,2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, trifluoromethanesulfonate, 24:303
- F₆N₅O₆RuS₂C₂₇H₁₉, Ruthenium(II), (2,2'-bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, trifluoromethanesulfonate, 24:302

- F₆N₅O₇OsS₂C₂₇H₂₁ · H₂O, Osmium(II), aqua(2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')-, bis(trifluoromethanesulfonate), monohydrate, 24:304
- F₆NaU, Uranate(V), hexafluoro-, sodium, 21:166
- F6Os, Osmium(VI) fluoride, 24:79
- $F_6PSe_8C_{20}H_{24}, Phosphate(1-), hexafluoro-,$ 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene radical ion(1+) (1:2),24:142
- F₆P₃RuC₄₉H₄₁, Ruthenium(II), (η⁵-cyclopentadienyl)(phenylvinylene)bis(triphenylphosphine)-, hexafluorophosphate(1-), 21:80
- F₈BN, Borate(III), tetrafluoro-, tetrafluoroammonium (1:1), 24:42
- F₈B₂N₇RuC₄H₁₉, Borate(1-), tetrafluoro-, pentammine(pyrazine)ruthenium(II) (2:1), 24:259
- F₉ClOC₄, Hypochlorous acid, perfluoro-*tert*butyl ester, 24:61
- F₉IrN₄O₉S₃C₇H₁₆, Iridium(III), bis(1,2ethanediamine)bis(trifluoromethanesulfonato-*O*)-, *cis*-, trifluoromethanesulfonate, 24:290
- F₉IrN₃O₉S₃C₃H₁₅, Iridium(III), pentaammine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:264
- F₉IrN₃O₁₀S₃C₃H₁₇, Iridium(III), pentaammineaqua-, tris(trifluoromethanesulfonate), 24:265
- F₉IrN₆O₉S₃C₃H₁₈, Iridium(III), hexaammine-, tris(trifluoromethanesulfonate), 24:267
- F₉NOW, Tungstate(VI), pentafluorooxo-, tetrafluoroammonium (1:1), 24:47
- F₉N₄O₉OsS₃C₂₅H₁₆, Osmium(III), bis(2,2'bipyridine-N,N')bis(trifluoromethanesulfonato-O), cis-, trifluoromethanesulfonate, 24:295
- F₉N₄O₉RhS₃C₇H₁₆, Rhodium(III), bis(1,2ethanediamine)bis(trifluoromethanesulfonato-*O*)-, *cis*-, trifluorosulfonate, 24:285
- F₉N₄O₉RuS₃C₂₃H₁₆, Ruthenium(III), bis(2,2'-bipyridine-N,N')bis(trifluoromethanesulfonato-O)-, cis-, trifluoromethanesulfonate, 24:295

- F₉N₄O₁₁OsS₃C₂₃H₂₀, Osmium(III), diaquabis(2,2'-bipyridine-N,N')-, cis-, tris(trifluoromethanesulfonate), 24:296
- F₉N₃O₉OsS₃C₂₈H₁₉, Osmium(III), (2,2'-bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301
- F₉N₅O₉RhS₃C₃H₁₅, Rhodium(III), pentaammine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:253
- F₉N₃O₉RhS₃C₈H₂₅, Rhodium(III), pentakis(methanamine)(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:281
- F₉N₃O₉RuS₃C₂₈H₁₉, Ruthenium(III), (2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301
- F₉N₃O₉S₃OsC₃H₁₅, Osmium(III), pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:271
- F₉N₅O₁₀OsS₃C₃H₁₇, Osmium(III), pentaamineaqua-, tris(trifluoromethanesulfonate), 24:273
- F₉N₅O₁₀OsS₃C₂₈H₂₁ · 2H₂O, Osmium(III), aqua(2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')-, tris(trifluoromethanesulfonate), dihydrate, 24:304
- F₉N₃O₁₀RuS₃C₂₈H₂₁ · 3H₂O, Ruthenium(III), aqua(2,2'-bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')-, tris(trifluoromethanesulfonate), trihydrate, 24:304
- F₉N₅RuS₃C₃H₁₅, Ruthenium(III), pentaamine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:258
- F₉N₆O₉OsS₃C₃H₁₈, Osmium(III), hexaammine-, tris(trifluoromethanesulfonate), 24:273
- F₉N₆O₉OsS₃C₅H₁₈, Osmium(III), (acetonitrile)pentaammine-, tris(trifluoromethanesulfonate), 24:275
- F₉N₆O₉RhS₃C₃H₁₈, Rhodium(III), hexaammine-, tris(trifluoromethanesulfonate), 24:255
- F₁₀NSb, Antimonate(V), hexafluoro-, tetrafluoroammonium (1:1), 24:41
- $F_{10}O_2Se_2Xe$, Selenate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:29

- $F_{10}O_2Te_2Xe$, Tellurate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:36
- F₁₁O₃PC₆H₆, Phosphane, diffuorotris(2,2,2trifluoroethoxy)-, *trans*-, 24:63
- F₁₂FeN₆PC₂₈H₃₄, Iron(II), bis(acetonitrile)-(2,9-dimethyl-3,10-diphenyl-1,4,8,11tetraazacyclotetradeca-1,3,8,10-tetraene)-, bis[hexafluorophosphate(1-)], 22:108
- $F_{12}Fe_2N_2P_2S_2C_{18}H_{36}, Iron(2+),$ bis(acetonitrile)bis(η^5 -cyclopentadienyl)bis- μ -(ethanethiolato)-dibis(hexafluorophosphate), 21:39
- $\begin{array}{l} F_{12}Fe_4P_2S_5C_{20}H_{20}, \ Iron(2+), \ tetrakis(\eta^5\text{-}cy\text{-}clopentadienyl)-\mu_3\text{-}(disulfur)\text{-}tri-\mu_3\text{-}\\ thio-tetra-, \ bis(hexafluorophosphate), \ 21:44 \end{array}$
- F₁₂IrN₄OP₄C₄₀H₄₆, Iridium(III), tris(acetonitrile)nitrosylbis(triphenylphosphine)-, bis[hexafluorophosphate], 21:104
- F₁₂N₃O₄P₃C₁₀H₁₄, Poly[2,2-dimethyl-4,4,6,6tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl], 25:67
- F₁₂N₃O₄P₃SiC₁₃H₂₂, Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)-2-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl], 25:64
- F₁₂N₄P₂PdC₁₂H₃₀, Palladium(II), [N,N'bis[2-(dimethylamino)ethyl]-N,N'-dimethyl-1,2-ethanediamine]-, bis(hexafluorophosphate), 21:133
- F₁₂N₅O₁₂S₄PtC₄H₁₅, Platinum(IV), pentaammine(trifluoromethanesulfonato-*O*)-, tris(trifluoromethanesulfonate), 24:278
- $F_{12}N_6P_2RuC_{30}H_{24}$, Ruthenium(II), tris(2,2'-bipyridine)
 - bis[hexafluorophosphate(1-)], 25:109
- F₁₂N₆P₂RuC₁₂H₂₄, Ruthenium(II), (2,2'-bipyridine)bis(1,10-phenanthroline)bis[hexafluorophosphate(1-)], 25:108
- F₁₄MnN₂, Manganate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:45
- F₁₄N₂Si, Silicate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:46
- $F_{15}BO_3Te_3$, Tellurate(VI), pentafluorooxo-, boron(3+) (3:1), 24:35
- $F_{18}GdN_6O_6P_{12}C_{72}H_{72}$, Gadolinium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}HoN_6O_6P_{12}C_{72}H_{72}$, Holmium(III), hex-

akis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180

- F₁₈LaN₆O₆P₁₂C₇₂H₇₂, Lanthanium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}LuN_6O_8P_{12}C_{72}H_{72}$, Lutetium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}N_6NdO_6P_{12}C_{72}H_{72}$, Neodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}N_6O_6P_{12}PrC_{72}H_{72}$, Praseodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}N_6O_6P_{12}SmC_{72}H_{72}, Samarium(III), hex$ akis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}N_6O_6P_{12}TbC_{72}H_{72}$, Terbium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- $F_{18}N_6O_8P_{12}TmC_{72}H_{72}$, Thulium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- F₁₈N₆O₆P₁₂YbC₇₂H₇₂, Ytterbium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- FeBF₂₁O₂C₁₁H₁₃, Iron(1+), dicarbonyl(η⁵cyclopentadienyl)(η²-2-methyl-1-prophenyl)-, tetrafluoroborate(1-), 24:166
- FeB₂N₆O₆C₃₀H₃₄, Iron(II), {[tris[µ-[(1,2-cyclohexanedione dioximato)-O,O']diphenyldiborato(2-)]-N,N',N'',N''', N'''',N''''}-, 21:112
- FeB₄C₁₂H₃₀, [1,1-commo-bis(2,3-dicarba-1ferra-closo-heptaborane)](12), 2,2',3,3'tetraethyl-1,1-dihydro-, 22:215
- FeBrMgO₂PC₃₉H₄₅, Magnesium, bromo(η⁵cyclopentadienyl)[1,2-ethanediylbis(diphenylphosphine)]bis-(tetrahydrofuran)iron-, (*Fe-Mg*), 24:172
- FeBrP₂C₃₁H₂₉, Iron, bromo(n⁵-cyclopentadienyl)[1,2-ethanediylbis(diphenylphosphine)]-, 24:170
- FeClO, Iron chloride oxide intercalate with 4-aminopyridine (4:1),22:86
 - intercalate with pyridine (4:1), 22:86
 - intercalate with 2,4,6-trimethylpyridine (6:1), 22:86

- FeF₃O₆SC₉H₅, Iron(1+), tricarbonyl(η⁵-cyclopentadienyl)-, trifluoromethanesulfonate, 24:161
- $\label{eq:FeF_12N_6PC_{28}H_{34}, Iron(II), bis(acetonitrile)-(2,9-dimethyl-3,10-diphenyl-1,4,8,11-tetraazacyclotetradi-1,3,8,10-tetraene)-, bis[hexafluorophosphate(1-)], 22:107, 108$

FeH_{1.94}Ti, Iron titanium hydride, 22:90

FeNO₁₃P₂Ru₃C₄₉H₃₁, Ruthenate(1-), tridecacarbonylhydridoirontri-, μ-nitridobis(triphenylphosphorus)(1+), 21:60

FeN₂O₄P₂C₃₉H₃₀, Ferrate(1-), tricarbonylnitrosyl-, μ-nitrido-bis(triphenylphosphorus)(1+), 22:163, 165

- FeN₂O₉C₁₀H₁₅ · H₂O, Iron(III), aqua[[(1,2ethanediyldinitrilo)tetraacetato](3-)]-, monohydrate, 24:207
- FeN₄Na₂O₈C₁₀H₁₂ · 2H₂0, Ferrate(II), (dinitrogen)[[(1,2-ethanediyldinitrilo)tetraacetato](4-)]-, disodium, dihydrate, 24:208
- FeN₄Na₂O₈C₁₄H₁₈ · 2H₂O, Ferrate(II), [[(1,2-cyclohexanediyldinitrilo)tetraacetato](4-)](dinitrogen)-, disodium, dihydrate, 24:210
- $FeN_4O_{10}S_2C_{14}H_{16} \cdot 2H_2O$, Iron(II), tetraaquabis(*o*-sulfonbenzoimidato)-, dihydrate, 23:49
- FeN₈S₂C₆H₆, Iron(II), bis(thiocyanato-N)bis-μ-(1H-1,2,4-triazole-N²:N⁴)-, poly-, 23:185
- FeNa₂O₄C₄, Ferrate(2-), tetracarbonyl-, disodium, 24:157
- FeO₂CH₃, Iron, methoxyoxo-, 22:87
- FeO₂C₁₁H₁₂, Iron, dicarbonyl(η⁵-cyclopentadienyl)(2-methyl-1-propenyl-kC¹)-, 24:164
- FeO₃P₂C₉H₁₈, Iron, tricarbonylbis(trimethylphosphine)-, 25:155
- FeO₃P₂C₂₇H₅₄, Iron, tricarbonylbis(tributylphosphine)-, 25:155
- FeO₃P₂C₃₉H₃₀, Iron, tricarbonylbis(triphenylphosphine)-, 25:154
- FeO₃P₂C₃₉H₆₆, Iron, tricarbonylbis(tricyclohexylphosphine)-, 25:154
- FeO₄PC₁₆H₂₇, Iron, tetracarbonyl(tri-tert-butylphosphine)-, 25:155
- FeO₄P₂C₃₆H₃₈, Iron, [1,2-ethanediylbis(diphenylphosphine)]bis(2,4-pentanedionato)-, 21:94

- FeO₅P₅C₅₅H₅₇, Iron, bis[1,2-ethanediylbis(diphenylphosphine)](trimethyl phosphito)-, 21:93
- FeO₁₃Os₃C₁₃H₂, Osmium, tridecacarbonyldihydridoirontri-, 21:63
- FeO₁₃Ru₃C₁₃H₂, Iron, tridecacarbonyldihydridotriruthenium-, 21:58
- FeP₂S₄C₇₂H₆₀, Bis(tetraphenylphosphonium) tetrakis(benzenethiolato)ferrate(II), 21:24
- FeP₄C₅₂H₄₈, Iron, [[2-2-(diphenylphosphino)ethyl]phenylphosphino]phenyl-C, P, P][1,2-ethanediylbis(diphenylphosphine)]hydrido-, 21:92
- FeP₄C₅₄H₅₂, Iron, bis[1,2-ethanediylbis(diphenylphosphine)](ethene)-, 21:91
- FeS₄C₁₄H₂₀, Iron, bis(η^{5} -cyclopentadienyl)- μ -(disulfur)bis- μ -(ethanethiolato)-di-, 21:40, 41
- Fe₂F₁₂N₂P₂S₂C₁₈H₃₆, Iron(2+), bis(acetonitrile)bis(η⁵-cyclopentadienyl)bis-μ-(ethanethiolato)-di-, bis(hexafluorophosphate), 21:39
- Fe₂Na₂O₈C₈, Ferrate(2-), octacarbonyldi-, disodium, 24:157
- Fe_2O_4 , Iron oxide, 22:43 _____, Magnetite, 22:43
- $Fe_2O_4C_2H_4$, Iron, [1,2-ethanediolato-(2-)]dioxodi-, 22:88
- Fe₂P₂S₆C₇₂H₇₂, Ferrate(III), tetrakis(benzenethiolato)di-μ-thio-di-, bis(tetraphenylphosphonium), 21:26
- Fe₃Na₂O₁₁C₁₁, Ferrate(2-), undecacarbonyltri-, disodium, 24:157
- $Fe_3N_2O_{11}P_4C_{83}H_{60}$, Ferrate(2-), undecacarbonyltri-, bis $[\mu$ -nitrido-bis(triphenyl-phosphorus)(1+)], 24:157
- $Fe_4F_{12}P_2S_5C_{20}H_{20}, Iron(2 +), tetrakis(\eta^5-cy-clopentadienyl)-\mu_3-(disulfur)tri-\mu_3-thio-tetra-, bis(hexafluorophosphate), 21:44$
- Fe₄N₂O₁₃P₄C₈₅H₆₀, Ferrate(1-), tridecacarbonyltetra-, μ-nitrido-bis(triphenylphosphorus)(1+) (1:2), 21:66, 68
- Fe₄N₂S₄Se₄C₄₈H₁₀₈, Ferrate(2-), tetrakis(1,1-dimethylethanethiolato)tetra-μselenotetra-, bis(tetrabutylammonium), 21:37
- Fe₄N₂S₄Se₄C₅₆H₅₂, Ferrate(2-), tetrakis(benzenethiolato)tetra-µ-selenotetra-, bis(tetrabutylammonium), 21:36

Fe₄N₂S₈C₂₄H₆₀, Ferrate(2-), tetrakis(1,1-dimethylethanethiolato)tetra-µ-thiotetra-, bis(tetramethylammonium), 21:30

Fe₄N₂S₈C₃₆H₉₂, Ferrate(2-), tetrakis(benzenethiolato)tetra-µ-thio-tetra-, bis(tetrabutylammonium), 21:35

Fe₄P₂S₈C₇₂H₆₀, Ferrate(II, III), tetrakis(benzenethiolato)-µ₃-thio-tetra-, bis(tetraphenylphosphonium), 21:27

Fe₄S₅C₂₀H₂₀, Iron, tetrakis(η⁵-cyclopentadienyl)-μ₃-(disulfur)tri-μ₃-thio-tetra-, 21:45

 $Fe_4S_6C_{20}H_{20}$, Iron, tetrakis(η^5 -cyclopentadienyl)bis- μ_3 -(disulfur)-di- μ_3 -thiotetra-, 21:42

GaBr₄NC₈H₂₀, Gallate(1-), tetrabromo-, tetraethylammonium, 22:141

GaBr₄NC₁₆H₃₆, Gallate(1-), tetrabromo-, tetrabutylammonium, 22:139

GaCl₄NC₁₆H₃₆, Gallate(1-), tetrachloro-, tetrabutylammonium, 22:139

GaLNC₁₆H₃₆, Gallate(1-), tetraiodo-, tetrabutylammonium, 22:140

Ga₂Br₂P₂C₃₆H₃₂, Gallate(2 -), hexabromodi-, bis(triphenylphosphonium), 22:135, 138

Ga₂Br₆P₂C₄₈H₄, Gallate(2-), hexabromodi-, bis(tetraphenylphosphonium), 22:139

Ga₂Cl₆P₂C₃₆H₃₂, Gallate(2-), hexachlorodi-, bis(triphenylphosphonium), 22:135, 138

Ga₂I₆P₂C₃₆H₃₂, Gallate(2-), hexaiododi-, bis(triphenylphosphonium), 22:135, 138

GdCl₃, Gadolinium chloride, 22:39

GdF₁₈H₆O₆P₁₂C₇₂H₇₂, Gadolinium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180

GdN₃O₁₃C₈H₁₆, Gadolinium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151

GdN₃O₁₄C₁₀H₂₀, Gadolinium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

GdN₄O₂C₄₉H₃₅, Gadolinium, (2,4-pentanedianato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160

- Gd₄N₁₂O₅₁C₃₀H₆₀, Gadolinium(III), dodecanitratotris(1,4,7,10,13-pentaocacyclopentadecane)tetra-, 23:151
- Gd₄N₁₂O₅₄C₃₆H₇₂, Gadolinium(III), tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- HCo₃O₁₂RuC₁₂, Cobalt, dodecacarbonylhydridorutheniumtri-, 25:164

HCrNO₅P₂C₄₁H₃₀, Chromate(1-), pentacarbonylhydrido-, μ-nitridobis(triphenylphosphorus)(1+), 22:183

- HCr₂KO₁₀C₁₀, Chromate, μ-hydridobis[pentacarbonyl-, potassium, 23:27
- HF₂NS, Imidosulfurous difluoride mercury complex, 24:14

 $HF_3O_2U \cdot 2 H_2O$, Uranate(VI), trifluorodioxo-

hydrogen, dihydrate, 25:145

- HF₅OTe, Tellurate(VI), pentafluorooxo-, hydrogen, 24:34
- HF₆N, Ammonium, tetrafluoro-, (hydrogen difluoride), 24:43

HFeNO₁₃P₂Ru₃C₄₉H₃₀, Ruthenate(1-), tridecacarbonylhydridoirontri-, μ-nitrido-(triphenylphosphorus)(1+), 21:60

- HFeP₄C₃₂H₄₈, Iron, [[2-[2-(diphenylphosphino)ethyl]phenylphosphino]phenyl-*C*, *P*, *P'*][1,2-ethanediylbis(diphenylphosphine)]hydrido-, 21:92
- HKO₁₀W₂C₁₀, Tungstate, μ-hydridobis[pentacarbonyl-, potassium, 23:27
- HMoNO₅P₂C₄₁H₃₀, Molybdate(1-), pentacarbonylhydrido-, μ-nitrido-bis-(triphenylphosphorus)(1+), 22:183
- HNO₃P₂WC₄;H₃₀, Tungstate(1-), pentacarbonylhydrido-, μ-nitrido-bis(triphenylphosphorus)(1+), 22:182
- HNO₁₁P₂Os₃C₄₇H₃₀, Osmate(1-), μ-carbonyl-decacarbonyl-μ-hydrido-triμ-nitrido-bis(triphenylphosphorus)(1+), 25:193
- HNO₁₁Ru₃C₁₉H₂₀, Ruthenate(1-), μ-carbonyl-1KC:2KC-decacarbonyl-1K³C,2K³C,3K⁴C-μ-hydrido-1K:2Ktriangulo-tri-, tetraethylammonium, 24:168

- HNbO₅Ti, Hydrogen pentaoxoniobateniobatetitanate(1-), 22:89
 intercalate with 1-butanamine, 22:89
 intercalate with ethanamine, 22:89
 intercalate with methanamine, 22:89
 intercalate with NH₃, 22:89
 intercalate with 1-propanamine, 22:89
 HO, Hydroxo,
 - cobalt complexes, 23:107, 111-115 platinum complexes, 25:102-105
- HO₂P₃Rh₂C₂₆H₅₆, Rhodium, dicarbonylbis(di-tert-butylphosphine)(µ-di-tert-butylphosphido)-µ-hydrido-di-, 25:171
- HO₈S₂, [hydrogen bis(sulfate)], platinum chain complexes, 21:151
- H₁₉₄FeTi, Iron titanium hydride, 22:90
- H₂CoO₁₀O₅₃C₁₅H₅, Osmium, μ-carbonylnoncarbonyl(η⁵-cyclopentadienyl)-di-μhydrido-cobaltri-, 25:195
- H₂FeO₁₃Os₃C₁₃, Osmium, tridecacarbonyldihydridoirontri-, 21:63
- H₂FeO₁₃Ru₃C₁₃, Iron, tridecacarbonyldihydridotriruthenium-, 21:58
- H₂N₂S₂, Sulfur diimide, mercapto-, tin complex, 25:46
- H₂O, Water
 - iridium, osmium, and rhodium complexes, 24:254, 265
- H₂O₁₃Os₃RuC₁₃, Osmium, tridecacarbonyldihydridorutheniumtri-, 21:64
- H₃CoO₉Os₃C₁₄H₁₅, Osmium, nonacarbonyl(η⁵-cyclopentadienyl)-tri-µ-hydrido-cobalttri-, 25:197
- H₃N, Ammonia intercalate with HNbTiO₅, 22:89
- H₄AlLaNi₄, Aluminum lanthanum nickel hydride, 22:96
- H₄CoO₉OsC₁₄H₁₅, Osmium, nonacarbonyl(η⁵-cyclopentadienyl)-tetra-μ-hydrido-cobalttri-, 25:197
- H₄O₅P₂, Diphosphorous acid platinum complex, 24:211
- H₈F₅N₂Mn, Manganate(III), pentafluoro-, diammonium, 24:51
- H₈K₄O₂₀P₈Pt, Platinate(II), tetrakis-[dihydrogen diphosphito(2-)-], tetrapotassium, 24:211
- H₈O₄Pt, Platinum(II), tetraaqua-, 21:192
- H₁₅N₄O₈S₂Rh, Rhodium(III), tetraamineaquahydroxo-, *cis*-, dithionate, 24:225

- $H_{16}N_4O_7P_2$, Ammonium diphosphate, 21:157
- ²H₃BNNaC, Borate(1-), cyanotri[(²H)hydro]-, sodium, 21:167
- HfCl₂C₂₀H₃₀, Hafnium, dichlorobis(η⁵-pentamethylcyclopentadienyl)-, 24:154
- HfCl₄O₂C₈H₁₆, Hafnium(IV), tetrachlorobis(tetrahydrofuran)-, 21:137
- HfO₂C₁₂H₁₀, Hafnium, dicarbonylbis(η⁵-cyclopentadienyl)-, 24:151
- HfO₂C₂₂H₃₀, Hafnium, dicarbonylbis(η⁵pentamethylcyclopentadienyl)-, 24:151
- HgF₄N₂S₂, Mercury(II), bis(imidosulfurous difluoridato-N)-, 24:14
- HgF₆C₂, Mercury, bis(trifluoromethyl)-, 24:52
- HgICH₃, Mercury(II), iodomethyl-, 24:143
- HgNO₃CH₃, Mercury(II), methylnitrato-, 24:144
- HgO₂C₃H₆, Mercury(II), acetatomethyl-, 24:145
- HoCl₃, Holmium chloride, 22:39

HoF₁₈N₆O₆P₁₂C₇₂H₇₂, Holmium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180

- HoN₃O₁₃C₈H₁₆, Holmium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- HoN₃O₁₄C₁₀H₁₀, Holmium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- HoN₃O₁₅C₁₂H₂₄, Holmium(III), (1,4,7,10,13,16-hexacyclooctadecane)trinitrato-, 23:152
- HoN₄O₂C₄₉H₃₅, Holmium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)], 22:160
- HoN₄O₂C₃₅H₄7, Holmium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 –)]-, 22:160
- Ho₄N₁₂O₃₁C₃₀H₃₀, Holmium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- H04N12O54C36H72, Holmium(III), tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- $IBMoN_7O_2C_{17}H_{27}, Molybdenum, ethoxyio$ $donitrosyl{tris(3,5-dimethylpyrazolyl)$ $hydroborato}-, 23:7$

- IBMoN₈OC₁₇H₂₈, Molybdenum, (ethylamido)iodonitrosyl{tris(3,5-dimethylpyrazolyl)hydroborato}-, 23:8
- ICrF₂N₄C₄H₁₆, Chromium(III), bis(1,2-ethanediamine)difluoro(±)-*cis*-, iodide, 24:186
- IHgCH₃, Mercury(II), iodomethyl-, 24:143
- IO₂OsC₇H₅, Osmium, dicarbonyl(η⁵-cyclopentadienyl)iodo-, 25:191
- IO₂OsC₁₂H₁₅, Osmium, dicarbonyliodo(η⁵pentamethylcyclopentadienyl)-, 25:191
- I₂BMoN₇OC₁₅H₂₂, Molybdenum, diiodonitrosyl{tris(3,5-dimethylpyrazolyl)hydroborato}-, 23:6
- I₂La, Lanthanium iodide, 22:36
- I₂Mn₂O₈C₈, Manganese, octacarbonyldiiododi-, 23:34
- I₂N₄PdC₁₂H₃₀, Palladium(II), [N,Nbis[2(dimethylamino)ethyl]-N',N'-dimethyl-1,2-ethanediamine]iodo-, iodide, 21:130
- I₂O₆Os₂C₆, Osmium(I), hexacarbonyldi-µiododi-, 25:188
- I₂O₈Os₂C₈, Osmium(I), bis[tetracarbonyliodo-, 25:190
- I₃In, Indium iodide, 24:87
- I₃La, Lanthanum iodide, 22:31
- I₄K₂Pt · 2H₂O, Platinate(II), tetraiododipotassium, dihydrate, 25:98
- I₅N₁₂Ru₂C₄H₃₄, Ruthenium(5+), decaammine(μ-pyrazine)-di-, pentaiodide, 24:261
- InCl₅N₈O₂₀C₄₄H₃₆, Indium(III), [[4,4',4'',4'''-porphyrin-5,10,15,20tetrayltetrakis(1-methylpyridiniumato)](2-)]-, pentaperchlorate, 23:55, 57
- InI₃, Indium iodide, 24:87
- InSi₃C₁₂H₃₃, Indium(III), tris[(trimethylsilyl)methyl]-, 24:89
- IrClF₆N₄O₆S₂C₆H₁₆, Iridium(III), chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-O)-, trans-, trifluoromethanesulfonate, 24:289
- IrClOPC₁₇H₂₂, Iridium(I), carbonylchlorobis(dimethylphenylphosphine)-, *trans*-, 21:97
- IrClO₂P₄C₁₃H₃₂, Iridium(1 +), (carbon-dioxide)bis[1,2-ethanediylbis(dimethylphosphine)]-, chloride, 21:100

- IrClO₄P₃C₁₁H₂₇, Iridium, chloro[(formyl-KC-oxy)formato-KO-(2-)]tris-(trimethylphosphine)-, 21:102
- IrClP₃C₁₇H₄₁, Iridium, chloro(η²-cyclooctene)tris(trimethylphosphine)-, 21:102
- IrClP₄C₁₂H₃₂, Iridium(1+), bis[1,2-ethanediylbis(dimethylphosphine)]-, chloride, 21:100
- IrCl₃H₁₈N₆, Iridium(III), hexaamine-, trichloride, 24:267

IrCl₃N₄C₄H₁₆ · HCl · 2H₂O, Iridium(III), dichlorobis(1,2-ethanediamine)-, *trans*-, chloride, monohydrochloride, dihydrate, 24:287

- IrCl₃N₄C₄H₁₆ · H₂O, Iridium(III), dichlorobis(1,2-ethanediamine)-, *cis*-, chloride, monohydrate, 24:287
- IrF₆NP₂C₃₁H₅₀, Iridium(I), (η⁴-1,5-cyclooctadiene)(pyridine)(tricyclohexylphosphine)-, hexafluorophosphate(1-), 24:173, 175
- IrF₆PN₂C₁₈H₂₂, Iridium(I), (η⁴-1,5-cyclooctadiene)bis(pyridine)-, hexafluorophosphate(1-), 24:174
- IrF₉N₄O₉S₃C₇H₁₆, Iridium(III), bis(1,2-ethanediamine)bis(trifluoromethanesulfonato-*O*)-, *cis*-, trifluoromethanesulfonate, 24:290
- IrF₉N₅O₉S₃C₃H₁₅, Iridium(III), pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:264
- IrF₉N₃O₁₀S₃C₃H₁₇, Iridium(III), pentaammineaqua-, tris(trifluoromethanesulfonate), 24:265
- IrF₉N₆O₉S₃C₃H₁₈, Iridium(III), hexaamine-, tris(trifluoromethanesulfonate), 24:267
- IrF₁₂N₄OP₄C₄₀H₃₆, Iridium(III), tris-(acetonitrile)nitrosylbis(triphenylphosphine)-, bis[hexafluorophosphate], 21:104
- IrPC₃₂H₃₈, Iridium, (1,3-butanediyl)(η⁵-pentamethylcyclopentadienyl)(triphenylphosphine), 22:174
- Ir₂O₂C₁₈H₃₀, Iridium(I), bis(η⁴-1,5-cyclooctadiene)-di-µ-methoxy-di-, 23:128
- KCoN₂O₈C₁₀H₁₂, Cobaltate(III), [N,N'-1,2ethanediylbis[N-(carboxymethyl)glycinato](4-)]-, potassium, 23:99

- KCoN₂O₈C₁₁H₁₄, Cobaltate(III), [[R(-)]-N, N'-(1-methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato](4-)]-, [Δ-(+)]-, 23:101
- KCoN₂O₈C₁₄H₁₈, Cobaltate(III), [[*R*,*R*-(-)]-*N*,*N*-1,2-cyclohexanediylbis(carboxymethyl)glycinato](4-)]-, [Δ-(+)]-, potassium, 23:97
- KCoN₄O₇CH₆ · 0.5H₂O, Cobaltate(III), diamine(carbonato)dinitro-, *cis,cis*-, potassium, hemihydrate, 23:70
- KCoN₄O₈C₂H₆ · 0.5H₂O, Cobaltate(III), diamminedinitro(oxalato)-, *cis,cis-*, potassium, hemihydrate, 23:71
- KCoO₂, Potassium cobalt oxide, 22:58
- KCl₇Dy₂, Potassium dysprosium chloride, 22:2
- KCrO₂, Potassium chromium oxide, 22:59
- $KCr_2HO_{10}C_{10}$, Chromate, μ -hydridobis[pentacarbonyl-, potassium, 23:27
- KF₆U, Uranate(V), hexafluoro-, potassium, 21:166
- KHO₁₀W₂C₁₀, Tungstate, μ-hydridobis[pentacarbonyl-, potassium, 23:27
- KN₂O₆PC₁₄H₂₄, Potassium(1+), (1,4,7,10,13,16-hexaoxacyclooctadecane)-
- dicyanophosphide(1-), 25:126
- KNbO₅Ti, Potassium, pentaoxoniobatetitanate(1-), 22:89
- KSnC₁₂H₂₇, Stannate(1-), tributylpotassium, 25:112
- KSnC₁₈H₁₅, Stannate(1-), triphenylpotassium, 25:111
- K_{0.5}CoO₂, Potassium cobalt oxide, 22:57
- K_{0.5}CrO₂, Potassium chromium oxide, 22:59
- K_{0.67}CoO₂, Potassium cobalt oxide, 22:57
- K_{0.6}CrO₂, Potassium chromium oxide, 22:59
- K_{0.7}CrO₂, Potassium chromium oxide, 22:59
- $K_{0.77}$ CrO₂, Potassium chromium oxide, 22:59
- K₂Al₄NNaO₃₆Si₁₄C₄H₁₂ · 7H₂O, Potassium sodium tetramethylammonium aluminum silicate hydrate, 22:65
- K₂Bi₄N₂O₁₂C₃₆H₇₂, Potassium, (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-, tetrabismuthide, 22:151
- K₂F_{0.60}N₄PtC₄H_{0.30} · 3H₂O, Platinate, tetracyano-, potassium (hydrogen difluoride) (1:2:0.30), trihydrate, 21:147

- K₂F₅Mn · H₂O, Manganate(III), pentafluoro-, dipotassium, monohydrate, 24:51
- K₂F₅MoO, Molybdate(V), pentafluorooxo, dipotassium, 21:170
- K₂I₄Pt · 2H₂O, Platinate(II), tetraiododipotassium, dihydrate, 25:98
- K₂Sb₂O₁₂C₈H₄, Antimonate(2-), bis[taratrato(4-)]di-, potassium as resolving agent, 23:76-81
- K₃CrO₁₂C₆ · H₂O and 2H₂O, Chromate(III), tris(oxalato)-
- tripotassium, (+)-, dihydrate and (-)-, monohydrate, isolation of, 25:141
- K₄H₈O₂₀P₈Pt, Platinate(II), tetrakis-[dihydrogen diphosphito(2-)]-, tetrapotassium, 24:211
- K₁₀O₇₈P₂ThW₂₂, Thorate(IV), bis(undecatungstophosphato)-, decapotassium, 23:189
- K₁₀O₇₈P₂UW₂₂, Uranate(IV), bis(undecatungstophosphato)-, decapotassium, 23:186
- K₁₄B₂O₇₈ThW₂₂, Thorate(IV), bis(undecatungstoborato)-, tetradecapotassium, 23:189
- K₁₆O₁₂₂P₄ThW₃₄, Thorate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:190
- K₁₆O₁₂₂P₄UW₃₄, Uranate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:188
- LaAlH₄Ni₄, Aluminum lanthanum nickel hydride, 22:96
- LaCl₃, Lanthanum chloride, 22:39
- LaF₁₈N₆O₆P₁₂C₇₂H₇₂, Lanthanium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- LaI₂, Lanthanum iodide, 22:36
- LaI₃, Lanthanum iodide, 22:31
- LaN₃O₁₃C₈H₁₆, Lanthanium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- LaN₃O₁₄C₁₀H₂₀, Lanthanium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- LaN₃O₁₅C₁₂H₂₄, Lanthanium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitro-, 23:153

- LaN₄O₂C₄₉H₃₅, Lanthanum, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)], 22:160
- $LaN_4O_2C_{55}H_{47}$, Lanthanum, (2,2,6,6-tetraphenylporphyrinato(2 –)]-, 22:160
- La₄N₁₂O₅₄C₃₆H₇₂, Lanthanium(III), tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- LiCl₆Cs₂Tm, Cesium lithium thulium chloride, 22:10
- LiF₅C₆, Lithium, (pentafluorophenyl)-, 21:72
- LiO₃Re, Lithium rhenium trioxide, 24:205
- LiO₅V₂, Lithium divanadium pentaoxide, 24:202
- LiSiC₄H₁₁, Lithium, [(trimethylsilyl)methyl]-, 24:95
- $Li_{0.2}O_3Re$, Lithium rhenium trioxide, 24:203, 206
- Li₂O₃Re, Dilithium, rhenium trioxide, 24:203
- Li₃N, Lithium nitride, 22:48
- LuCl₃, Lutetium chloride, 22:39
- LuCl₅Cs₂, Cesium lutetium chloride, 22:6
- LuCl₆Cs₃, Cesium lutetium chloride, 22:6
- LuF₁₈N₆O₆P₁₂C₇₂H₇₂, Lutetium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- LuN₃O₁₃C₈H₁₆, Ytterbium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- LuN₃O₁₄C₁₀H₂₀, Lutetium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- LuN₃O₁₅C₁₂H₂₄, Lutetium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- LuN₄O₂C₄₉H₃₅, Lutetium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2 -)]-, 22:160
- Lu₂Cl₉Cs₃, Cesium lutetium chloride, 22:6
- Lu₄N₁₂O₅₁C₃₀H₆₀, Lutetium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- Lu₄N₁₂O₅₄C₃₆H₇₂, Lutetium(III), tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- Me₂Ph₂[14]-1,3,8,10-tetraeneN₄ see-1,4,8,11-Tetraazacyclotetradeca-

1,3,8,10-tetraene, 2,9-dimethyl-3,10-diphenyl-, 22:107

- MgBrFeO₂PC₃₉H₄₅, Magnesium, bromo(η⁵cyclopentadienyl)[1,2-ethanediylbis-(diphenylphosphine)]bis(tetrahydrofuran)iron-, (*Fe-Mg*), 24:172
- MnCs₂F₆, Manganate(IV), hexafluoro-, dicesium, 24:48
- MnF₃H₈N₂, Manganate(III), pentafluoro-, diammonium, 24:51
- MnF₃K₂ · H₂O, Manganate(III), pentafluoro-, dipotassium, monohydrate, 24:51
- MnF₁₄N₂, Manganate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:45
- MnN₈S₂C₆H₆, Manganese(II), bis(thiocyanato-N)-bis-μ-(1H-1,2,4triazole-N²: N⁴)-, poly-, 23:158
- MnO₆C₃₃H₅₇, Manganese(III), tris(2,2,7-trimethyl-3,5-octanedionato)-, 23:148
- MnP₂S₄C₇₂H₆₀, Bis(tetraphenylphosphonium) tetrakis(benzenethiolato)manganate(II), 21:25
- Mn₂Br₂O₈C₈, Manganese, dibromooctacarbonyldi-, 23:33
- Mn₂I₂O₈C₈, Manganese, octacarbonyldiiododi-, 23:34
- Mn₂NO₆S₃C₃₂H₃₅, Ammonium, tetraethyltris(μ-benzenethiolato)hexacarbonyldimanganate(I), 25:118
- Mn₂O₈S₂C₂₀H₁₀, Manganese(I), bis(µ-benzenethiolato)octacarbonyldi-, 25:116
- Mn₃Ca₂O₈, Calcium manganese oxide, 22:73
- Mn₄O₁₂S₄C₃₆H₂₀, Manganese(I), tetrakis(µ₃benzenethiolato)dodecacarbonyltetra-, 25:117
- MoBF₄N₂P₄C₅₆H₅₅, Molybdenum(III), bis[1,2-ethanediylbis(1,2-diphenylphosphine)](isocyanomethane)-[(methylamino)methylidyne]-, *trans*-, tetrafluoroborate(1-), 23:12
- MoBIN₈OC₁₇H₂₈, Molybdenum, (ethylamido)iodonitrosyl{tris(3,5-dimethylpyrazolyl)hydroborato}-, 23:8
- MoBI₂N₇OC₁₅H₂₂, Molybdenum, diiodonitrosyl{tris(3,5-dimethylpyrazolyl)hydroborato}-, 23:6

MoBN₇O₃C₁₇H₂₂, Molybdenum, dicarbonylnitrosyl{tris(3,5-dimethylpyrazolyl)hydroborato}-, 23:4

MoB₂F₈N₂P₄C₅₆H₅₆, Molybdenum(IV), bis[1,2-ethanediylbis(diphenylphosphine)]bis(methylamino)methylidyne]-, *trans*-, bis[tetrafluoroborate(1-)], 23:14

MoCl₂N₂P₄C₆₆H₅₆, Molybdenum(0), bis(1chloro-4-isocyanobenzene)bis[1,2-ethanediylbis(diphenylphosphine)]-, *trans*-, 23:10

MoCl₃O₃C₁₂H₂₄, Molybdenum(III), trichlorotris(tetrahydrofuran)-, 24:193

MoCl₄N₂P₄C₆₆H₅₄, Molybdenum(0), bis(1,3dichloro-2-isocyanobenzene)bis[1,2ethanediylbis(diphenylphosphine)]-, *trans*-, 23:10

MoCl₄O, Molybdenum, chloride oxide, 23:195

MoF₅OK₂, Molybdate(V), pentafluorooxo, dipotassium, 21:170

MoNO₃P₂C₄₁H₃₁, Molybdate(1-), pentacarbonylhydrido-, μ-nitridobis(triphenylphosphorus)(1+), 22:183

 $MoN_2O_2P_4C_{66}H_{62}$, Molybdenum(0), bis[1,2ethanediylbis(diphenylphosphine)]bis(1-isocyano-4-methoxybenzene)-, trans-, 23:10

MoN₂P₄C₅₆H₅₄, Molybdenum(0), bis[1,2ethanediylbis(diphenylphosphine)]bis(isocyanomethane)-, *trans*-, 23:10

MoN₂P₄C₆₂H₆₆, Molybdenum(0), bis[1,2ethanediylbis(diphenylphosphine)]bis-(2-isocyano-2-methylpropane)-, trans-, 23:10

MoN₂P₄C₆₆H₅₄, Molybdenum(0), bis[1,2ethanediylbis(diphenylphosphine)]bis(isocyanobenzene)-, *trans*-, 23:10

MoN₂P₄C₆₈H₆₂, Molybdenum(0), bis[1,2ethanediylbis(diphenylphosphine)]bis(1-isocyano-4-methylbenzene)-, *trans*-, 23:10

MoO₃H, Molybdenum(VI), hydroxodioxo-, ion, 23:139

MoO₃ · 2H₂O, Molybdenum(VI) oxide, dihydrate, 24:191

MoO₆H₁₂, Molybdenum(III), hexaaqua-, ion, 23:133 MoO₁₀H₁₂, Molybdenum(V), hexaaqua-diµ-oxo-dioxodi-, 23:137

Mo₂AsO₄C₁₆H₁₇, Molybdenum, tetracarbonylbis(η⁵-cyclopentadienyl)(µ-dimethylarsino)-µ-hydridodi-, 25:169

Mo₂Cl₂N₄C₈H₂₄, Molybdenum, dichlorotetrakis(dimethylamido)di-, (*Mo=Mo*), 21:56

 $Mo_2N_3C_{12}H_{36}$, Molybdenum, hexakis-(dimethylamido)di-, ($Mo \equiv Mo$), 21:43

 $\begin{array}{l} Mo_2N_{12}O_{12}P_6C_{24}H_{36}, \ Molybdenum, \ hexacarbonyl-tris[\mu-1,3,5,7-tetramethyl-1H,5H-[1,4,2,3]diazadiphospholo[2,3-b][1,4,2,3]diazadiphosphole-2,6-(3H,7H)dione]di-, 24:124 \end{array}$

Mo₂O₂H₂ · XH₂O, Molybdenum(III), dihydroxo-di-, ion, hydrate, 23:135

Mo₂O₄PC₂₂H₂₉, Molybdenum, tetracarbonylbis(η⁵-cyclopentadienyl)(µ-di-*tert*butylphosphido)-µ-hydrido-di-, 25:168

Mo₂O₄ · XH₂O, Molybdenum(V), di-µ-oxodioxodi-, ion, hydrate, 23:137

Mo₂O₆H, Molybdenum(VI), hydroxopentaoxodi-; ion, 23:139

Mo₂O₆H₂, Molybdenum(VI), dihydroxotetraoxodi-, ion, 23:139

Mo₂O₆H₃, Molybdenum(VI), trihydroxotrioxodi-, ion, 23:139

Mo₂O₈H₁₆, Molybdenum(II), octaaquadi-, ion, 23:131

 $Mo_3O_4 \cdot XH_2O$, Molybdenum(IV), tetra- μ_3 -oxo-tri-, ion, hydrate, 23:135

 $Mo_3O_{13}H_{18}$, Molybdenum(IV), nonaaquatetra- μ_3 -oxo-tri-, ion, 23:135

Mo₃P₄S₁₂C₁₆H₄₀, Molybdenum(V), μ-(diethylphosphinodithioato)-tris(diethylphosphinodithioato)-tri-μ-thio-μ₃-thio*triangulo*-tri-, 23:121

Mo₃P₄S₁₅C₁₆H₄₀, Molybdenum(V), tris(diethylphosphinodithioato)trisµ-(disulfido)-µ₃-thio-*triangulo*-tri-, diethylphosphinodithioate, 23:120

NAsF₆C₁₆H₃₆, Ammonium, tetrabutyl-, hexafluoroarsenate, 24:138

NAsF₆O, Arsenate, hexafluoro-, nitryl, 24:69

NBF₄C₁₆H₃₆, Ammonium, tetrabutyl-, tetrafluoroborate(1-), 24:139

NBF₈, Borate(III), tetrafluoro-, tetrafluoroammonium (1:1), 24:42 NBO₂C₄H₁₂, Borane, carboxycompd. with trimethylamine (1:1), 25:81 NBO₂C₅H₁₄, Borane, (methoxycarbonyl)compd. with trimethylamine (1:1), 25:84 NBrF₂S, Imidosulfurous difluoride, bromo-, 24:20 NBrO₃C₁₀H₁₄, Bornan-2-one, 3-endobromo-3-exo-nitro-(1R)-, 25:132 NBrPSiC₅H₁₅, Phosphorimide bromide, P,P-dimethyl-N-(trimethylsilyl)-, 25:70 NC, Cyanide cobalt complexes, 23:66-69 ., Cyano boron complex, 21:167 chromium complexes, 23:184 platinum chain complexes, 21:142-156 NCH₅, Methanamine chromium, cobalt, and rhodium complexes, 24:280-81 intercalate with HNbTiO₅, 22:89 NC₂H₃, Acetonitrile copper, iron, and zinc complexes, 22:108, 110, 111 iridium complex, 21:104 iron complexes, 21:39-46 osmium complex, 24:275 , Methane, isocyanomolybdenum and tungsten complexes, 23:10-13 NC_2H_7 , Ethanamine intercalate with HNbTiO₅, 22:89 molybdenum complexes, 23:8 ., Methaneamine, N-methylmolybdenum complex, 21:54 NC₂H₁₀, Methanamine, N-methylmolybdenum and tungsten complexes, 23:11-13 NC₃H₉, 1-Propanamine intercalate with HNbTiO₅, 22:89 NC₄H₉, Propane, 2-isocyano-2-methyltungsten complex, 24:198 NC₄H₁₁, 1-Butanamine intercalate with HNbTiO₅, 22:89 NC₅H₅, Pyridine cobalt complexes, 23:73 intercalate with FeClO (1:4), 22:86

iridium complexes, 24:173, 174, 175 rhenium complex, 21:116, 117 $NC_5H_5 \cdot CdF_6C_2$, Pyridine -bis(trifluoromethyl)cadmium, 24:57 NC₅H₉, Butane, 1-isocyanorhodium complex, 21:49 Propane, 2-isocyano-2-methylmolybdenum and tungsten complexes, 23:10-12 NC₆H₇, Benzenamine rhenium and tungsten complexes, 24:195, 196, 198 NC7H5, Benzene, isocyanomolybdenum and tungsten complexes, 23:10tungsten complex, 24:198 NC₈H₇, Benzene, 1-isocyano-4-methylmolybdenum and tungsten complexes, 23:10 tungsten complex, 24:198 NC₈H₁₁, Benzenamine, N,4-dimethyltungsten complexes, 23:14 _, Pyridine, 2,4,6-trimethylintercalate with FeClO (1:6), 22:86 NCIF₂S, Imidosulfurous difluoride, chloro-, 24:18 NClO₄C₆H₃₆, Ammonium, tetrabutyl-, perchlorate, 24:135 NCIPC24H21, Phosphonium, 2-(aminophenyl)triphenylchloride, 25:130 $NCl_4P_2C_{13}H_{13}$, Phosphorus(1+), 1,1,2-trichloro-1-methyl-2,2-diphenyl-µ-nitridochloride, 25:26 NCl₆P₂, Phosphorus(1 +), μ -nitridobis(trichlorohexachloroantimonate(1-), 25:25 NFC₂H₆, Dimethylamine, N-fluoro-, 24:66 NFS, Thiazyl fluoride, 24:16 NF₂HS, Imidosulfurous difluoride mercury complex, 24:14 NF₃OPSiC₇H₁₇, Phosphinimidic acid, P,Pdimethyl-N-(trimethylsilyl)-2,2,2-trifluoroethyl ester, 25:71 NF₃OSC, Imidosulfurous difluoride, (fluorocarbonyl)-, 24:10 NF₃S, Thiazyl trifluoride, 24:12 NF₆H, Ammonium, tetrafluoro-, (hydrogen

difluoride), 24:43

NF₆PC₁₆H₃₆, Ammonium, tetrabutyl-, hexafluoroammonium, 24:141 NF₆PSe₂C₇H₁₂, Methanaminium, N-(4,5-dimethyl-1,3-diselenol-2-ylidene)-Nmethyl-, hexafluorophosphate, 24:133 NF₉OW, Tungstate(VI), pentafluorooxo-, tetrafluoroammonium (1:1), 24:47 NF₁₀Sb, Antimonate(V), hexafluoro-, tetrafluoroammonium (1:1), 24:41 $NHO_{11}P_2Os_3C_{47}H_{30}$, Osmate(1-), μ -carbonyl-decarbonyl-µ-hydrido-tri- μ -nitrido-bis(triphenylphosphorus)(1 +), 25:193 NHgO₃CH₃, Mercury(II), methylnitrato-, 24:144 NMn₂O₆S₃C₃₂H₃₅, Ammonium, tetraethyltris(µ-benzenethiolato)hexacarbonyldimanganate(I), 25:118 NNaO₃C₁₀H₁₄, Bornan-2-one, 3-aci-nitro-(1R)-, sodium salt, 25:133 NO, Nitrogen oxide chromium complexes, 23:183 iridium complex, 21:104 iron and ruthenium, 22:163 molybdenum complexes, 23:4-9 NOC, Cyanato silicon complex, 24:99 NOC₅H₄, 2-Pyridone platinum complex, 25:95 NOC₈H₇, Benzene, 1-isocyano-4-methoxymolybdenum and tungsten complexes, 23:10 NOPC₁₂H₁₂, Phosphinic amide, diphenyllanthanoid complexes, 23:180 NOPSiC₁₂H₁₉, Phosphinimidic acid, Pmethyl-P-phenyl-N-(trimethylsilyl)-2,2,2-trifluoroethyl ester, 25:72 NOSSiC₃H₉, Silanamine, 1,1,1-trimethyl-Nsulfinyl-, 25:48 NOSe₂C₇H₁₃, Carbamodiselenoic acid, dimethyl-, 1-methyl-2-oxopropyl ester, 24:132 NO₂, Nitrite cobalt complexes, 23:70-71, 77, 91, 109

- NO₂C₂H₅, Glycine
- cobalt complex, 25:135
- cobalt complexes, 23:75, 92
- NO₂C₃H₁₇, Alanine

```
cobalt complex, 25:137
```

NO₂C₆H₅, 4-Pyridinecarboxylic acid cobalt complexes, 23:113 NO₂SC₃H₇, L-Cysteine

- gold complex, 21:31
- NO₃C₃H₇, Serine copper complex, 21:115

NO₃H, Nitric acid cerium complexes, 23:178 cobalt complexes, 23:171

NO₃SC₇H₅, o-Benzosulfimide (saccharin) metal complexes, 23:47

NO₄PC₈H₁₈, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]-, dimethyl ester, 24:101

- NO.PC₁₀H₂₂, Phosphonic acid, [(*N*,*N*-didiethylcarbamoyl)methyl-], diethyl ester, 24:101
- NO₄PC₁₂H₂₆, Phosphonic acid, [(N,N-diethylcarbamoyl)methyl]-, bis(1-methylethyl)ester, 24:101
- NO₄PC₁₄H₃₀, Phosphonic acid, [(*N*,*N*-diethylcarbamoyl)methyl]-, dibutyl ester, 24:101
- NO₄PC₁₆H₃₄, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl-], dihexyl ester, 24:101
- NO₃P₂WC₄₁H₃₁, Tungstate(1), pentacarbonylhydrido-, μ-nitrido-bis(triphenylphosphorus)(1 +), 22:182
- NO₁₁Ru₃C₁₉H₂₁, Ammonium, tetraethyl-, μcarbonyl-1KC:2KC-decarbonyl-1K³C,2K³C,3K⁴C-μ-hydrido-1K:2Ktriangulo-triruthenate(1-), 24:168
- NPC₂H₆, Poly[nitrilo(dimethylphosphoranylidene)], 25:69, 71
- NPC₇H₈, Poly[nitrilo(methylphenylphosphoranylidyne)], 25:69, 72-73
- NPC₁₈H₁₆, Benzenamine, 2-(diphenylphosphino)and nickel complex, 25:129

NPPtSe₂C₂₄H₂₈, Platinum(II), (N,N-diethyldiselenocarbamato)methyl(triphenylphosphine)-, 21:10

- NPSiC₁₃H₂₇, Phosphinous amide, *P*-methyl-*P*-phenyl-*N*,*N*-bis(trimethylsilyl)-, 25:72
- NPSi₂C₈H₂₄, Phosphinous amide, P, P-dimethyl-N, N-bis(trimethylsilyl)-, 25:69
- NP₂C₃₆H₃₀, Phosphorus(1+), μ -nitridobis(triphenyl-

 $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -tetrathia-2, 4, 6, 8, 9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenide, 25:31 $1\lambda^4$,3,5,2,4,6-trithiatriazenide, 25:32 (NS)_x, Sulfur nitride, polymer, 22:143 NSC, Thiocyanate cobalt, copper, iron, manganese, nickel, and zinc complexes, 23:157 NSCH, Thiocyanic acid chromium complexes, 23:183 palladium complex, 21:132 NSC₂H₇, Ethanethiol, 2-aminocobalt complex, 21:19 NS₂C₅H₁₁, Carbamodithioic acid, N,N-diethvltungsten complex, 25:157 $NSe_2C_5H_{11}$, Diselenocarbamic acid, N,Ndiethylnickel, palladium, and platinum complexes, 21:9 NSiC₇H₁₇, tert-Butylamine, N-(trimethylsilyl)-, 25:8 N₂, Dinitrogen iron complexes, 24:208, 210 osmium complex, 24:270 N₂BC₄H₁₁, Borane, cyanocompd. with trimethylamine (1:1), 25:80 N_2COS_2 , 1,3 λ^4 ,2,4-Dithiadiazol-5-one, 25:53 $N_2C_2H_8$, 1,2-Ethanediamine chromium complexes, 24:185, 186 chromium, iridium, and rhodium complexes, 24:251, 283-290 cobalt complex, 25:140 cobalt complexes, 21:19, 21, 120-126; 23:64, 165 cobalt(III) trifluoromethanesulfonate complexes, 22:105 rhodium complex, 24:227, 229-231 $N_2C_3H_4$, 1*H*-Pyrazole boron-copper complex, 21:108, 110 N₂C₃H₁₀, 1,3-Propanediamine cobalt complexes, 23:169 N₂C₄H₄, Pyrazine ruthenium complexes, 24:259 N₂C₅H₆, Pyridine, 4-aminointercalate with FeClO, 22:86 N₂C₅H₈, 1H-Pyrazole, 3,5-dimethylboron-copper complex, 21:109

 $N_2C_6H_{16}$, 1,2-Ethanediamine, N,N,N',N'tetramethylpalladium complex, 22:168 N₂C₈H₂₀, 1,2-Ethanediamine, N,N'-bis(1methylethyl)platinum complex, 21:87 N₂C₁₀H₈, 2,2'-Bipyridine osmium and ruthenium complexes, 24:291-298 palladium complex, 22:170 ruthenium complex, 21:127 ruthenium complexes, 25:108-109 N₂C₁₀H₁₈, 2,2'-Bipyridine chromium complexes, 23:180 N₂C₁₀H₂₄, 1,2-Ethanediamine, N,N'-dimethyl-N, N'-bis(1-methylethyl)platinum complex, 21:88 ., N,N,N',N'-tetraethylplatinum complex, 21:86, 87 N₂C₁₂H₈, 1,10-Phenathroline chromium complexes, 23:185 copper complex, 21:115 ruthenium complex, 25:108 N₂C₁₈H₂₄, 1,2-Ethanediamine, N,N-bis(1phenylethyl)-, (S,S)platinum complex, 21:87 N₂C₂₀H₂₈, 1,2-Ethanediamine, N,N'-dimethyl-N,N'-bis(1-phenylethyl)-, (R,R)platinum complex, 21:87 N₂Cl₂O₂RuC₁₂H₈, Ruthenium(II), dicarbonyldichloro(2,2'-bipyridine)-25:108 N₂Cl₂P₂C₆H₁₄, Cyclodiphosphazane, 2,4dichloro-1,3-diisopropyl-, 25:10 N₂Cl₂P₂C₈H₁₈, Cyclodiphosphazane, 1,3-ditert-butyl-2,4-dichloro-, 25:8 N₂Cl₄CrC₂H₁₂, Chromate(II), tetrachloro-, bis(methylammonium), ferromagnets, 24:188 N₂Cl₄CrC₄H_{i6}, Ammonium, ethyl-, tetrachlorochromate(II) (2:1), ferromagnets, 24:188 N₂Cl₆O₂Pt, Nitrosyl hexachloroplatinate-(IV) (2:1), 24:217 N₂CoKO₆C₂H₆, Cobaltate(III), diamminedicarbonato-, cis-, potassium, 23:62 N2CoKO6C6H8, Cobaltate(III), dicarbonato(1,2-ethanediamine)-, potassium,

23:64

N₂CoLiO₆C₂H₆, Cobaltate(III), diamminebis(carbonato)-, cis-, lithium resolution of, 23:62 N₂F₄HgS₂, Mercury(II), bis(imidosulfurous difluoridato-N)-, 24:14 N₂F₅H₈Mn, Manganate(III), pentafluoro-, diammonium, 24:51 N₂F₁₄Mn, Manganate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:45 N₂F₁₄Si, Silicate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:46 $N_2Fe_3O_{11}P_4C_{83}H_{60}$, Phosphorus(1+), μ -nitrido-bis(triphenyl-, undecacarbonyltriferrate(2-) (2:1), 24:157 N₂H₂S₂, Sulfur diimide, mercaptotin complex, 25:45 $N_2KO_6PC_{14}H_{14}$, Potassium(1+), (1,4,7,10,13,16-hexaoxacyclooctadecane)dicyanophosphide(1-), 25:126 N2OC10H14, Phenol, 2-[1-[(2-aminoethyl)imino]ethyl]cobalt complexes, 23:165 N2OC11H16, Phenol, 2-[1](3-aminopropyl)imino]ethylcobalt complexes, 23:169 N₂OS₃, Nitrogen sulfur oxide, 25:52 $N_2OSi_2C_9H_{24}$, Urea, N,N'-dimethyl-N,N'bis(trimethylsylyl)-, 24:120 N₂O₂C₄H₄, Pyrazinecarboxylic acid cobalt complexes, 23:114 N₂O₂C₆H₁₀, 1,2-Cyclohexanedione, dioxime boron-iron complex, 21:112 $N_2O_2P_2C_{36}H_{30}$, Phosphorus(1+), μ -nitridobis(triphenyl-, nitrite, 22:164 N₂O₃S₄WC₁₃H₂₀, Tungsten, tricarbonylbis(N, N-diethylcarbamodithioato)-, 25:157 N₂O₈C₁₀H₁₆, Acetic acid, (1,2-ethanediyldinitrilo)tetrairon complex, 24:204, 208 ., Glycine, N, N'-1, 2-ethanediylbis[N-(carboxymethyl)cobalt complexes, 23:99 N₂O₈C₁₁H₁₈, Glycine, N, N'-(1-methyl-1,2ethanediyl)bis[N-(carboxymethyl)cobalt complexes, 23:101 N₂O₈C₁₄H₂₂, Acetic acid, (1,2-cyclohexanediyldinitrilo)tetrairon complex, 24:210

_____, Glycine, N,N'-1,2-cyclohexanediylbis[N-(carboxymethyl)cobalt complexes, 23:96

- N₂O₁₁P₂Ru₃C₄₆H₃₀, Ruthenate(1), decacarbonyl-μ-nitrosyl-tri-, μ-nitridobis(triphenylphosphorus)(1 +), 22:163, 165
- N₂PSiC₁₄H₂₇, Phosphonous diamide, N,N,N',N'-tetramethyl-p-[phenyl(trimethylsilyl)methyl-] 24:110
- N₂P₂S₃C₃₆H₃₀, Phosphorus(1 +), μ-nitridobis(triphenylsulfido(disulfido)nitrate(1 -), 25:37 N₂P₂S₄C₃₆H₃₀, Phosphorus(1 +), μ-nitrido-
- bis(triphenylbis(disulfido)nitrate(1 -), 25:35
- N₂PdC₁₀H₂₄, Palladium, (1,4-butanediyl)(N, N, N', N'-tetramethyl-1,2ethanediamine)-, 22:168
- N₂PdC₁₄H₁₆, Palladium, (2,2'-bipyridine)(1,4-butanediyl)-, 22:170
- N₂PdS₁₁H₈, Palladate(II), bis(hexasulfido)-, diammonium, nonstoichiometric, 21:14
- N₂PtS₁₀H₈, Platinate(II), bis(pentasulfido)-, bis(tetrapropylammonium), 21:13
- N₂PtS₁₅H₈, Platinate(IV), tris(pentasulfido)-, diammonium, 21:12, 13
- N₂SCH₄, Urea, thiochromium(0) complexes, 23:2 N₂SC₂, Sulfur dicyanide, 24:125
- N₂SC₄H₆, 2*H*-Imidazole-2-thione, 1,3-dihydro-1-methylcobalt complexes, 23:171
- $N_2SC_5H_{12}$, Thiourea, N, N, N', N'-tetramethyl-
- chromium(0), complexes, 23:2
- N₂SC₉H₂₀, Thiourea, N,N'-di-tert-butylchromium(0) complexes, 23:3
- N₂SC₁₅H₁₆, Thiourea, N, N'-di-p-tolylchromium(0) complexes, 23:3
- N₂SSi₂C₆H₁₉, Sulfur diimide, bis(trimethylsilyl)-, 25:44
- N₂SSn₂C₆H₁₈, Sulfur diimide, bis(trimethylstannyl)-, 25:44
- $N_2S_2Sn_2C_2H_6$, 1,3 λ ⁴,2,4,5-Dithiadiazastannole, 5,5-dimethyl-, 25:53
- $N_2S_5H_8$, Ammonium pentasulfide, 21:12 N_3 , Azido
 - platinum chain complexes, 21:149

- N₃BOC₆H₁₇, Borane, (ethylcarbamoyl)compd. with trimethylamine (1:1), 25:83
- N₃C₂H₃, 1H-Triazole
- cobalt, copper, iron, manganese, nickel, and zinc complexes, 23:157
- N₃C₄H₁₃, 1,2-Ethanediamine, N-(2-aminoethyl)-
- cobalt(III) trifluoromethanesulfonate complexes, 22:106
- N₃C₆H₁₅, 1,4,7-Triazacyclononane cobalt complexes, 23:75

N₃C₁₅H₁₁, 2,2':6',2''-Terpyridine osmium and ruthenium complexes, 24:291-298

- N₃ClP₂C₁₂H₃₀, 1,3,2λ³,4λ³-Cyclodiphosphazane, 2-chloro-1,3-diisopropyl-4-[isopropyl(trimethylsilyl)amino]-, 25:10
- N₃ClP₂C_{2n}H₁₈, 1,3,5,2λ⁵,4λ⁵-Triazadiphosphinine, 2-chloro-2-methyl-4,4,6-triphenyl-, 25:29
- $N_3ClP_2SC_{24}H_{20}$, $1\lambda^4$, 2, 4, 6, $3\lambda^5$, $5\lambda^5$ -Thiatriazadiphosphorine, 1-chloro-3, 3, 5, 5-tetraphenyl-, 25:40
- $N_3Cl_2P_2C_{19}H_{15}$, 1,3,5,2 λ^5 ,4 λ^5 -Triazadiphosphinine, 2,4-dichloro-2,4,6-triphenyl-, 25:24

N₃Cl₃P₃C₆H₁₅, 1,3,5,2,4,6-Triazatriphosphorinane, 2,4,6-trichloro-1,3,5-triethyl-, 25:13

- N₃Cl₄P₃SiC₆H₁₄, Poly[2,2,4,4-tetrachloro-6methyl-6-[(trimethylsilyl]catenatriphosphazene-1,6-diyl]-, 25:63
- _____, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl]-, 25:61

N₃Cl₅OP₃C₂H₃, Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77

_____, 1,3,5,2λ³,4λ⁵,6λ⁵-Triazaphosphorine, 2,2,4,4,6-pentachloro-6-(ethenyloxy)-, 25:75

- N₃CoO₆C₆H₁₂, Cobalt(III), tris(glycinato)fac- and mer-, 25:135
- N₃CoO₆C₉H₁₈, Cobalt(III), tris(alaninato)fac- and mer-, 25:137
- N₃F₁₂O₄P₃C₁₀H₁₄, Poly[2,2-dimethyl-4,4,6,6tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl], 25:67
- N₃F₁₂O₄P₃SiC₁₃H₂₂, Poly[2-methyl-4,4,6,6-

tetrakis(2,2,2-trifluoroethoxy)-2-[(trimethylsily1)methyl]catenatriphosphazene-1,6-diy1], 25:64

- N₃NdO₁₃C₈H₁₆, Neodymium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- N₃NdO₁₄C₁₀H₂₀, Neodymium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- N₃NdO₁₅C₁₂H₂₄, Neodymium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- N₃O₂C₁₈H₁₉, Benzaldehyde, 2-methyl-, 5-(αmethylbenzyl)semioxamazone chromium complexes, 23:87
- N₃O₃C₁₈H₁₉, Benzaldehyde, 2-methoxy-, 5-(α-methylbenzyl)semioxamazone chromium complexes, 23:87
- N₃O₄C₁₉H₂₁, Benzaldehyde, 2,3-dimethoxy-, 5-(α -methylbenzyl)semioxamazone chromium complexes, 23:88
- $N_3O_4C_{19}H_{21}$, Benzaldehyde, 3,4-dimethoxy-, 5-(α -methylbenzyl)semioxamazone chromium complexes, 23:88
- N₃O₅C₉H₁₃, Cytidine palladium(II) complexes, 23:54
- N₃O₁₃PrC₈H₁₆, Praseodymium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:152
- N₃O₁₃SmC₈H₁₆, Samarium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- $N_3O_{13}TbC_8H_{16}$, Terbium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- N₃O₁₃TmC₈H₁₆, Thulium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- N₃O₁₃YbC₈H₁₆, Ytterbium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- $N_3O_{14}PrC_{10}H_{20}$, Praseodymium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- N₃O₁₄SmC₁₀H₂₀, Samarium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- N₃O₁₄TbC₁₀H₂₀, Terbium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

- $N_3O_{14}TmC_{10}H_{20}$, Thulium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- N₃O₁₄YbC₁₀H₂₀, Ytterbium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- N₃O₁₅PrC₁₂H₂₄, Praseodyumium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- N₃O₁₅TbC₁₂H₂₄, Terbium(III), (1,4,7,10,13, 16-hexaoxacyclooctadecane)trinitrato-, 23:153
- N₃O₁₅TmC₁₂H₂₄, Thulium, (1,4,7,10,13,16hexaoxacyclooctadecane)trinitrato-, 23:153
- N₃O₁₅YbC₁₂H₂₄, Ytterbium(III), (1,4,7,10,-13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- N₃PC₉H₁₂, Propionitrile, 3,3',3''-phosphinidynetri
 - nickel complex, 22:113, 115
- N₃RhS₁₅H₁₂, Rhodate(III), tris(pentasulfido)-, triammonium, 21:15
- N_3S_3 , $1\lambda^4$, 3, 5, 2, 4, 6-Trithiatriazenide, μ -nitrido-bis(triphenylphosphorus)(1+), 25:32
- N₄C₆H₁₈, 1,2-Ethanediamine, N,N'-bis(2aminoethyl)
 - cobalt complexes, 23:79
- N₄C₁₂H₃₀, 1,2-Ethanediamine, N,N-bis[2-(dimethylamino)ethyl]-N',N'-dimethylpalladium complex, 21:129-132
 - ____, N,N'-bis[2-(dimethylamino)ethyl]-N,N'-dimethyl-
- palladium complex, 21:133
- $N_4C_{20}H_{14}$, Porphyrin actinide and lanthanide complexes, 22:156
 - indium(III) complexes, 23:55, 5,10,15,20-tetraphenyl-

actinide and lanthanide complexes, 22:156

- $N_4C_{24}H_{28}$, 1,4,8,11-Tetraazacyclotetradeca-1,3,8,10-tetraene, 2,9-dimethyl-3,10-diphenyl
 - copper, iron, and zinc complexes, 22:108, 110, 111
- N₄C₄₈H₃₈, Porphyrine, 5,10,15,20-tetrakis(4methylphenyl)-

actinide and lanthanide complexes, 22:156

- N₄Cl₃H₁₂Rh, Rhodium(III), tetraamminedichloro-, *cis*-, chloride, 24:223
- $N_4Cl_4P_2C_3H_6$, 1,3,5,2 λ ⁵,4 λ ⁵-Triazadiphosphinine, 2,2,4,4-tetrachloro-6-(dimethylamino)-, 25:27
- N₄Cl₅P₃C₂H₄, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2-(1-aziridinyl)-2,4,4,6,6pentachloro-, 25:87
- N₄CoKO₇CH₆ · 0.5H₂O, Cobaltate(III), diamminecarbonatodinitro-, *cis,cis*-, potassium, hemihydrate, 23:70
- N₄CoKO₈C₂H₆ · 0.5H₂O, Cobaltate(III), diamminedinitro(oxalato)-, *cis,cis-*, potassium, hemihydrate, 23:71
- N₄CoO₄C₆H₁₆, Cobalt(III), bis(1,2-ethanediamine)(oxalato)as resolving agent, 23:65
- N₄H₁₅O₈S₂Rh, Rhodium(III), tetraammineaquahydroxo-, *cis*-, dithionate, 24:225
- N₄NdO₂C₁₅H₄₇, Neodymium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2-)]-, 22:160
- N₄NdO₂C₄₉H₃₅, Neodymium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- N4NiO6P2C36H32, Nickel(II), bis[2-(diphenylphosphino)benzenamine]dinitrate, 25:132
- N₄O₂C₆H₁₄, Arginine, Scobalt complexes, 23:91
- N₄O₂C₁₀H₂₀, 1,4,8,11-Tetrazacyclotetradecane-5,7-dione copper complexes, 23:82
- N₄O₂P₂C₆H₁₂, 1H,5H-[1,4,2,3]Diazadiphospholo[2,3-b][1,4,2,3]diazadiphospholo-2,6-(3H,7H)dione, 1,3,5,7-tetramethyl-, 24:122
- N₄O₂PrC₄₉H₃₅, Praseodymium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2 –)]-, 22:160
- N₄O₂PrC₃₃H₃₅, Praseodymium, (2,4-pentanedionato)[5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2-)]-, 22:160
- N₄O₂S₄, Nitrogen sulfur oxide, 25:50
- N₄O₂SmC₄₉H₃₅, Samarium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2 -)]-, 22:160
- N₄O₂SmC₃₅H₄₇, Samarium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 –)]-, 22:160

- N₄O₂TbC₄₉H₃₃, Terbium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- N₄O₂TbC₃₅H₄₇, Terbium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,20,25,20tetraphenylporphyrinato(2 –)]-, 22:160
- N₄O₂TmC₃₅H₄₇, Thulium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160
- N₄O₂YC₄₉H₃₅, Yttrium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2 -)]-, 22:160
- N₄O₂YbC₅₃H₄₃, Ytterbium, (2,4-pentanedionato)[5,10,15,20-tetrakis-(4-methylphenyl)porphyrinato(2 -)]-, 22:156
- N₄O₂YbC₅₉H₅₅, Ytterbium, [5,10,15,20-tetrakis(4-methylphenyl)porphyrinato-(2-)](2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:156
- N₄O₃PtTl₄C₅, Platinate(II), tetracyanothallium carbonate (1:4:1), 21:153, 154
- N4O4SiC4, Silane, tetraisocyanato-, 24:99
- N₄O₄ThC₅₄H₄₂, Thorium, bis(2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- $N_4O_5C_{10}H_{12}$, Inosine palladium(II) complexes, 23:51-54
- N₄O₆C₁₀H₁₂, Xanthosine palladium(II) complexes, 23:54
- N₄O₈RhS₂C₄H₁₉, Rhodium(III), aquabis-(1,2-ethanediamine)hydroxo-, dithionate, 24:230
- N₄P₄S₈C₁₆H₄₈, Tetraphosphate(III), cyclo-octathio
 - diethylammonium (1:4), 25:5
- N₄PrC₄₈H₃₆, Praseodymium, [5,10,15,20tetrakis(4-methylphenyl)porphyrinato-(2-)]-, 22:160
- N₄PtTl₂C₄, Platinate(II), tetracyano-, dithallium, 21:153
- $N_4S_3C_4H_{12}$, Ammonium, tetramethyl- $1\lambda^4$,3,5,2,4,6-trithiatriazenide, 25:32
- N₅ClS₄, 1λ⁴,3λ⁴,5λ⁴,7-Tetrathia-2,4,6,8,9pentaazabicyclo[3.3.1]-1(8),-2,3,5tetraenylium chloride, 25:38
- N₅Cl₃H₁₅Rh, Rhodium(III), pentaamminechloro-, dichloride, 24:222
- $N_5Cl_4P_3C_4H_8$, 1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -Triazatriphosphorine
 - 2,2-bis(1-aziridinyl)-4,4,6,6-tetrachloro-, 25:87

- 2,4-bis(1-aziridinyl)-2,4,6,6-tetrachloro-, cis- and trans-, 25:87
- $N_5Cl_7P_4C_2H_4, 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,6\lambda^5.$ Tetraazatetraphosphocine, 2-(1-aziridinyl)-2,4,4,6,6,8,8-heptachloro-, 25:91
- $N_5O_5C_{10}H_{13}$, Guanosine
- palladium(II) complexes, 22:51-54 N₆C₂₆H₁₈, 7,11:20,24-Dinitrilodibenzo-[b,m][1,4,12,15]tetraazacyclodocosine
- barium and cadmium complexes, 23:174 N₆Cl₃P₃C₆H₁₂, 1,3,5,2 λ ⁵,4 λ ⁵,6 λ ⁵-Triazatri-
- phosphorine, 2,2,4-tris(1-aziridinyl)-4,5,5-trichloro-, 25:87
- N₆Cl₄P₄C₄H₈, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,6λ⁵.Tetraazatetraphosphocine, 2,2-bis(1-aziridinyl)-4,4,6,6,8,8-hexachloro-, 25:91
- N₆Cl₆P₄C₄H₈, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,6λ⁵.Tetraazatetraphosphocine, 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexachlorocis- and trans-, 25:91
- $N_6Cl_6P_4C_4H_{12}$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,4,4,6,8,8-hexachloro-*trans*-2,6bis(ethylamino)-, 25:16
- $N_{6}Cl_{6}P_{4}C_{8}H_{20}$, 1,3,5,7,2 λ^{5} ,4 λ^{5} ,6 λ^{5} ,8 λ^{5} -Tetraazatetraphosphocine
 - 2,4-bis(tert-butylamino)-2,4,6,6,8,8hexachloro-, 25:21
 - 2,6-bis(tert-butylamino)-2,4,4,6,8,8hexachloro-, 25:21
- $N_6Cl_6P_4Cl_4H_8$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,4-bis(1-aziridinyl)-2,4,6,6,8,8-hexachloro-, cis- and trans-, 25:91
- $N_6F_{12}P_2RuC_{30}H_{24}$, Ruthenium(II), tris(2,2'bipyridine)
 - bis[hexafluorophosphate(1-)], 25:109
- N₆F₁₂P₂RuC₃₂H₂₄, Ruthenium(II), (2,2'-bipyridine)bis(1,10-phenanthroline)bis[hexafluorophosphate(1-)], 25:108
- N₆OC₂₇H₂₂, 6,10:19,23-Dinitrilo-24*H*-benzimidazo[2,1-*h*][1,9,17]benzotriazacyclononadecine, 5,5a-dihydro-24methoxy-, 23:176
- N₆P₂C₁₃H₃₆, Phosphoranetriamine, P,P'methanetetraylbis[N,N,N',N',N'',N''hexamethyl-, 24:114
- $N_6P_4C_{18}H_{42}$, 2,4,6,8,9,10-Hexaaza-1 λ^3 ,3 λ^3 ,5 λ^3 ,7 λ^3 -tetraphosphatricyclo[5.1.1.1^{3.5}]decane, hexaisopropyl-, 25:9

- N₆PdS₂C₁₄H₃₀, Palladium(II), [*N*,*N*-bis-[2-(dimethylamino)ethyl]-*N'*,*N'*-dimethyl-1,2-ethanediamine](thiocyanato-*N*)-, thiocyanate, 21:132
- N_6S_4 , $1\lambda^4, 3\lambda^4, 5\lambda^4, 7$ -Tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5tetraenide, μ -nitridobis(triphenylphosphorus)(1+),
- tetraphenyl arsonium, 25:31 $N_7 Cl_5 P_4 C_6 H_{12}$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,2,6-tris(1-aziridinyl)-4,4,6,8,8-pentachloro-, 25:91
 - 2,4,6-tris(1-aziridinyl)-2,4,6,8,8-pentachloro-, 2,6-cis-4-trans-and 2,4-cis-6trans-, 25:91
- N₈Br₄H₂₆O₂Rh₂, Rhodium(III), di-µ-hydroxo-bis[tetraammine-, tetrabromide, 24:226
- N₈C₄₀H₂₆, Porphyrin, 5,10,15,20-tetrakis(4pyridinyl)-, 23:56
- N₈Nd₃O₃₀C₁₂H₂₄, Neodymium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)dinitrato-, bis[trinitratoneodymate(III)], 23:150
- N₈NiS₂C₆H₆, Nickel(III), bis(thiocyanate-N)-bis-μ-(1H-1,2,4-triazole-N²:N⁴)-, βpoly-, 23:159
- N₈O₁₂C₇₂H₆₆, Pyridinium, 4,4',4'',4'''-porpyrin-5,10,15,20-tetrayltetrakis(1methyl-, tetrakis(4-methylbenzenesulfonate)
 - indium complexes, 23:55
- N₈S₂ZnC₆H₆, Zinc(II), bis(thiocyanato-N)bis-μ-(1H-1,2,4-triazole-N²:N⁴)-, poly-, 23:160
- $N_9P_3C_8H_{24}$, 1,3,5,2 λ^5 ,6 λ^5 -Triazatriphosphorine
 - 2,2-bis(1-aziridinyl)-4,4,6,6-tetrakis(methylamino)-, 25:89
 - 2,4-bis(1-aziridinyl)-2,4,6,6-tetrakis(methylamino)-, *cis*- and *trans*-, 25:89
- N₁₁P₄C₁₄H₄₁, 2,4,6,8,9-Pentaaza-1λ⁵,3λ⁵,5λ⁵,7λ⁵-tetraphosphabicyclo[3.3.1]nona-1,3,5,7-tetraene 9-ethyl-1,3,3,5,7,7-hexakis(ethylamino)-, 25:20
 - 3,3,5,7,7-pentakis(dimethylamino)-9ethyl-1-(ethylamino)-, 25:18

- $\begin{array}{l} N_{12}Co_3CrO_{24}C_{24}H_{48} \cdot 6H_2O, \ Cobalt(III), \\ bis(1,2-ethanediamine)(oxalato)-, \\ (+)-, (+)-tris(oxalato)chromate(III) \\ (3:1) \end{array}$
 - hexahydrate, 25:140
- $N_{12}Mo_2O_{12}P_6C_{24}H_{36}$, Molybdenum, hexacarbonyl-tris[μ -1,3,5,7-tetramethyl-1H,5H-[1,4,2,3]diazadiphospholo[2,3b][1,4,2,3]diazadiphosphole-2,6-(3H,7H)dione]di-, 24:124
- N₁₂Nd₄O₅₄C₃₆H₇₂, Neodymium(III), tris-(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- N₁₂O₅₁Tb₄C₃₀H₆₀, Terbium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- N₁₂O₃₁Tm₄C₃₀H₆₀, Thulium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- N₁₂O₅₁Yb₄C₃₀H₆₀, Ytterbium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- N₁₂O₅₄Pr₄C₃₆H₇₂, Praseodymium(III), tris-(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- N₁₂O₅₄Sm₄C₃₆H₇₂, Samarium(III), tris(1,4,7,-10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- N₁₂O₅₄Tb₄C₃₆H₇₂, Terbium(III), tris(1,4,7,10,-13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- N₁₂O₅₄Tm₄C₃₆H₇₂, Thulium(III), tris(1,4,7,-10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- N₁₂O₅₄Yb₄C₃₆H₇₂, Ytterbium(III), tris(1,4,7,-10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- $$\begin{split} N_{12}P_4C_{10}H_{32}, \ 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5\text{-Tetra-}\\ azatetraphosphocine, \ 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexakis(methylamino)-trans-, \ 25:91 \end{split}$$
- $N_{12}P_4C_{32}H_{80}$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine, 2,2,4,4,6,6,8,8octakis(*tert*-butylamino)-, 25:23
- $N_{12}P_{14}C_{16}H_{48}, 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5$ -Tetraazatetraphosphocine, 2,4,4,6,8,8hexakis(dimethylamino)-2,6-bis-(ethylamino)trans-, 25:19

- $N_{17}O_9Pt_4C_{20}H_{20} \cdot H_2O$, Platinum(2.25 +), bis[bis(μ -2-pyridonato- $N':O^2$)bis(diammine-, pentanitrate, monohydrate), 25:95
- N₂₄Ni₃S₆C₁₈H₁₈, Nickel(II), hexakis(thiocyanato-N)-hexakis-µ-(4H-1,2,4-triazole-N¹: N²)-tri-, 23:160
- NaAlO₄Si · 2.25H₂O, Sodium aluminum silicate, 22:61
- NaAl₄K₂NO₃₆Si₁₄C₄H₁₂ · 7H₂O, Potassium sodium tetramethyl ammonium aluminum silicate hydrate, 22:65
- NaBNC²H₃, Borate(1-), cyanotri[(²H)hydro]-, sodium, 21:167
- NaCoN₄O₃C₃H₆ · 2H₂O, Cobaltate(III), diammine(carbonato)dicyano-, *cis,cis-*, sodium, dihydrate, 23:67
- NaCoN₄O₄C₄H₆ · 2H₂O, Cobaltate(III), diamminedicyano(oxalato)-, *cis,cis*-, sodium, dihydrate, 23:69
- NaCoO₂, Sodium cobalt oxide, 22:56
- NaF₆U, Uranate(V), hexafluoro-, sodium, 21:166
- NaNO₃C₁₀H₁₄, Bornan-2-one, 3-aci-nitro-(1R)-, sodium salt, 25:133
- NaNbC₆O₆, Nobate(-I), hexacarbonyl-, sodium, 23:34
- Na_{0.6}CoO₂, Sodium cobalt oxide, 22:56
- Na_{0.64}CoO₂, Sodium cobalt oxide, 22:56
- Na_{0.74}CoO₂, Sodium cobalt oxide, 22:56
- Na_{0.77}CoO₂, Sodium cobalt oxide, 22:56
- Na₂Al₂O₁₄Si · XH₂O, Sodium aluminum silicate hydrate, 22:64
- Na₂FeN₄O₈C₁₀H₁₂ · 2H₂O, Ferrate(II), (dinitrogen)[[(1,2-ethanediyldinitrilo)tetraacetato](4 –)]-, disodium, dihydrate, 24:208
- Na₂FeN₄O₈C₁₄H₁₈ · 2H₂O, Ferrate(II), [[(1,2-cyclohexanediyldinitrilo)tetraacetato](4 –)](dinitrogen)-, disodium, dihydrate, 24:210
- Na₂FeO₄C₄, Ferrate(2-), tetracarbonyl-, disodium, 24:157
- Na₂Fe₂O₈C₈, Ferrate(2-), octacarbonyldi-, disodium, 24:157
- $Na_2Fe_3O_{11}C_{11}$, Ferrate(2), undecacarbonyltri-, disodium, 24:157
- Na24Al26N36O207Si100C43H100, Sodium tetrapropylammonium aluminum silicate, 22:67

- NbCl₄O₂C₄H₁₆, Niobium(IV), tetrachlorobis(tetrahydrofuran)-, 21:138
- NbHO₅Ti, Hydrogen, pentaoxoniobatetitanate(1-), 22:89
- NbKO₅Ti, Potassium, pentaoxoniobatetitanate(1-), 22:89
- NbNaC₆O₆, Niobate(-I), hexacarbonyl-, sodium, 23:34
- Nb₂As₄Cl₆C₂₀H₃₂, Niobium(III), hexachlorobis[o-phenylenebis(dimethylarsine)]di-, 21:18
- Nb₂As₆Cl₆C₂₂H₅₄, Niobium(III), hexachlorobis[[2-[(dimethylarsino)methyl]-2methyl-1,3-propanediyl]bis(dimethylarsine)]-, 21:18
- Nb₂Cl₆P₂C₃₀H₂₄, Niobium(III), hexachlorobis[1,2-ethanediylbis(diphenylphosphine)]di-, 21:18
- Nb₂Cl₆S₃C₁₆H₁₈, Niobium(III), di-µ-chlorotetrachloro-µ-(dimethylsulfide)bis(dimethyl sulfide)di-, 21:16
- NdCl₃, Neodymium chloride, 22:39
- NdF₁₈N₆O₆P₁₂C₇₂H₇₂, Neodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- NdN₃O₁₃C₈H₁₆, Neodymium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- NdN₃O₁₄C₁₀H₂₀, Neodymium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- NdN₃O₁₅C₁₂H₂₄, Neodymium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- NdN₄O₂C₁₅H₄₇, Neodymium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 –)]-, 22:160
- NdN₄O₂C₄₉H₃₅, Neodymium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- Nd₃N₈O₃₀C₁₂H₂₄, Neodymium(III), (1,4,7,10,13,16-hexaoxacyclooctadecane)dinitrato-, bis[trinitratoneodymate(III)], 23:150
- Nd₄N₁₂O₅₄C₃₆H₇₂, Neodymium(III), tris-(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- NiBr₂N₆P₆C₁₈H₂₄, Nickel(II), dibromobis(3,3',3''-phosphinidynetripropionitrile)-, 22:113, 115

- (NiBr₂N₆P₂C₁₈H₂₄)_x, Nickel(II), dibromobis(3,3',3''-phosphinidyne(tripropionitrile)-, 22:115
- NiCINPSe₂C₁₁H₂₅, Nickel(II), chloro(N,Ndiethyldiselenocarbamato)(triethylphosphine)-, 21:9
- NiCl₂N₆P₂C₁₈H₂₄, Nickel(II), dichlorobis(3,3',3''-phosphinidynetripropionitrile)-, 22:113
- NiN₄O₆P₂C₃₆H₃₂, Nickel(II), bis[2-(diphenylphosphino)benzenamine]dinitrate, 25:132
- $NiN_4O_{10}S_2C_{14}H_{16} \cdot 2H_2O$, Nickel(II), tetraaquabis(O-sulfobenzoimidato)-, dihydrate, 23:48
- NiN_{\$}S₂C₆H₆, Nickel(II), bis(thiocyanato-N)bis-μ-(1H-1,2,4-triazole-N²:N⁴)-, μpoly-, 23:159
- Ni₂P₆C₂₀H₃₆, Nickel, bis(µ-tert-butylphosphido)tetrakis(trimethylphosphine)di-(Ni-Ni)-, 25:176
- Ni₃N₂₄S₆C₁₈H₁₈, Nickel(II), hexakis(thiocyanato-N)-hexakis-µ-(4H-1,2,4-triazole-N¹: N⁴)-tri-, 23:160
- Ni₄AlH₄La, Aluminum lanthanum nickel hydride, 22:96
- OAsF₆N, Arsenate, hexafluoro-, nitryl, 24:69
- OBN₃C₆H₁₇, Borane, (ethylcarbamoyl)-
- compd. with trimethylamine (1:1), 25:83 $OB_2C_8H_{20}$, Diboroxane, tetraethyl-, 24:85
- OC, Carbon monoxide
 - chromium complex, 21:1, 2
 - chromium and tungsten complexes, 23:27
 - cobalt complex, 25:177
 - cobalt complexes, 23:15-17, 23-25
 - cobalt, iron, osmium, and ruthenium complexes, 21:58-65
 - cobalt-osmium complexes, 25:195-197 cobalt-ruthenium cluster complexes,
 - 25:164
 - iron complex, 21:66, 68
 - iron complexes, 24:161, 164, 166; 25:154-155
 - manganese complex, 25:116-118
 - manganese complexes, 23:34
 - molybdenum complexes, 23:4-9; 25:168-169
 - niobium complexes, 23:34

- osmium complexes, 25:188-193 palladium complex, 21:49 rhodium complex, 25:171 rhodium complexes, 23:124 ruthenium complex, 21:30; 25:108 ruthenium complexes, 24:168, 176; 25:180-185 OCH. Methanol iridium complexes, 23:127 rhodium complexes, 23:127, 129 OCN_2S_2 , 1,3 λ^4 ,2,4-Dithiadiazol-5-one, 25:53 OC₃H₆, Acetone, compd. with carbonyltriµ-chloro-chlorotetrakis(triphenylphosphine)diruthenium (1:2), 21:30 ., compd. with tri-µ-chloro(thiocarbonyl)tetrakis(triphenylphosphine)diruthenium (1:1), 21:29 OC₄H₈, Furan, tetrahydrohafnium, niobium, scandium, titanium, vanadium, and zirconium complexes, 21:135-139 iron-magnesium complexes, 24:172 molybdenum complex, 24:193 $OC_4H_8 \cdot CdF_6C_2$, Furan, tetrahydro-, -bis(trifluoromethyl)cadmium, 24:57 OC15H16, Acrylaldehyde, 2,3-diphenylruthenium complex, 25:181 OClF₃C, Hypochlorous acid, trifluoromethyl ester, 24:60 OClF₉C₄, Hypochlorous acid, perfluoro-tertbutyl ester, 24:61 OCl₅N₃P₃C₂H₃, Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77 ., 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4,6-pentachloro-6-(ethenyloxy)-, 25:75 OF₂Se, Selenium difluoride oxide, 24:28 OF₃NPSiC₇H₁₇, Phosphinimidic acid, P,Pdimethyl-N-(trimethylsilyl)-
 - 2,2,2-trifluoroethyl ester, 25:71
- OF₃NSC, Imidosulfurous difluoride, (fluorocarbonyl)-, 24:10
- OF4W, Tungsten fluoride oxide, 24:37
- OF₅HTe, Tellurate(VI), pentafluorooxo-, hydrogen, 24:34
- OF₉NW, Tungstate(VI), pentafluorooxo-, tetrafluoroammonium (1:1), 24:47
- OH, Hydroxide molybdenum complexes, 23:135-139

platinum complexes, 25:102-105 rhodium complexes, 23:129 OH₂, Water cadmium and cobalt complexes, 23:175 cobalt complexes, 21:123-126; 23:76, 110 iridium, osmium, and rhodium complexes, 24:254, 265 molybdenum complexes, 23:130-139 platinum complex, 21:192 ONC, Cyanato silicon complex, 24:99 ONC₅H₄, 2-Pyridone platinum complex, 25:95 ONPC₁₂H₁₂, Phosphinic amide, diphenyllanthanoid complexes, 23:180 ONPSiC₁₂H₁₉, Phosphinimidic acid, Pmethyl-P-phenyl-N-(trimethylsilyl) 2,2,2-trifluoroethyl ester, 25:72 ONSSiC₃H₉, Silanamine, 1,1,1-trimethyl-Nsulfinyl-, 25:48 ONSe₂C₇H₁₃, Carbamodiselenoic acid dimethyl-, 1-methyl-2-oxopropyl ester, 24:132 ON₂S₃, Nitrogen sulfur oxide, 25:52 $ON_2Si_2C_9H_{24}$, Urea, N,N'-dimethyl-N,N'bis(trimethylsylyl)-, 24:120 OPC₁₈H₁₅, Phosphine, triphenyl-, oxide cerium complexes, 23:178 OPC₁₉H₁₅, Benzaldehyde, 2-(diphenylphosphino)-, 21:176 OP₂PtC₁₈H₃₆, Platinum(II), hydroxophenylbis(triethylphosphine)trans-, 25:102 OP₂PtC₂₈H₃₀, Platinum(II), hydroxomethyl-[1,3-propanediylbis(diphenylphosphine)]trans-, 25:105 OP₂PtC₃₇H₇₀, Platinum(II), hydroxomethylbis(tricyclohexylphosphine)trans-, 25:104 OP₂PtC₄₂H₃₆, Platinum(II), hydroxophenylbis(triphenylphosphine)trans-, 25:103 OS₈, cyclo-Octasulfur monoxide, 21:172 O₂BC₂H₇, Boronic acid, ethyl-, 24:83 $O_2BF_4FeC_{11}H_{18}$, Iron(1+), dicarbonyl(η^{5} -

cyclopentadienyl)(η³-2-methyl-1-propenyl)-, tetrafluoroborate(1-), 24:166 O₂BNC₄H₁₂, Borane, carboxy-

compd. with trimethylamine (1:1), 25:81

O₂BNC₅H₁₄, Borane, (methoxycarbonyl)compd. with trimethylamine (1:1), 25:84 O2Br4H26N8Rh2, Rhodium(III), di-u-hydroxo-bis[tetraammine-, tetrabromide, 24:226 O₂C₂H₄, Acetic acid mercury complex, 24:145 O₂C₂H₆, 1,2-Ethandiol, 22:86 O₂C₄H₆, Acrylic acid, methyl ester ruthenium complex, 24:176 $O_2C_4H_{10} \cdot CdF_6C_2$, Ethane, 1,2-dimethoxy-, bis(trifluoromethyl)cadmium, 24:55 $O_2C_5H_8$, 2,4-Pentanedione actinide and lanthanide complexes, 22:156 cobalt complexes, 23:94 iron complex, 21:94 O₂C₁₁H₂₀, 3,5-Heptanedione, 2,2,6,6-tetramethylactinide and lanthanide complexes, 22:156 chromium complex, 24:181 , 3,5-Octanedione, 2,2,7-trimethylcerium, copper, and manganese complexes, 23:144 O₂ClF, Chloryl fluoride, 24:3 O₂Cl₂N₂Pt, Nitrosyl hexachloroplatinate-(IV) (2:1), 24:217 O₂Cl₂N₂RuC₁₂H₈, Ruthenium(II), dicarbonyldichloro(2,2'-bipyridine)-, 25:108 O₂CrF₂, Chromium fluoride oxide, 24:67 O₂F₂U, Uranium(VI), difluorodioxo-, 25:144 O₂F₃HU · 2H₂O, Uranate(VI), trifluorodioxohydrogen, dihydrate, 25:145 $O_2F_{10}Se_2Xe$, Selenate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:29 $O_2F_{10}Te_2Xe$, Tellurate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:36 $O_2FeC_{11}H_{12}$, Iron, dicarbonyl(η^5 -cyclopentadienyl)(2-methyl-1-propenyl- χC^1)-, 24:164 O₂HP₃Rh₂C₂₆H₅₆, Rhodium, dicarbonylbis-(di-tert-butylphosphine)(µ-di-tert-butylphosphido)-µ-hydridodi-, 25:171 O2HfC12H10, Hafnium, dicarbonylbis(n⁵-cyclopentadienyl)-, 24:151 O2HfC22H30, Hafnium, dicarbonylbis(n5pentamethylcyclopentadienyl)-, 24:155

- O₂HgC₃H₆, Mercury(II), acetatomethyl-, 24:145
- O₂IOsC₇H₅, Osmium, dicarbonyl(η⁵-cyclopentadienyl)iodo-, 25:191
- O₂IOsC₁₂H₁₅, Osmium, dicarbonyliodo(η⁵pentamethylcyclopentadienyl)-, 25:191
- O₂NC₂H₅, Glycine
- cobalt complex, 25:135
- O₂NC₃H₇, Alanine
- cobalt complex, 25:137
- O₂N₄P₂C₆H₁₂, 1*H*,5*H*-[1,4,2,3]Diazadiphospholo[2,3-*b*][1,4,2,3]diazadiphosphole-2,6-(3*H*,7*H*)-dione, 1,3,5,7-tetramethyl-, 24:122
- O₂N₄S₄, Nitrogen sulfur oxide, 25:50
- O₂PC₁₉H₁₅, Benzoic acid, 2-(diphenylphosphino)-, 21:178
- O₂P₂C₃₀H₃₂, 4,7-Dioxa-1,10-diphosphadecane, 1,1,10,10-tetraphenylgold complexes, 23:193
- O₂Rh₂C₁₆H₂₆, Rhodium(I), bis(η⁴-1,5-cyclooctadiene)-di-µ-hydroxo-di-, 23:129
- O₂Rh₂C₁₈H₃₀, Rhodium(I), bis(η⁴-1,5-cyclooctadiene)-di-µ-methoxy-di-, 23:127
- O₂SC₂H₄, Acetic acid, 2-mercaptocobalt complex, 21:21
- O₂S₃C₈H₁₈, Ethanol, 2,2'-[thiobis(2,1ethanediylthio)]bis(, 25:123
- O₂TiC₁₂H₁₀, Titanium, dicarbonylbis(η⁵-cyclopentadienyl)-, 24:149
- O₂TiC₂₂H₃₀, Titanium, dicarbonylbis(η⁵-pentamethylcyclopentadienyl)-, 24:152
- O₂ZrC₇H₅, Zirconium, dicarbonylbis-(η⁵-cyclopentadienyl)-, 24:150
- O₂ZrC₂₂H₃₀, Zirconium, dicarbonylbis(η⁵pentamethylcyclopentadienyl)-, 24:153
- $O_3BF_4Ru_2C_{15}H_{13}, \ Ruthenium(1+), \ \mu\mbox{-carbonyl-} \mu\mbox{-ethylidyne-bis[carbonyl(} \eta^5\mbox{-cy-clopentadienyl)-}$
- tetrafluoroborate(1-), 25:184
- $O_3BF_{15}Te_3$, Tellurate(VI), pentafluorooxo-, boron(3+) (3:1), 24:35
- O₃B₃C₆H₁₅, Boroxin, triethyl-, 24:85
- O₃BrNC₁₀H₁₄, Bornan-2-one, 3-endo-bromo-3-exo-nitro-
 - (1*R*)-, 25:132
- O₃CH₂, Carbonic acid cobalt complexes, 21:120, 23:107, 112 platinum chain complex, 21:153, 154

- O₃C1FS, Chlorine fluorosulfate, 24:6
- O₃FPC₄H₁₀, Phosphofluoridic acid, diethyl ester, 24:65
- O₃F₃SC, Methanesulfonate, trifluorometal complexes and salts, 24:243-306
- O₃F₁₁PC₆H₆, Phosphane, difluorotris(2,2,2trifluoroethoxy)-, *trans*-, 24:63
- O₃FeP₂C₉H₁₈, Iron, tricarbonylbis(trimethylphosphone)-, 25:155
- O₃FeP₂C₂₇H₅₄, Iron, tricarbonylbis(tributylphosphine)-, 25:155
- O₃FeP₂C₃₉H₃₀, Iron, tricarbonylbis(triphenylphosphine)-, 25:154
- O₃FeP₂C₃₉H₆₆, Iron, tricarbonylbis(tricyclohexylphosphine)-, 25:154
- O₃HgNCH₃, Mercury(II), methylnitrato-, 24:144
- O₃LiRe, Lithium rhenium trioxide, 24:205
- $O_3Li_{0.2}Re$, Lithium rhenium trioxide, 24:203, 206
- O₃Li₂Re, Dilithium, rhenium trioxide, 24:203
- O₃Mo · 2H₂O, Molybdenum(VI) oxide, dihydrate, 24:191
- $O_3NNaC_{10}H_{14}$, Bornan-2-one, 3-aci-nitro-(1R)-, sodium salt, 25:133
- O₃NSC₇H₅, o-Benzosulfinide (saccharin) metal complexes, 23:47
- O₃N₂S₄WC₁₃H₂₀, Tungsten, tricarbonylbis(N,N-diethylcarbamodithioato)-, 25:157
- O₃PC₃H₉, Trimethyl phosphite chromium complexes, 23:38 cobalt and rhodium complexes, 25:162– 163
 - iron complex, 21:93
 - rhodium complexes, 23:123, 124
- O₃PC₁₈H₁₅, Triphenyl phosphite chromium complexes, 23:38
- O₃Ru₂C₁₄H₁₂, Ruthenium, μ-carbonyl-μmethylene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:182
- O₃Ru₂C₁₅H₁₂, Ruthenium, μ-carbonyl-μethenylidene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:183
- O₃Ru₂C₁₃H₁₄, Ruthenium, μ-carbonyl-μethylidene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:185
- $O_3Ru_2C_{27}H_{26}$, Ruthenium, μ -carbonyl-carbonylbis(η^5 -cyclopentadienyl)(μ -3-oxo-

1,2-diphenyl-1-ŋ:1,2,3-ŋ-1-propene-1,3-diyl)di-

(*Ru*—*Ru*), 25:181

- O₄AsMo₂C₁₆H₁₇, Molybdenum, tetracarbonylbis(η⁵cyclopentadienyl)-(μ-dimethylarsino)-μ-hydrido-di-, 25:169
- O₄C₂H₂, Formic acid, (formyloxy)iridium complex, 21:102
 - _____, Oxalic acid cobalt complex, as resolving agent, 23:65
 - cobalt complexes, 23:69, 113, 114 rhodium complex, 24:227
- O₄C₂H₄, Oxalic acid chromium complex, resolution of, 25:139, 141–142
- O₄C₄H₂, Acetylenedicarboxylic acid cobalt complexes, 23:115
- O₄C₈H₁₆, 1,4,7,10-Tetraoxacyclododecane lanthanoid complexes, 23:149
- O₄ClNC₁₆H₃₆, Ammonium, tetrabutyl-, perchlorate, 24:135
- $O_4CISe_8C_{20}H_{24}$, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, radical ion(1+), perchlorate (2:1), 24:136
- $O_4Co_2P_2C_{20}H_{36}$, Cobalt, tetracarbonylbis(μ di-*tert*-butylphosphido)-di-(Co^2 -Co), 25:177
- O₄CsFS, Cesium fluorine sulfate, 24:22
- O₄F₁₂N₃P₃C₁₀H₁₄, Poly[2,2-dimethyl-4,4,6,6tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl], 25:67
- O₄F₁₂N₃P₃SiC₁₃H₂₂, Poly[2-methyl-4,4,6,6tetrakise(2,2,2-trifluoroethoxy)-2-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl], 25:64
- O₄FeNa₂C₄, Ferrate(2-), tetracarbonyl-, disodium, 24:157
- O₄FePC₁₆H₂₇, Iron, tetracarbonyl(tri-*tert*-butylphosphine)-, 25:155
- $O_4NPC_8H_{18}$, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]-, dimethyl ester, 24:101
- $O_4NPC_{10}H_{22}$, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]-, diethyl ester, 24:101
- $O_4NPC_{12}H_{26}$, Phosphonic acid, [(N, N-di-ethylcarbamoyl)methyl]-, bis(1-methyl-ethyl) ester, 24:101
- O₄NPC₁₄H₃₀, Phosphonic acid, [(N,N-di-

ethylcarbamoyl)methyl]-, dibutyl ester, 24:101

- O₄NPC₁₆H₃₄, Phosphonic acid, [(*N*,*N*-diethylcarbamoyl)methyl]-, dihexyl ester, 24:101
- O₄N₄SiC₄, Silane, tetraisocyanato-, 24:99
- $O_4Ru_2C_{14}H_{10}$, Ruthenium, tetracarbonylbis(η^5 -cyclopentadienyl)di-, 25:180
- O₅C₁₀H₂₀, 1,4,7,10,13-Pentaoxacyclopentadecane
- lanthanoid complexes, 23:149
- O₅H₄P₂, Diphosphorous acid platinum complex, 24:211
- O₃LiV₂, Lithium divanadium pentaoxide, 24:202
- O₅N₃C₉H₁₃, Cytidine palladium(II) complexes, 23:54
- O₅N₄C₁₀H₁₂, Inosine palladium(II) complexes, 23:51–54 O₅H₅C₁₀H₁₃, Guanosine
- palladium(II) complexes, 23:51–54
- $O_5UC_{10}H_{25}$, Uranium(V), pentaethoxy-, 21:165
- O₆C₁₂H₂₄, 1,4,7,10,13,16-Hexaoxacyclooctadecane, 25:126 lanthanoid complexes, 23:149
- O₆CoN₃C₆H₁₂, Cobalt(III), tris(glycinato)fac- and mer-, 25:135
- O₆CoN₃C₉H₁₈, Cobalt(III), tris(alaminato)fac- and mer-, 25:137
- O₆CoP₂C₁₁H₂₃, Cobalt(I), (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:162
- O₆F₃FeSC₉H₅, Iron(1 +), tricarbonyl(η⁵-cyclopentadienyl)-, trifluoromethanesulfonate, 24:161
- O₆KN₂PC₁₄H₂₄, Potassium(1+), (1,4,7,10,-13,16-hexaodacyclooctadecane)dicyanophosphide(1-), 25:126
- O₆I₂O₅₂C₆, Osmium(I), hexacarbonyl-di-µiododi-, 25:188
- O₆Mn₂NS₃C₃₂H₃₅, Ammonium, tetraethyltris(μ-benzenethiolato)hexacarbonyldimanganate(I), 25:118
- O₄Mo₂PC₂₂H₂₉, Molybdenum, tetracarbonylbis(η⁵-cyclopentadienyl)(µ-di-*tert*-butylphosphido)-µ-hydrido-di, 25:168
- O₆N₄C₁₀H₁₂, Xanthosine palladium(II) complexes, 23:54

- O₆N₄NiP₂C₃₆H₃₂, Nickel(II), bis[2-(diphenylphosphino)benzeneamine]-
- dinitrate, 25:132
- O₆P₂RhC₁₁H₂₂, Rhodium(I), (η⁵-cyclopentadienyl)bis(trimethylphosphite)-, 25:163
- O₇P₂, Diphosphate, 21:157
- O₈Fe₂Na₂C₈, Ferrate(2-), octacarbonyl-di-, disodium, 24:157
- O₈H₁₅N₄S₂Rh, Rhodium(III), tetraammineaquahydroxo-, *cis*-, dithionate, 24:225
- O₈I₂Os₂C₈, Osmium(I), bis[tetracarbonyliodo-, 25:190
- O₈Mn₂S₂C₂₀H₁₀, Manganese(I), bis(µ-benzenethiolato)octacarbonyldi-, 25:116
- O₈N₂C₁₀H₁₆, Acetic acid, (1,2-ethanediyldinitrilo)tetra
 - iron complexes, 24:204, 208
- $O_8N_2C_{14}H_{22}$, Acetic acid, (1,2-cyclohexanediyldinitrilo)tetra-
- iron complex, 24:210
- O₈P₂Rh₂S₂C₁₅H₃₆, Rhodium(I), dicarbonylbis-µ-(2-methyl-2-propanethiolato)bis-(trimethyl phosphite)di-, 23:124
- O₉CoH₃Os₃C₁₄H₁₅, Osmium, nonacarbonyl-(η⁵-cyclopentadienyl)-tri-µ-hydridocobalttri-, 25:197
- O₂CoH₄OsC₁₄H₁₅, Osmium, nonacarbonyl-(η⁵-cyclopentadienyl)-tetra-µ-hydridocobalttri-, 25:197
- $O_9N_{17}Pt_4C_{20}H_{40} \cdot H_20$, Platinum(2.25 +), bis[bis(μ -2-pyridonato- N^2 : O^2)bis(diammine
 - pentanitrate, monohydrate, 25:95
- O₁₀CoH₂Os₃C₁₅H₃, Osmium, μ-carbonyl-nonacarbonyl(η⁵-cyclopentadienyl)-di-μhydrido-cobalttri-, 25:195
- $O_{11}Fe_3N_2P_4C_{83}H_{60}$, Ferrate(2-), undecacarbonyltri-, bis $[\mu$ -nitrido-bis(triphenyl-phosphorus)(1+)], 24:157
- O₁₁Fe₃N₂C₁₁, Ferrate(2-), undecacarbonyltri-; disodium, 24:157
- O₁₁HNP₂Os₃C₄₇H₃₀, Osmate(1), μ-carbonyl-decacarbonyl-μ-hydrido-tri μ-nitrido-bis(triphenylphosphorus)(1 +), 25:193
- O₁₁NRu₃C₁₉H₂₁, Ruthenate(1-), μ-carbonyl-1KC:2KC-decarbonyl-1K³C,2K³C,3K⁴C-μ-hydrido-1K:2K-

triangulo-tri-, tetraethylammonium, 24:168

- O₁₂Co₃HRuC₁₂, Cobalt, dodecacarbonylhydridorutheniumtri-, 25:164
- O₁₂CrC₆, Chromate(III), tris(oxalato)resolution of, by asymmetric synthesis, 25:139, 141-142
- $O_{12}CrK_3C_6 \cdot H_2O$ and $2H_2O$, Chromate(III), tris(oxalato)-
- tripotassium, (+)-dihydrate and (-)-, monohydrate, isolation of, 25:141
- O₁₂Mn₄S₄C₃₆H₂₀, Manganese(I), tetrakis(µ₃benzenethiolato)dodecacarbonyltetra-, 25:117
- O₁₂Mo₂N₁₂P₆C₂₄H₃₆, Molybdenum, hexacarbonyl-tris[μ-1,3,5,7-tetramethyl-1H,5H-[1,4,2,3]diazadiphospholo[2,3-b][1,4,-2,3]diazadiphosphole-2,6-(3H,7H)dione]-di-, 24:124
- O₁₂N₈C₇₂H₆₆, Pyridinium, 4,4',4'',4'''-porphyrin-5,10,15,20-tetrayltetrakis(1methyl-, tetrakis(4-methylbenzenesulfonate), 23:57
- O₁₂P₄Rh₂S₂C₂₀H₅₄, Rhodium(I), bis-µ-(2methyl-2-propanethiolato)-tetrakis(trimethyl phosphite)di-, 23:123
- O₁₃Os₃RuC₁₃H₂, Osmium, tridecacarbonyldihydridorutheniumtri-, 21:64
- $O_{24}Co_3CrN_{12}C_{24}H_{48} \cdot 6H_2O$, Cobalt(III), bis(1,2-ethanediamine)(oxalato)-(+),(+)-tris(oxalato)chromate(III) (3:1), hexahydrate, 25:140
- O₃₉PW₁₁, Undecatungstophosphate(7-) thorium and uranium complexes, 23:186
- $O_{61}P_2W_{17}$, Heptadecatungstodiphosphate(10-)
- thorium and uranium complexes, 23:188
- OsCl₂H₁₅N₇, Osmium(II), pentaammine-(dinitrogen)-, dichloride, 24:270
- OsCl₂N₄C₂₀H₁₆, Osmium(II), bis(2,2'-bipyridine-N,N')dichloro-, cis-, 24:294
- OsCl₃H₁₈N₆, Osmium(III), hexaammine-, trichloride, 24:273
- OsCl₃N₄C₂₀H₁₆, Osmium(III), bis(2,2'-bipyridine-N,N')dichloro-, *cis*-, chloride, 24:293
- OsCl₃N₄C₂₀H₁₆ · 2H₂O, Osmium(III), bis-(2,2'-bipyridine-N,N')dichloro-, *cis*-, chloride, dihydrate, 24:293

OsCoH₄O₉C₁₄H₁₅, Osmium, nonacarbonyl-(η⁵-cyclopentadienyl)-tetra-µ-hydridocobalttri-, 25:197

OsF₆, Osmium fluoride(VI), 24:79

OsF₆N₅O₆S₂C₂₇H₁₉, Osmium(II), (2,2'-bipyridine-N,N')(2,2':6,2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, trifluoromethanesulfonate, 24:303

 $OsF_{c}N_{5}O_{7}S_{2}C_{27}H_{21} \cdot H_{2}O$, Osmium(II), aqua(2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')-, bis(trifluoromethanesulfonate), monohydrate, 24:304

OsF₉N₄O₉S₃C₂₃H₁₆, Osmium(III), bis(2,2'bipyridine-N,N')bis(trifluoromethanesulfonato-O)-, cis-, trifluoromethanesulfonate, 24:295

OsF₉N₄O₁₁S₃C₂₃H₂₀, Osmium(III), diaquabis(2,2'-bipyridine-N,N')-, cis-, tris-(trifluoromethanesulfonate), 24:296

OsF₉N₅O₉S₃C₃H₁₅, Osmium(III), pentaammine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:271

OsF₉N₃O₉S₃C₂₈H₁₉, Osmium(III), (2,2'-bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301

OsF₉N₃O₁₀S₃C₃H₁₇, Osmium(III), pentaammineaqua-, tris(trifluoromethanesulfonate), 24:273

OsF₉N₃O₁₀S₃C₂₈H₃₁ · 2H₂O, Osmium(III), aqua(2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')-, tris(trifluoromethanesulfonate), dihydrate, 24:304

OsF₉N₆O₉S₃C₃H₁₈, Osmium(III), hexaammine-, tris(trifluoromethanesulfonate), 24:273

OsF₉N₆O₉S₃C₅H₁₈, Osmium(III), (acetonitrile)pentaammine-, tris(trifluoromethanesulfonate), 24:275

OsIO₂C₇H₅, Osmium, dicarbonyl(n⁵-cyclopentadienyl)iodo-, 25:191

OsIO₂C₁₂H₁₅, Osmium, dicarbonyliodo(η⁵pentamethylcyclopentadienyl)-, 25:191

Os₂I₂O₆C₆, Osmium(I), hexacarbonyl-di-µiododi-, 25:188

Os₂I₂O₈C₈, Osmium(I), bis[tetracarbonyliodo-, 25:190 Os₃CoH₂O₁₀C₁₅H₅, Osmium, μ-carbonylnonacarbonyl(η⁵-cyclopentadienyl)-di-μhydrido-cobalttri-, 25:195

Os₃CoH₃O₉C₁₄H₁₅, Osmium, nonacarbonyl-(η⁵-cyclopentadienyl)-tri-µ-hydrido, cobalttri-, 25:197

Os₃FeO₁₃C₁₃H₃, Osmium, tridecacarbonyldihydridoirontri-, 21:63

Os₃HNO₁₁P₂C₄₇H₃₀, Osmate(1 –), μ-carbonyl-decacarbonyl-μ-hydrido-triμ-nitrido-bis(triphenylphosphorus)(1 +), 25:193

Os₃O₁₃RuC₁₃H₂, Osmium, tridecacarbonyldihydridorutheniumtri-, 21:64

PBrNSiC₃H₅, Phosphorimide bromide, P,Pdimethyl-N-(trimethylsilyl)-, 25:70

PC₂H₇, Phosphine, dimethyl-, 21:180

PC₃H₉, Phosphine, trimethylcobalt and rhodium complexes, 25:158– 160

iridium complex, 21:102

iron complex, 25:155

nickel and rhodium complexes, 25:174, 176

tungsten complexes, 24:196, 198

PC₄H₁₁, Phosphine, *tert*-butylnickel and rhodium complexes, 25:174, 176

PC₆H₁₅, Phosphine, triethylnickel complex, 21:9 platinum complex, 25:102 platinum(0) complex, 24:214 tungsten complexes, 24:196, 198

PC₈H₁₁, Phosphine, dimethylphenyl-, 22:133

iridium complex, 21:97 tungsten complexes, 24:196, 198

PC₈H₁₉, Phosphine, di-*tert*-butyl-, 25:177 molybdenum complex, 25:188 rhodium complexes, 25:171–172

PC₅H₂₁, Phosphine, tris(1-methylethyl)platinum(0) complex, 24:215

PC₁₀H₁₅, Phosphine, diethylphenylplatinum(0) complex, 24:216

PC₁₂H₂₇, Phosphine, tributylchromium complexes, 23:38

PC₁₃H₁₃, Phosphine, methyldiphenyltungsten complex, 24:198

- PC₁₆H₂₇, Phosphine, tri-tert-butyl-, 25:155 PC₁₈H₁₅, Phosphine, triphenyl-, 21:78; 23:38; 24:216 cobalt complexes, 23:24-25 cobalt, iridium, and rhodium complexes, 22:171, 173, 174 iridium complex, 21:104 palladium complex, 22:169 palladium and platinum complexes, 21:10 platinum complex, 25:103; 24:196 rhenium and tungsten complexes, ruthenium complex, 21:29 PC₁₈H₃₀, Phosphine, triphenyliron complex, 25:154 PC₁₈H₃₃, Phosphine, tricyclohexyliridium complex, 24:173, 175 iron complex, 25:154 platinum complex, 25:104 PCINC₂₄H₂₁, Phosphonium, 2-(aminophenyl)triphenylchloride, 25:130 PClRh₂C₂₄H₄₂, Rhodium, μ -chlorobis(η^4 -1,5-cyclooctadien)(µ-di-tert-butylphosphido)di-, 25:172 PClSiC₁₀H₁₄, Phosphinous chloride, [phenyl(trimethylsilyl)methylene]-, 24:111 PClSi₄C₁₄H₃₆, Phosphine, [bis(trimethylsilyl)methylene][chlorobis(trimethylsilyl)methyl]-, 24:119
- _____, Phosphorane, bis[bis(trimethylsilyl)methylene]chloro-, 24:120
- PCl₂C₁₉H₁₅, Phosphorane, (dichloromethylene)triphenyl-, 24:108
- PCl₄C₁₉H₁₅, Phosphonium, triphenyl(trichloromethyl)-, chloride, 24:107
- PFO₃C₄H₁₀, Phosphorofluoridic acid, diethyl ester, 24:65
- PF₃NOSiC₇H₁₇, Phosphinimidic acid, P, Pdimethyl-N-(trimethylsilyl)-
- 2,2,2-trifluoroethyl ester, 25:71 $PF_6IrC_{18}H_{22}$, Phosphate(1 –), hexafluoro-, (η⁴-1,5-cyclooctadiene)bis(pyridine)-
- iridium(I), 24:174
- $PF_6NC_{16}H_{36}$, Phosphate(1-), hexafluoro-, tetrabutylammonium, 24:141
- PF₆NSe₂C₇H₁₂, Methanaminium, N-(4,5-dimethyl-1,3-diselenol-2-ylidene)-Nmethyl-, hexafluorophosphate, 24:133

- PF₆Se₈C₂₀H₂₄, Phosphate(1), hexafluoro-, 4,4',5,5'-tetramethyl-2,2'-bi-1,3-diselenolylidene radical ion(1+) (1:2), 24:142
- PF₁₁O₃C₆H₆, Phosphane, diffuorotris(2,2,2trifluoroethoxy)-, *trans*-, 24:63
- PFeO₄C₁₆H₂₇, Iron, tetracarbonyl(tri-tert-butylphosphine)-, 25:155
- PKN₂O₆C₁₄H₂₄, Potassium(1+), (1,4,7,10,-13,16-hexaoxacyclooctadecane)dicyanophosphide(1-), 25:126
- PMo₂O₄C₂₂H₂₉, Molybdenum, tetracarbonylbis(η⁵-cyclopentadienyl)(μ-di-*tert*-butylphosphido)-μ-hydrido-di-, 25:168
- PNC₂H₆, Poly[nitrilo(dimethylphosphoranylidene)], 25:69, 71
- PNC₇H₈, Poly[nitrilo(methylphenylphosphranylidyne)], 25:69, 72-73
- PNC₁₈H₁₆, Benzeneamine, 2-(diphenylphosphino)-, 25:129
- PNOC₁₂H₁₂, Phosphinic amide, diphenyllanthanoid complexes, 23:180
- PNOSiC₁₂H₁₉, Phosphinimidic acid, Pmethyl-P-phenyl-N-(trimethylsilyl)-2,2,2-trifluoroethyl ester, 25:72
- PNO₄C₈H₁₈, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]-, dimethyl ester, 24:101
- PNO₄C₁₀H₂₂, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]-, diethyl ester, 24:101
- PNO₄C₁₂H₂₆, Phosphonic acid, [(N,N-diethylcarbamoyl)methyl]-, bis(1-methylethyl) ester, 24:101
- PNO₄C₁₄H₃₀, Phosphonic acid, [(N,N-didiethylcarbamoyl)methyl]dibutyl ester, 24:101 dihexyl ester, 24:101
- PNSiC₁₃H₂₇, Phosphinous amide, P-methyl-P-phenyl-N,N-bis(trimethylsilyl)-, 25:72
- PNSi₂C₈H₂₄, Phosphinous amide, P, P-dimethyl-N, N-bis(trimethylsilyl)-, 25:69
- PN₂SiC₁₄H₂₇, Phosphonous diamide, N,N,N',N'-tetramethyl-P[phenyl(trimethylsilyl)methyl-] 24:110
- PN₃C₉H₁₂, Propionitrile, 3,3',3''-phosphinidynetri-, nickel complex, 22:113, 115

POC₁₈H₁₅, Phosphine, triphenyl-, oxide cerium complexes, 23:178

- PO₃C₃H₉, Trimethyl phosphite chromium complexes, 23:38 cobalt and rhodium complexes, 25:162-163
- rhodium complexes, 23:123, 124
- PO₃C₁₈H₁₅, Triphenyl phosphite chromium complexes, 23:38
- $PO_{39}W_{11}$, Undecatungstophosphate(7-) thorium and uranium complexes, 23:186
- PRhC₃₂H₃₈, Rhodium, (1,4-butanediyl)(η⁵pentamethylcyclopentadienyl)(triphenylphosphine)-, 22:173
- PS₂C₄H₁₁, Phosphinodithioic acid, diethylmolybdenum complexes, 23:120, 121
- PS₃C₁₂H₂₇, Phosphorotrithious acid tributyl ester, 22:131
- P₂C₂H₁₆, Phosphine, 1,2-ethanediylbis(dimethyliridium complex, 21:100
- P₂C₅H₁₄, Phosphine, methylenebis(dimethyl-, 25:121
- P₂C₆H₁₆, Phosphine, ethylenebis(dimethylhazards in preparation of, 23:199
- P₂C₂₅H₂₂, Phosphine, methylenebis(diphenylpalladium and rhodium complexes, 21:47-49
- P₂C₂₆H₂₄, Phosphine, 1,2-ethanediylbis(diphenyl
 - iron complexes, 21:91-94; 24:170, 172 molybdenum and tungsten complexes, 23:10-13
 - palladium complex, 22:167
 - platinum(0) complex, 24:216
- P₂C₂₇H₂₆, Phosphine, 1,3-propanediylbis-(diphenyl
 - platinum complex, 25:105
- P₂C₃₇H₃₀, Phosphorane, methanetetraylbis-[triphenyl-, 24:115
- P₂ClN₃C₁₂H₃₀, 1,3,2λ³,4λ³-Cyclodiphosphazane, 2-chloro-1,3-diisopropyl-4-[isopropyl(trimethylsilyl)amino]-, 25:10
- P₂ClN₃C₂₀H₁₈, 1,3,5,2λ⁵,4λ⁵,Triazadiphosphinine, 2-chloro-2-methyl-4,4,6-triphenyl-, 25:29
- $P_2CIN_3SC_{24}H_{20}$, $1\lambda^4$, 2, 4, 6, $3\lambda^5$, $5\lambda^5$ -Thiatriazadiphosphorine, 1-chloro-3, 3, 5, 5-tetraphenyl-, 25:40

- P₂Cl₂N₂C₆H₁₄, Cyclodiphosphazane, 2,4dichloro-1,3-diisopropyl-, 25:10
- P₂Cl₂N₂C₈H₁₈, Cyclodiphosphazane, 1,3-ditert-butyl-2,4-dichloro-, 258
- $P_2Cl_2N_3C_{19}H_{15}, 1,3,5,2\lambda^5,4\lambda^5, Triazadiphos$ phinine, 2,4-dichloro-2,4,6-triphenyl-, 25:24
- P₂Cl₄CH₂, Phosphine, methylenebis(dichloro-, 25:121
- P₂Cl₄C₂H₄, Phosphine, 1,2-ethanediylbis(dichloro-, 23:141
- P₂Cl₄NC₁₃H₁₃, Phosphorus(1+), 1,1,2-trichloro-1-methyl-2,2-diphenyl-µ-nitridochloride, 25:26
- $P_2Cl_4N_4C_3H_6, 1,3,5,2\lambda^5,4\lambda^5$ -Triazadiphosphinine, 2,2,4,4-tetrachloro-6-(dimethylamino)-, 25:27
- P₂Cl₆N, Phosphorus(1+), μ-nitrido-bis-(trichloro-
- hexachloroantimonate(1-), 25:25 $P_2CoC_{11}H_{23}$, Cobalt(I), (η^5 -cyclopentadienyl)-
- bis(trimethylphosphine)-, 25:160 $P_2CoO_4C_{20}H_{36}$, Cobalt, tetracarbonylbis(μ -
- COC_{20} COC_{20} COC_{30} , COCOL, C
- P₂CoO₆C₁₁H₂₃, Cobalt(I), (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:162
- P₂F₆IrNC₃₁H₃₀, Phosphate(1-), hexafluoro-, (η⁴-1,5-cyclooctadiene)(pyridene)(tricyclohexylphosphine)iridium(I), 24:173, 175
- $P_2F_{12}N_6RuC_{30}H_{24}$, Ruthenium(II), tris(2,2'bipyridine)
 - bis[hexafluorophosphate(1-)], 25:109
- P₂F₁₂N₆RuC₃₂H₂₄, Ruthenium(II), (2,2'-bipyridine)bis(1,10-phenanthroline)bis[hexafluorophosphate(1-)], 25:108
- P₂FeO₃C₉H₁₈, Iron, tricarbonylbis(trimethylphosphine)-, 25:155
- P₂FeO₃C₂₇H₅₄, Iron, tricarbonylbis(tributylphosphine)-, 25:155
- P₂FeO₃C₃₉H₃₀, Iron, tricarbonylbis(triphenylphosphine)-, 25:154
- P₂HNO₁₁Os₃C₄₇H₃₀, Osmate(1-), μ-carbonyl-decarbonyl-μ-hydrido-triμ-nitrido-bis(triphenylphosphorus)(1+), 25:193
- P₂H₄O₅, Diphosphorous acid platinum complex, 24:211

- P₂K₁₀O₇₈ThW₂₂, Thorate(IV), bis(undecatungstophosphato)-, decapotassium, 23:189
- P₂K₁₀O₇₈UW₂₂, Uranate(IV), bis(undecatungstophosphato)-, decapotassium, 23:186
- $P_2NC_{36}H_{30}$, Phosphorus(1+), μ -nitrido-bis-(triphenyl-
 - 1λ⁴,3λ⁴,5λ⁴,7-tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5-tetraenide, 25:31
 - $1\lambda^4$,3,5,2,4,6-trithiatriazenide, 25:32
- $P_2N_2S_3C_{36}H_{30}$, Phosphorus(1 +), μ -nitrido-bis-(triphenyl
 - sulfido(disulfido)nitrate(1-), 25:37
- $P_2N_2S_4C_{36}H_{30}$, Phosphorus(1 +), μ -nitrido-bis-(triphenyl-
- bis(disulfido)nitrate(1-), 25:35
- P₂N₄NiO₆C₃₆H₃₂, Nickel(II), bis[2-(diphenylphosphino)benzeneamine]dinitrate, 25:132
- P₂N₄O₂C₆H₁₂, 1*H*,5*H*-[1,4,2,3]Diazadiphospholo[2,3-*b*][1,4,2,3]diazadiphosphole-2,6-(3*H*,7*H*)-dione, 1,3,5,7-tetramethyl-, 24:122
- $P_2N_6C_{13}H_{36}$, Phosphoranetriamine, P, P'methanetetraylbis[N,N,N',N',-N'',N''-hexamethyl-, 24:114
- P₂OPtC₁₈H₃₆, Platinum(II), hydroxophenylbis(triethylphosphine)trans-, 25:102
- P₂OPtC₂₈H₃₀, Platinum(II), hydroxomethyl-[1,3-propanediylbis(diphenylphosphine)]trans-, 25:105
- P₂OPtC₃₇H₇₀, Platinum(II), hydroxomethylbis(tricyclohexylphosphine)]trans-, 25:104
- P₂OPtC₄₂H₃₆, Platinum(II), hydroxophenylbis(triphenylphosphine)trans-, 25:105
- P₂O₃FeC₃₉H₆₆, Iron, tricarbonylbis(tricyclohexylphosphine)-, 25:154
- P₂O₆RhC₁₁H₂₃, Rhodium(I), (η⁵-cyclopentadienyl)bis(trimethyl phosphite)-, 25:163
- $P_2O_{61}W_{17}$, Heptadecatungstodiphosphate-(10-)
- thorium and uranium complexes, 23:188
- P₂PdC₃₀H₃₂, Palladium, (1,4-butanediyl)[1,2ethanediylbis(diphenylphosphine)]-, 22:167

- P₂PdC₄₀H₃₈, Palladium, (1,4-butanediyl)bis-(triphenylphosphine)-, 22:169
- P₂PtC₁₄H₃₄, Platinum(0), (ethene)bis(triethylphosphine)-, 24:214
- P₂PtC₂₀H₄₆, Platinum(0), (ethene)bis[tris(1methylethyl)phosphine]-, 24:215
- P₂PtC₂₂H₃₄, Platinum(0), bis(diethylphenylphosphine)(ethene)-, 24:216
- P₂PtC₂₈H₃₈, Platinum(0), [1,2-ethanediylbis(diphenylphosphine)](ethene)-, 24:216
- P₂PtC₃₈H₃₄, Platinum(0), (ethene)bis(triphenylphosphine)-, 24:216
- P₂RhC₁₁H₂₃, Rhodium(I), (η⁵-cyclopentadienyl)bis(trimethylphosphine)-, 25:159
- P₂RuC₄₉H₄₀, Ruthenium(II), (η⁵-cyclopentadienyl)(phenylethyyl)bis(triphenylphosphine)-, 21:82
- $P_2S_2C_4H_{12}$, Diphosphine, tetramethyl-, disulfide
 - hazards in preparation of, 23:199
- P₂S₄ZnC₇₂H₆₀, Zincate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:25
- P₃C₁₂H₂₇, Cyclotriphosphane, tri-*tert*-butyl-, 25:2
- P₃Cl₃N₃C₆H₁₅, 1,3,5,2,4,6-Triazatriphosphorinane, 2,4,6-trichloro-1,3,5-triethyl-, 25:13
- P₃Cl₃N₆C₆H₁₂, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4-tris(1-aziridinyl)-4,6,6-trichloro-, 25:87
- P₃Cl₄N₃SiC₅H₁₄, Poly[2,2,4,4-tetrachloro-6methyl-6-[(trimethylsilyl]catenatriphosphazene-1,6-diyl]-, 25:63
 - _____, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)-methyl]-, 25:61
- P₃Cl₄N₅C₄H₈, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,4-bis(1-aziridinyl)-2,4,6,6-tetrachloro*cis*- and *trans*-, 25:87
- P₃Cl₅C₂H₄, Phosphine, chlorobis[(dichlorophosphino)methyl]-, 25:121
- P₃Cl₅N₃OC₂H₃, Poly[2,2,4,4,6-pentachloro-6-(ethenyloxy)-1,3,5,2λ⁵,4λ⁵,6λ⁵-triazatriphosphorine], 25:77
- _____, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4,6-pentachloro-6-(ethenyloxy)-, 25:75

- P₃Cl₅N₄C₂H₄, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2-(1-aziridinyl)-2,4,4,6,6pentachloro-, 25:87
- P₃F₁₂N₃O₄C₁₀H₁₄, Poly[2,2-dimethyl-4,4,6,6tetrakis(2,2,2-trifluoroethoxy)catenatriphosphazene-1,6-diyl], 25:67
- P₃F₁₂N₃O₄SiC₁₃H₂₂, Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethosy)-2-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl], 25:64
- P₃HO₂Rh₂C₂₆H₅₆, Rhodium, dicarbonylbis(ditert-butylphosphine)(μ-di-tert-butylphosphido)-μ-hydrido-di-, 25:171
- P₃N₃Cl₄C₄H₈, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2-bis(1-aziridinyl)-4,4,6,6tetrachloro-, 25:87
- $P_3N_9C_8H_{24}$, 1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 -Triazatriphosphorine
 - 2,2-bis(1-aziridinyl)-4,4,6,6-tetrakis(methylamino)-, 25:89
 - 2,4-bis(1-aziridinyl)-2,4,6,6-tetrakis(methylamino)-, cis- and trans-, 25:89
- $P_4Cl_4N_6C_4H_8, 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5-Tetra-azatetraphosphocine, 2,2-bis(1-aziridinyl)-4,4,6,6,8,8-hexachloro, 25:91$
- $P_4Cl_5N_7C_6H_{12}, 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5\text{-Tetra-azatetraphosphocine}$
 - 2,2,6-tris(1-aziridinyl)-4,4,6,8,8-pentachloro-, 25:91
 - 2,4,6-tris(1-aziridinyl)-2,4,6,8,8-pentachloro-, 2,6-cis-4-trans- and 2,4-cis-6trans-, 25:91
- $P_4Cl_6N_6C_4H_8$, 1,3,5,7,2 λ^5 , 4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine
 - 2,4-bis(1-aziridinyl)-2,4,6,6,8,8-hexachloro-, cis and trans-, 25:91
 - 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexachloro-, cis and trans-, 25:91
- P₄Cl₆N₆C₄H₁₂, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,8λ⁵-Tetraazatetraphosphocine, 2,4,4,6,8,8-hexachloro-*trans*-2,6-bis(ethylamino)-, 25:16
- $P_4Cl_6N_6C_8H_{20}, 1,3,5,7,2\lambda^5,4\lambda^5,6\lambda^5,8\lambda^5\text{-Tetra-axatetraphosphocine}$
 - 2,4-bis(tert-butylamino)-2,4,6,6,8,8-hexachloro-, 25:21
 - 2,6-bis(*tert*-butylamino)-2,4,4,6,8,8-hexachloro-, 25:21
- $P_4Cl_7N_5C_2H_4$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine, 2-(1-aziridinyl)-2,4,4,6,6,8,8-heptachloro-, 25:91

- $P_4Fe_3N_2O_{11}C_{83}H_{60}$, Ferrate(2-), undecacarbonyltri-, bis[μ -nitrido-bis(triphenylphosphorus)(1 +)], 24:157
- P4K₁₆O₁₂₂ThW₃₄, Thorate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:190
- P4K₁₆O₁₂₂UW₃₄, Uranate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:188
- P4N4S₈C₁₆H48, Tetraphosphate(III), cyclooctathio-
- diethylammonium (1:4), 25:5 $P_4N_6C_{18}H_{42}$, 2,4,6,8,9,10-Hexaaza-
- 1λ⁵,3λ⁵,5λ⁵,7λ⁵-tetraphosphatricyclo-[5.1.1.1_{3.5}]decane, 2,4,6,8,9,10-hexaisopropyl-, 25:9
- $P_4N_{11}C_{14}H_{41}$, 2,4,6,8,9-Pentaaza- $1\lambda^5$, $3\lambda^5$, $5\lambda^5$,-7 λ^5 -tetraphosphabicyclo[3.3.1]nona-1,3,5,7-tetraene
 - 9-ethyl-1,3,3,5,7,7-hexakis(ethylamino)-, 25:20
 - 3,3,5,7,7-pentakis(dimethylamino)-9ethyl-1-(ethylamino)-, 25:18
- P₄N₁₂C₁₀H₃₂, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,6λ⁵.Tetraazatetraphosphocine, 2,6-bis(1-aziridinyl)-2,4,4,6,8,8-hexakis(methylamino)-, *trans*-, 25:91
- P₄N₁₂C₃₂H₈₀, 1,3,5,7,2λ⁵,4λ⁵,6λ⁵,6λ⁵.Tetraazatetraphosphocine, 2,2,4,4,6,6,8,8octakis(*tert*-butylamino)-, 25:23
- P₅C₅H₁₅, Cyclopentaphosphine, pentamethyl-, 25:4
- $P_6Mo_2N_{12}O_{12}C_{24}H_{24}, Molybdenum, hexacarbonyl-tris[\mu-1,3,5,7-tetramethyl-1H,5H-[1,4,2,3]diazadiphospholo[2,3-b][1,4,2,3]diazadiphosphole-2,6-(3H,7H)dione]-di-, 24:124$
- P₆Ni₂C₂₀H₅₆, Nickel, bis(µ-tert-butylphosphido)tetrakis(trimethylphosphine)di-(Ni-Ni), 25:176
- $P_6Rh_2C_{20}H_{56}$, Rhodium, bis(μ -tert-butylphosphido)tetrakis(trimethylphosphine)di-($Rh^{-2}-Rh$), 25:174
- $P_{14}N_{12}C_{16}H_{48}$, 1,3,5,7,2 λ^5 ,4 λ^5 ,6 λ^5 ,8 λ^5 -Tetraazatetraphosphocine, 2,4,4,6,8,8hexakis(dimethylamino)-2,6-bis(ethylamino)-2,6-bis(ethyl-

trans-, 25:19

- PbCl₆N₂C₁₀H₁₂, Plumbate(IV), hexachloro-, dipyridinium, 22:149
- PbO₂, Lead oxide

solid solns. with ruthenium oxide (Ru₂O₃), pyrochlore, 22:69

- Pb_{2.67}Ru_{1.33}O_{6.5}, Lead ruthenium oxide, pyrochlore, 22:69
- PdBr₂N₄C₁₂H₃₀, Palladium(II), [N,N'-bis[2-(dimethylamino)ethyl]-N', N'-dimethyl-1,2-ethandiamine]bromo-, bromide, 21:131
- PdClNPSe₂C₂₃H₂₅, Palladium, chloro(N, Ndiethyldiselenocarbamato)(triphenylphosphine)-, 21:10
- PdCl₂N₄C₁₂H₃₀, Palladium(II), [N,N-bis-[2-(dimethylamino)ethyl]-N',N'-dimethyl-1,2-ethanediamine]chloro-, chloride, 21:129
- $PdCl_2N_4O_{10}C_{20}H_{24}$, Palladium(II), dichlorobis(inosine)-, *cis* and *trans*-, 23:52, 53
- PdCl₂N₁₀O₁₀C₂₀H₂₄, Palladium(II), dichlorobis(guanosine)-, *cis*- and *trans*-, 23:52, 53
- PdF₁₂N₄P₂C₁₂H₃₀, Palladium(II), [N,N'bis[2-(dimethylamino)ethyl]-N,N'-dimethyl-1,2-ethanediamine]-, bis(hexaflurophosphate), 21:133
- PdI₂N₄C₁₂H₃₀, Palladium(II), [N, N-bis-[2-(dimethylamino)ethyl-N' N' -dimethyl-1,2-ethanediamine]iodo-, iodide, 21:130
- PdN₂C₁₀H₂₄, Palladium, (1,4-butanediyl)(N,-N,N',N'-tetramethyl-1,2-ethanediamine)-, 22:168
- $PdN_2C_{14}H_{16}$, Palladium, (2,2'-bipyridine)-(1,4-butanediyl)-, 22:170
- PdN₂S₁₁H₈, Palladate(II), bis(hexasulfido)-, diammonium, nonstoichiometric, 21:14
- PdN₄O₁₀C₂₀H₂₂, Palladium(II), bis(inosinato)-, cis- and trans-, 23:52, 53
- PdN₆S₂C₁₄H₃₀, Palladium(II), [*N*,*N*-bis[2-(dimethylamino)ethyl]-*N'*-*N'*-dimethyl-1,2-ethanediamine](thiocyanato-*N*)-, thiocyanate, 21:132
- PdN₁₀O₁₀C₂₀H₂₄, Palladium(II), bis(guanosinato)-, cis and trans-, 23:52, 53
- PdP₂C₃₀H₃₂, Palladium, (1,4-butanediyl)-[1,2-ethanediylbis(diphenylphosphine)]-, 22:167

- PdP₂C₄₀H₃₈, Palladium, (1,4-butanediyl)bis-(triphenylphosphine)-, 22:169
- Pd₂Cl₂P₄C₅₀H₄₄, Palladium(I), dichlorobis-µ-[methylenebis(diphenylphosphine)]-di-, (*Pd-Pd*), 21:48
- Pd₂Cl₂P₄C₅₁H₄₄, Palladium(I), μ-carbonyldichlorobis[methylenebis(diphenylphosphine)]di-, 21:49
- PrCl₃, Praseodymium chloride, 22:39
- PrF₁₈N₆O₆P₁₂C₇₂H₇₂, Praseodymium(III), hexakis(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:180
- PrN₃O₁₃C₈H₁₆, Praseodymium(III), trinitrato(1,4,7,10-tetraoxacyclododecane)-, 23:151
- PrN₃O₁₄C₁₀H₂₀, Praseodymium(III), trinitrato(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- PrN₃O₁₅C₁₂H₂₄, Praseodymium(III), (1,4,7, 10,13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- PrN₄C₄₈H₃₆, Praseodymium, [5,10,15,20tetrakis(4-methylphenyl)phorphyrinato(2-)]-, 22:160
- PrN₄O₂C₄₉H₃₅, Praseodymium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2-)]-, 22:160
- PrN₄O₂C₃₃H₄₃, Praseodymium, (2,4-pentanedionato)[5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2-)]-, 22:160
- Pr₂Cl₇Cs, Cesium praseodymium chloride, 22:2
- Pr₄N₁₂O₅₄C₃₆H₇₂, Praseodymium(III), tris(1,4,7,10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- Pt, Platinum, microcrystals, 24:238
- PtBClF₄S₃C₆H₁₈, Platinum(II), chlorotris(dimethyl sulfide)-, tetrafluoroborate(1-), 22:126
- PtClH₈N₃O₄, Platinum(II), diammineaquachloro-, *trans*-, nitrate, 22:125
- $PtCl_{0.30}Cs_2N_4C_4$, Platinate, tetracyano-, cesium chloride (1:2:0.30), 21:142
- PtCl_{0.30}N₄Rb₂C₄ · 3H₂O, Platinate, tetracyano-, rubidium chloride (1:2:0.30), trihydrate, 21:145
- PtClNPSe₂C₂₃H₂₅, Platinum(II), chloro-(N,N-diethyldiselenocarbamato)(triphenylphosphine)-, 21:10
- PtCl₂H₆IN₂Pt, Platinum(II), diamminechloroiodo-, *trans*-, chloride, 22:124

PtCl₂H₉H₃, Platinum(II), triamminechloro-, chloride, 22:124

PtCl₂N₂C₁₀H₂₄, Platinum(II), [N,N'-bis(1methylethyl)-1,2-ethanediamine)dichloro(ethene)-, 21:87

PtCl₂N₂C₁₂H₂₈, Platinum(II), dichloro(ethene)(N,N,N',N'-tetraethyl-1,2-ethanediamine)-, 21:86, 87

PtCl₂N₂C₂₀H₂₈, Platinum(II), [(S,S)-N,N'bis(phenylethyl)-1,2-ethanediamine]dichloro(ethene)-, 21:87

PtCl₂N₂C₂₂H₃₂, Platinum(II), dichloro[(R,R)-N,N'-dimethyl-N,N'-bis(1-phenylethyl)-1,2-ethanediamine](ethene)-, 21:87

- PtCl₂N₂PtC₁₂H₂₈, Platinum(II), dichloro-[N,N'-dimethyl-N,N'-bis(1-methylethyl)1,2-ethanediamine)(ethene)-, 21:87
- PtCl₃NSC₁₈H₄₂, Platinate(II), trichloro(dimethyl sulfide)-, tetrabutylammonium, 22:128

PtCl₄H₁₅N₅, Platinum(IV), pentaamminechloro-, trichloride, 24:277

PtCl₆N₂O₂, Platinate(IV), hexachloro-, dinitrosyl, 24:217

PtCs₂N_{4.75}C₄ · XH₂O, Platinate, tetracyano-, cesium azide (1:2:0.25), hydrate, 21:149

 $PtCs_3N_4O_{3.68}S_{0.92}C_4H_{0.46}$, Platinate, tetracyano-, cesium [hydrogen bis(sulfate)] (1:3:0.46), 21:151

PtF_{0.54}N₁₀C₆H_{12.27} · 1.8H₂O, Platinate, tetracyano-, guanidinium (hydrogen difluoride) (1:1:0.27), hydrate (1:1.8), 21:146

PtF_{0.60}K₂N₄PtC₄H_{0.30} · 3H₂O, Platinate, tetracyano-, potassium (hydrogen difluoride) (1:2:0.30), trihydrate, 21:147

PtF₁₂N₅O₁₂S₄C₄H₁₅, Platinum(IV), pentaamine(trifluoromethanesulfonato-*O*)-, tris(trifluoromethanesulfonate), 24:278

PtH₈K₄O₂₀P₈, Platinate(II), tetrakis[dihydrogen diphosphito(2-)-], tetrapotassium, 24:211

PtH₈O₄, Platinum(II), tetraaqua-, 21:192

PtI₄K₂ · 2H₂O, Platinate(II), tetraiododipotassium, dihydrate, 25:98

PtNPSeC₂₄H₄₈, Platinum(II), (*N*,*N*-diethyldiselenocarbamato)methyl(triphenylphosphine)-, 20:10

- PtN₂S₁₀H₈, Platinate(II), bis(pentasulfido)-, bis(tetrapropylammonium), 20:13
- PtN₂S₁₅H₈, Platinate(IV), tris(pentasulfido)-, diammonium, 21:12, 13

PtN₄O₃Tl₄C₅, Platinate(II), tetracyano-, thallium carbonate (1:4:1), 21:153, 154

PtN₄Tl₂C₄, Platinate(II), tetracyano-, dithallium, 21:153

PtOP₂C₁₈H₃₆, Platinum(II), hydroxophenylbis(triethylphosphine)trans-, 25:102

PtOP₂C₂₈H₃₀, Platinum(II), hydroxomethyl-[1,3-propanediylbis(diphenylphosphine)]trans-, 25:105

http://www.state.com/st

PtOP₂C₄₂H₅₆, Platinum(II), hydroxophenylbis(triphenylphosphine)trans-, 25:102

- $PtP_2C_{14}H_{34}$, Platinum(0), (ethene)bis-(triethylphosphine)-, 24:214
- PtP₂C₂₀H₄₆, Platinum(0), (ethene)bis[tris(1methylethyl)phosphine]-, 24:215
- PtP₂C₂₂H₃₄, Platinum(0), bis(diethylphenylphosphine)(ethene)-, 24:216
- PtP₂C₂₈H₂₈, Platinum(0), [1,2-ethanediylbis-(diphenylphosphine)](ethene)-, 24:216
- PtP₂C₃₈H₃₄, Platinum(0), (ethene)bis-(triphenylphosphine)-, 24:216

Pt₂Cl₄S₂C₄H₁₂, Platinum(II), di- -chlorodichlorobis(dimethyl sulfide)di-, 22:128

Pt₄N₁₇O₉C₂₀H₄₀ · H₂O, Platinum(2.25 +), bis[bis(μ-2-pyridonato-N¹:O²)bis-(diamminepentanitrate, monohydrate, 25:95

RbCoN₂O₈C₁₀H₁₂, Cobaltate(III), [N,N'-1,2-ethanediylbis[N-(carboxymethyl)glycinato](4-)]-, rubidium, 23:100

RbCoN₂O₈C₁₁H₁₄, Cobaltate(III), $[[R(-)]-N, N'-(1-methyl-1,2-ethanediyl)bis[N-(carboxymethyl)glycinato](4-)]-, [\Delta-(+)]-, rubidium, 23:101$

 $\begin{aligned} & \text{RbCoN}_2 O_8 C_{14} H_{18}, \text{ Cobaltate(III)}, \\ & [[R, R(-)] - N, N' - 1, 2 - cyclohexanediyl-bis[N-(carboxymethyl)glycinato](4 -)]-, \\ & [\Delta - (+)]-, \text{ rubidium, } 23:97 \end{aligned}$

- $Rb_2Cl_{0.30}N_4PtC_4 \cdot 3H_2O$, Platinate, tetracyano-, rubidium chloride (1:2:0.30), trihydrate, 21:145
- ReBrO₅C₅, Rhenium, bromopentacarbonyl-, 23:44
- ReClN₄O₂C₂₀H₂₀, Rhenium(V), dioxotetrakis(pyridine)-, chloride, trans-, 21:116
- ReClN₄O₆C₂₀H₂₀, Rhenium(V), dioxotetrakis(pyridine)-, perchlorate, *trans*-, 21:117
- ReClO₅C₅, Rhenium, pentacarbonylchloro-, 23:42, 43
- ReCl₃NP₂C₄₂H₃₅, Rhenium(V), trichloro-(phenylimido)bis(triphenylphosphine)-, 24:196
- ReCLNC₆H₅, Rhenium(VI), tetrachloro-(phenylimido)-, 24:195
- ReIO₅C₅, Rhenium, pentacarbonyliodo-, 23:44
- ReLiO₃, Lithium rhenium trioxide, 24:205
- ReLi_{0.2}O₃, Lithium rhenium trioxide, 24:203, 206
- ReLi₂O₃, Dilithium rhenium trioxide, 24:203
- Re₂Cl₈N₂C₃₂H₇₂, Rhenate(III), octachlorodi-, bis(tetrabutylammonium), 23:116

RhAs₄ClC₂₀H₃₂, Rhodium(1+), bis[o-phenylenebis(dimethylarsine)]-, chloride, 21:101

RhAs₄ClO₂C₂₁H₃₂, Rhodium(1+), (carbon dioxide)bis[o-phenylenebis(dimethylarsine)]-, chloride, 21:101

RhBN₄C₄₄H₅₆, Rhodium(I), tetrakis(1-isocyanobutane)-, tetraphenylborate(1-), 21:50

RhClF₆N₄O₆S₂C₆H₁₆, Rhodium(III), chlorobis(1,2-ethanediamine)(trifluoromethanesulfonato-O)-, trans-, trifluoromethanesulfonate, 24:285

RhClN₄O₆C₆H₁₆, Rhodium(III), bis(1,2ethanediamine)(oxalato)-, perchlorate, 24:227

RhCl₃H₁₂N₄, Rhodium(III), tetraamminedichloro-, *cis*-, chloride, 24:223

RhCl₃H₁₅N₅, Rhodium(III), pentaaminechloro-, dichloride, 24:222

RhCl₃H₁₇N₅O₁₃, Rhodium(III), pentaammineaqua-, triperchlorate, 24:254

RhCl₃H₁₈N₆O₁₂, Rhodium(III), hexaammine-, triperchlorate, 24:255

- RhCl₃N₄C₄H₁₆ · HCl · 2H₂O, Rhodium(III), dichlorobis(1,2-ethanediamine)-, trans-, chloride, monohydrochloride, dihydrate, 24:283
- RhCl₃N₄C₄H₁₆ · H₂O, Rhodium(III), dichlorobis(1,2-ethanediamine)-, *cis*-, chloride, monohydrate, 24:283
- RhF₉N₄O₉S₃C₇H₁₆, Rhodium(III), bis(1,2ethanediamine)bis(trifluoromethanesulfonato-O)-, *cis*-, trifluorosulfonate, 24:285
- RhF₉N₅O₉S₃C₃H₁₅, Rhodium(III), pentaammine(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:253
- RhF₉N₅O₉S₃C₈H₂₅, Rhodium(III), pentakis(methanamine)(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:281
- RhF₉N₆O₉S₃C₃H₁₈, Rhodium(III), hexaammine-, tris(trifluoromethanesulfonate), 24:255
- RhH₁₅N₄O₈S₂, Rhodium(III), tetraammineaquahydroxo-, *cis*-, dithionate, 24:225
- RhN₃S₁₅H₁₂, Rhodate(III), tris(pentasulfido)-, triammonium, 21:15
- RhN₄O₈S₂C₄H₁₅, Rhodium(III), aquabis(1,2ethanediamine)hydroxo-, dithionate, 24:230
- RhO₆P₂C₁₁H₂₃, Rhodium(I), (η⁵-cyclopentadienyl)bis(trimethylphosphite)-, 25:163
- RhPC₃₂H₃₈, Rhodium, (1,4-butanediyl)(η⁵pentamethylcyclopentadienyl)(triphenylphosphine)-, 22:173
- RhP₂C₁₁H₂₃, Rhodium(I), (η⁵-cyclopentadienyl)bis(trimethylphosphine)-, 25:159
- Rh₂B₂N₄P₄C₁₁₈H₁₂₀, Rhodium(I), tetrakis-(1-isocyanobutane)bis[methylene(diphenylphosphine)]di-, bis[tetraphenylborate(1-)], 21:49
- Rh₂Br₄H₂₆N₈O₂, Rhodium(III), di-μ-hydroxo-bis[tetraammine-, tetrabromide, 24:226
- Rh₂Br₄N₈O₂C₈H₃₄, Rhodium(III), di-µ-hydroxo-bis[bis(1,2-ethanediamine)-, tetrabromide, 24:231
- Rh₂ClPC₂₄H₄₂, Rhodium, μ-chloro-bis(η⁴cyclooctadiene)(μ-di-tert-butylphosphido)-di-, 25:172
- Rh₂Cl₆N₈O₄C₈H₃₂, Rhodium(III), dichlorobis(1,2-ethanediamine)-, chloride perchlorate (2:1:1), 24:229

- Rh₂HO₂P₂C₂₆H₅₆, Rhodium, dicarbonylbis-(di-tert-butylphosphine)(µ-di-tert-butylphosphido)-µ-hydrido-di-, 25:171
- Rh₂O₂C₁₆H₃₆, Rhodium(I), bis(η⁴-1,5-cyclooctadiene)-di-µ-hydroxo-di-, 23:129
- Rh₂O₂C₁₈H₃₀, Rhodium(I), bis(η⁴-1,5-cyclooctadiene)-di-μ-methoxy-di-, 23:127
- Rh₂O₈P₂S₂C₁₆H₃₆, Rhodium(I), dicarbonylbis-μ-(2-methyl-2-propanethiolato)bis(trimethyl phosphite)di-, 23:124
- Rh₂O₁₂P₄S₂H₅₄, Rhodium(I), bis-μ-(2methyl-2-propanethiolato)-tetrakis² (trimethyl phosphite)di-, 23:123
- Rh₂P₆C₂₀H₅₆, Rhodium, bis(µ-tert-butylphosphido)tetrakis(trimethylphosphine)-di-
 - (Rh²-Rh), 25:174
- RuB₂F₈N₇C₄H₁₉, Ruthenium(II), pentaammine(pyrazine)-, bis[tetrafluoroborate-(1-)], 24:259
- RuC₁₀H₁₀, Ruthenium, bis(η⁵-cyclopentadienyl)-, 22:180
- RuC₁₂H₁₄, Ruthenium, (η⁶-benzene)(η⁴-1,3cyclohexadiene)-, 22:177
- RuC₁₄H₁₈, Ruthenium, bis(η^{5} -cycloheptadienyl)-, 22:179
- RuC₁₆H₂₂, Ruthenium, (η⁴-1,5-cy¢looctadiene)(η⁶-1,3,5-cyclooctatriene)-, 22:178
- RuC₁₆H, Ruthenium(0), bis(η^2 -ethylene)(η^6 hexamethylbenzene)-, 21:76
- RuC₁₈H₂₆, Ruthenium(0), (η⁴-1,3-cyclohexadiene)(η⁶-hexamethylbenzene)-, 21:77
- RuClP₂C₄₁H₃₅, Ruthenium(II), chloro(η⁵-cyclopentadienyl)bis(triphenylphosphine)-, 21:78
- RuCl₂N₂O₂C₁₂H₈, Ruthenium(II), dicarbonyldichloro(2,2'-bipyridine)-, 25:108
- RuCl₂N₄C₂₀H₁₆ · 2H₂O, Ruthenium(II), bis-(2,2'-bipyridine-N,N')dichloro-, *cis*-, dihydrate, 24:292
- RuCl₂N₅C₂₅H₁₉ · 2.5H₂O, Ruthenium(II), (2,2'-bipyridine-*N*,*N*')chloro(2,2': 6',2''-terpyridine-*N*,*N*',*N*'')-, chloride, 2.5 hydrate, 24:300
- RuCl₂N₆C₃₀H₃₄ · 6H₂O, Ruthenium(II), tris-(2,2'-bipyridine)-, dichloride, hexahydrate, 21:127
- RuCl₂N₇C₄H₁₉, Ruthenium(II), pentaammine(pyrazine)-, dichloride, 24:259

- RuCl₃H₁₅N₅, Ruthenium(III), pentaamminechloro-, dichloride, 24:255
- RuCl₃N₄C₂₀H₁₆ · 2H₂O, Ruthenium(III), bis-(2,2'-bipyridine-N, N')dichloro-, *cis*-, chloride, dihydrate, 24:293
- RuCo₃HO₁₂C₁₂, Cobalt, dodecacarbonylhydridorutheniumtri-, 25:164
- RuF₆N₅O₆S₂C₂₇H₁₉, Ruthenium(II), (2,2'-bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, trifluoromethanesulfonate, 24:302
- RuF₆P₃C₄₉H₄₁, Ruthenium(II), (η⁵-cyclopentadienyl)(phenylvinylene)bis(triphenylphosphine)-, hexafluorophosphate-(1-), 21:80
- RuF₉N₄O₉S₃C₃₂H₁₆, Ruthenium(III), bis(2,2'bipyridine-N,N')bis(trifluoromethanesulfonato-O)-, *cis*-, trifluoromethanesulfonate, 24:295
- RuF₉N₃O₉S₃C₂₈H₁₉, Ruthenium(III), (2,2'bipyridine-N,N')(2,2':6',2''-terpyridine-N,N',N'')(trifluoromethanesulfonato-O)-, bis(trifluoromethanesulfonate), 24:301
- RuF₉N₃O₁₀S₃C₂₈H₂₁ · 3H₂O, Ruthenium(III), aqua(2,2'-bipyridine-N,N')(2,2':6',2''terpyridine-N,N',N'')tris(trifluoromethanesulfonate), trihydrate, 24:304
- RuF₉N₃S₃C₃H₁₅, Ruthenium(III), pentaammine(trifluoromethanesulfonato-*O*)-, bis(trifluoromethanesulfonate), 24:258
- $RuF_{12}N_6P_2C_{30}H_{24}$, Ruthenium(II), tris(2,2'bipyridine)-
- bis[hexafluorophosphate(1-)], 25:109
- RuF₁₂N₆P₂C₃₂H₂₄, Ruthenium(II), (2,2'-bipyridine)bis(1,10-phenantroline)bis[hexafluorophosphate(1-)], 25:108
- RuO₆C₂H₆, Ruthenium, tetracarbonyl(η^2 methyl acrylate)-, 24:176
- RuO₁₂Os₃C₁₃H₂, Osmium, tridecacarbonyldihydridorutheniumtri-, 21:64
- RuP₂C₄₉H₄₀, Ruthenium(II), (η⁵-cyclopentadienyl)(phenylethynyl)bis(triphenylphosphine)-, 21:82
- Ru_{1.33}Pb_{2.67}O_{6.5}, Lead ruthenium oxide, pyrochlore, 22:69
- Ru₂BF₄O₃C₁₅H₁₃, Ruthenium(1 +), μ-carbonyl-μ-ethylidyne-bis[carbonyl(η⁵-cyclopentadienyl)tetrafluoroborate, 25:184

Ru₂Cl₄C₂₀H₂₈, Ruthenium(II), di-μ-chlorobis[chloro(η⁶-1-isopropyl-4-methylbenzene)-, 21:75

Ru₂Cl₄C₂₄H₃₆, Ruthenium(II), di-µ-chlorobis[chloro(η⁶-hexamethylbenzene)-, 21:75

Ru₂I₅N₁₂C₄H₃₄, Ruthenium(5+), decaammine(μ-pyrazine)-di-, pentaiodide, 24:261

Ru₂O₃, Ruthenium oxide, solid solns. with lead oxide PbO₂, pyrochlore, 22:69

Ru₂O₃C₁₄H₁₂, Ruthenium, μ-carbonyl-μmethylene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:182

Ru₂O₃C₁₅H₁₂, Ruthenium, μ-carbonyl-μethylidene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:183

Ru₂O₃C₁₅H₁₄, Ruthenium, μ-carbonyl-μethylidene-bis[carbonyl(η⁵-cyclopentadienyl)-, 25:185

Ru₂O₃C₂₇H₂₆, Ruthenium, μ-carbonyl-caronylbis(η⁵-cyclopentadienyl)(μ-3-oxo-1,2-diphenyl-1-η:1,2,3-η-1-propene-1,3diyl)di-

(Ru-Ru), 25:181

Ru₂O₄C₁₄H₁₀, Ruthenium, tetracarbonyl-⁴ bis(η⁵-cyclopentadienyl)di-, 25:180

Ru₃CoNO₁₃P₂C₄₉H₃₀, Ruthenate(1-), tridecacarbonylcobalttri-, µ-nitridobis(triphenylphosphorus)(1+), 21:63

Ru₃FeNO₁₃P₂C₄₉H₃₁, Ruthenate(1 –), tridecacarbonylhydridoirontri-, μ-nitrido-bis-(triphenylphosphorus)(1 +), 21:60

RuFeO₁₃C₁₃H₂, Iron, tridecacarbonyldihydridotriruthenium-, 21:58

Ru₃NO₁₁C₁₉H₂₁, Ruthenate(1-), μ-carbonyl-1KC:2KC-decacarbonyl-1K³C,2K³C,3K⁴C-μ-hydrido-1K:2K*triangulo*-tri-, tetraethylammonium, 24:168

Ru₃N₂O₁₁P₂C₄₆H₃₀, Ruthenate(1 –), decacarbonyl-µ-nitrosyl-tri-, µ-nitrido-bis(triphenylphosphorus)(1 +), 22:163, 165

S, Sulfide molybdenum complexes, 23:120, 121, Sulfur

iron cyclopentadienyl complexes, 21:42 silver complex, 24:234

SAsBr₃F₆, Sulfur(IV), tribromo-, hexafluoroarsenate, 24:76 SBrF₂N, Imidosulfurous difluoride, bromo-, 24:20 SC, Carbon monosulfide ruthenium complex, 21:29 SC₂H₆, Dimethyl sulfide boron complex, 22:239 niobium complex, 21:16 platinum(II) complexes, 22:126, 128 , Ethanethiol iron complexes, 21:39-46 SC₄H₁₀, Ethanethiol, 1,1-dimethyliron complex, 21:30, 37 ., 2-Propanethiol, 2-methylrhodium complexes, 23:123 SC₆H₆, Benzenethiol cadmium, cobalt, iron, manganese, and zinc complexes, 21:24-27 iron complex, 21:35, 36 manganese complex, 25:116-118 tin complex, 25:114 SC₈H₁₀, Benzenethiol, 4-ethylgold complexes, 23:192 SCIFO₃, Chlorine fluorosulfate, 24:6 SCIF₂N, Imidosulfurous difluoride chloro-, 24:18SCIF₅, Sulfur chloride pentafluoride, 24:8 $SCIN_{3}P_{2}C_{24}H_{20}$, $1\lambda^{4}$, 3, 4, 6, $3\lambda^{5}$, $5\lambda^{5}$ -Thiatriazadiphosphorine, 1-chloro-3,3,5,5-tetraphenyl-, 25:40 SCsFO₄, Cesium fluorine sulfate, 24:22 SFN, Thiazyl fluoride, 24:16 SF₂HN, Imidosulfurous difluoride mercury complex, 24:14 SF₃FeO₆C₉H₅, Methanesulfonate, trifluoro-, tricarbonyl(n⁵-cyclopentadienyl)iron-(1+), 24:161SF₃N, Thiazyl trifluoride, 24:12 SF3NOC, Imidosulfurous difluoride, (fluorocarbonyl)-, 24:10 SF₃O₃C, Methanesulfonate, trifluorometal complexes and salts, 24:243-306 (SN_x, Sulfur nitride, polymer, 22:143 SNC, Thiocyanate cobalt, copper, iron, manganese, nickel, and zinc complexes, 23:157 SNC₂H₇, Ethanethiol, 2-aminocobalt complex, 21:19 SNOSiC₃H₉, Silanamine, 1,1,1-trimethyl-Nsulfinyl-, 25:48 SNO₃C₇H₅, o-Benzosulfimide (saccharin) metal complexes, 23:47

SN₂CH₄, Urea, thio-

- chromium(0) complexes, 23:2
- SN₂C₂, Sulfur dicyanide, 24:125
- SN₂C₄H₆, 2*H*-Imidazole-2-thione, 1,3-dihydro-1-methyl-
- cobalt complexes, 23:171
- $SN_2C_5H_{12}$, Thiourea, N, N, N', N'-tetramethyl-
- chromium(0) complexes, 23:2
- SN₂C₉H₂₀, Thiourea, N,N'-di-tertbutylchromium(0) complexes, 23:3
- SN₂C₁₅H₁₆, Thiourea, N,N'-di-p-tolylchromium(0) complexes, 23:3
- SN₂Si₂C₆H₁₈, Sulfur diimide, bis(trimethylsilyl)-, 25:44
- SN₂Sn₂C₆H₁₈, Sulfur diimide, bis(trimethylstannyl)-, 25:44
- SO₂C₂H₄, Acetic acid, 2-mercaptocobalt complex, 21:21
- SSnC₁₈H₃₂, Tin, (benzenethiolato)tributyl-, 25:114
- S₂, Disulfide
 - molybdenum complexes, 23:120, 121 _____, Sulfur
 - iron cyclopentadienyl complexes, 21:40-46
- S_2CN_2O , 1,3 λ^4 ,2,4-Dithiadiazol-5-one, 25:53
- S₂F₄HgN₂, Mercury(II), bis(imidosulfurous difluoridato-N)-, 24:14
- $S_2H_2N_2$, Sulfur diimide, mercaptotin complex, 25:46
- S₂H₁₅N₄O₈Rh, Rhodium(III), tetraammineaquahydroxo-, *cis*-, dithionate, 24:225
- S₂Mn₂O₈C₂₀H₁₀, Manganese(I), bis(µ-benzenethiolato)octacarbonyldi-, 25:118
- S₂NC₅H₁₁, Carbamodithioic acid, N,N-diethyl
 - tungsten complex, 25:137
- $S_2N_2Sn_2C_2H_{\diamond}$, 1,3 λ^4 ,2,4,5-Dithiadiazastannole, 5,5-dimethyl-, 25:53
- S₂N₄O₈RhC₄H₁₉, Dithionate, aquabis(1,2ethanediamine)hydroxorhodium(III), 24:230
- S₂V, Vanadium disulfide, 24:201
- S₃Cl₂C₈H₁₆, Ethane 1,1'-[thiobis(2,1-ethanediylthio)]bis[2-chloro-, 25:124
- S₃Mn₂NO₆C₃₂H₃₅, Ammonium, tetraethyltris(μ-benzenethiolato)hexacarbonyldimanganate(I), 25:118
- S₃N₂O, Nitrogen sulfur oxide, 25:52

- $S_3N_2P_2C_{36}H_{30}$, Phosphorus(1+), μ -nitridobis(triphenyl
 - sulfido(disulfido)nitrate(1-), 25:37
- S_3N_3 , $1\lambda^4$,3,5,2,4,6-Trithiatriazenide, μ -nitrido-bis(triphenylphosphorus)(1 +), 25:32
- $S_3N_4C_4H_{12}$, Ammonium, tetramethyl-1 λ^4 ,3,5,2,4,6-trithiatriazenide, 25:32
- S₃O₂C₈H₁₈, Ethanol, 2,2'-[thiobis(2,1-ethanediylthio)]bis(, 25:123
- S₃PC₁₂H₂₇, Phosphorotrithious acid, tributyl ester, 22:131
- S₄ClN₅, 1λ⁴,3λ⁴,5λ⁴,7-Tetrathia-2,4,6,8,9pentaazabicyclo[3.3.1]-1(8),2,3,5-tetraenylium chloride, 25:38
- S₄Mn₄O₁₂C₃₆H₂₀, Manganese(I), tetrakis(µ₃benzenethiolato)dodecacarbonyltetra-, 25:117
- S₄N₂O₃WC₁₃H₂₀, Tungsten, tricarbonylbis-(N,N-diethylcarbamodithioato)-, 25:157
- $S_4N_2P_2C_{36}H_{30}$, Phosphorus(1+), μ -nitridobis(triphenyl-
- bis(disulfido)nitrate(1-), 25:35
- $S_4N_4O_2$, Nitrogen sulfide oxide, 25:50
- S₄N₆, 1λ⁴,3λ⁴,5λ⁴,7-Tetrathia-2,4,6,8,9-pentaazabicyclo[3.3.1]nona-1(8),2,3,5tetraenide μ-nitrido-bis(triphenylphosphorus)(1 +),
 - tetraphenylarsonium, 25:31
- S₄Ti₅, Titanium sulfide
- preparation in liquid tin, 23:161
- S₅, Pentasulfide platinum and rhodium complexes, 21:12, 13
- S₆, Hexasulfide,
 - palladium complex, 21:172
- S₆C₁₂H₂₄, 1,4,7,10,13,16-Hexathiacyclooctadecane, 25:123
- $S_8N_4P_4C_{16}H_{48}$, Tetraphosphate(III), cyclo-octathio
 - diethylammonium (1:4), 25:5
- S₈O, *cyclo*-octasulfur monoxide, 21:172
- S₁₆AgAsF₆, Silver(1+), bis(cyclo-octasulfur)-, hexafluoroarsenate, 24:74
- SbCl₃C₁₂H₄₀, Antimony(V), trichlorodiphenyl-, 23:194
- SbCl₆, Antimonate(1-), hexachloroμ-nitrido-bis(trichlorophosphorus)(1+), 25:25

- SbF10N, Antimonate(V), hexafluoro-, tetrafluoroammonium (1:1), 24:41 $Sb_2K_2O_{12}C_8H_4$, Antimonate(2-), bis[tara-(4-)]di-, dipotassium as resolving agent, 23:76-81 ScCl₃, Scandium chloride, 22:39 ScCl₃Cs, Cesium scandium chloride, 22:23 ScCl₃O₃C₁₂H₂₄, Scandium(III), trichlorotris(tetrahydrofuran)-, 21:139 Sc₂Cl₉Cs₃, Cesium scandium chloride, 22:25 SeC, Carbon selenide chromium complex, 21:1, 2 SeF₂O, Selenium difluoride oxide, 24:28 SeF₄, Selenium tetrafluoride, 24:28 SeNOC₇H₁₃, Carbamodiselenoic acid, dimethyl-, 1-methyl-2-oxopropyl ester, 24:132 SeSi₂H₆, Disilyl selenide, 24:127 Se₂C, Carbon diselenide, 21:6, 7 Se₂F₆NPC₇H₁₂, Methaneminium, N-(4,5-dimethyl-1,3-diselenol-2-ylidene)-Nmethyl-, hexafluorophosphate, 24:133
- $Se_2F_{10}O_2Xe$, Selenate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:29
- Se₂NC₅H₁₁, Diselenocarbamic acid, N, Ndiethyl
 - nickel, palladium, and platinum complexes, 21:9
- Se₃C₅H₆, 1,3-Diselenole-2-selone, 4,5-dimethyl-, 24:133
- Se₄C₁₀H₁₂, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, 24:131, 134
- $\begin{array}{l} Se_8AsF_6C_{20}H_{24},\,2,2'\text{-}Bi\text{-}1,3\text{-}diselenolylidene,}\\ 4,4',5,5'\text{-}tetramethyl-, radical ion(1+),\\ hexafluoroarsenate (2:1), 24:138 \end{array}$
- Se₈BF₄C₂₀H₂₄, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, radical ion(1+), tetrafluoroborate(1-) (2:1), 24:139
- $Se_8CIO_4C_{20}H_{24}$, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, radical ion(1+), perchlorate (2:1), 24:136
- $Se_8F_6PC_{28}H_{24}$, 2,2'-Bi-1,3-diselenolylidene, 4,4',5,5'-tetramethyl-, radical ion(1+), hexafluorofluorophosphate(1-) (2:1), 24:142
- SiBrNPC₅H₅, Phosphorimide bromide, P, Pdimethyl-N-(trimethylsilyl)-, 25:70

SiC₄H₁₂, Silane, tetramethylaluminum complex, 24:92, 94 indium complex, 24:89

lithium complex, 24:95

- SiC₇H₈, poly(methylphenylsilylene), 25:56 SiClPC₁₀H₁₄, Phosphinous chloride,
 - [phenyl(trimethylsilyl)methylene]-, 24:111
- SiCl₄N₃P₃C₅H₁₄, Poly[2,2,4,4-tetrachloro-6methyl-6-[(trimethylsilyl]catenatriphosphazene-1,6-diyl]-, 25:63
-, 1,3,5,2λ⁵,4λ⁵,6λ⁵-Triazatriphosphorine, 2,2,4,4-tetrachloro-6-methyl-6-[(trimethylsilyl)methyl-, 25:61
- SiF₃NOPC₇H₁₇, Phosphinimidic acid, P, Pdimethyl-N-(trimethylsilyl)-
- 2,2,2-trifluoroethyl ester, 25:71
- SiF₁₂N₃O₄P₃C₁₃H₂₂, Poly[2-methyl-4,4,6,6-tetrakis(2,2,2-trifluoroethoxy)-2-[(trimethylsilyl)methyl]catenatriphosphazene-1,6-diyl], 25:64
- SiF₁₄N₂, Silicate(IV), hexafluoro-, bis(tetrafluoroammonium), 24:46
- SiLiC₄H₁₁, Lithium, [(trimethylsilyl)methyl]-, 24:95
- SiNC₇H₁₇, tert-Butylamine, N-(trimethylsilyl)-, 25:8
- SiNOPC₁₂H₁₉, Phosphinimidic acid, Pmethyl-P-phenyl-N-(trimethylsilyl)-2,2,2-trifluoroethyl ester, 25:72
- SiNOSC₃H₉, Silanamine, 1,1,1-trimethyl-Nsulfinyl-, 25:48
- SiNPC₁₃H₂₇, Phosphinous amide, P-methyl-P-phenyl-N,N-bis(trimethylsilyl)-, 25:72
- SiN₂PC₁₄H₂₇, Phosphonous diamide, N, N, N', N'-tetramethyl-P-[phenyl(trimethylsilyl)methyl-] 24:110
- SiN₄O₄C₄, Silane, tetraisocyanato-, 24:99
- Si₂AlBrC₈H₂₂, Aluminum, bromobis[(trimethylsilyl)methyl]-, 24:94
- Si₂Cl₂C₇H₈, Silane, (dichloromethylene)bis-[trimethyl-], 24:118
- Si₂NPC₈H₂₄, Phosphinous amide, P, P-dimethyl-N, N-bis(trimethylsilyl)-, 25:69
- Si₂N₂OC₉H₂₄, Urea, N, N'-dimethyl-N, N'bis(trimethylsilyl)-, 24:120
- Si₂N₂SC₆H₁₉, Sulfur diimide, bis(trimethylsilyl)-, 25:44
- Si₂SeH₆, Disilyl selenide, 24:127
- Si₃AlC₁₂H₃₃, Aluminum, tris[(trimethylsilyl)methyl]-, 24:92

Si₃InC₁₂H₃₃, Indium(III), tris[(trimethylsilyl)methyl]-, 24:89

Si₄CIPC₁₄H₃₆, Phosphine, bis(trimethylsilyl)methylene][chlorobis(trimethylsilyl)methyl]-, 24:119

_____, Phosphorane, bis[bis(trimethylsilyl)methylene]chloro-, 24:120

SmCl₃, Saramium chloride, 22:39

SmF₁₈N₆O₆P₁₂C₇₂H₇₂, Samarium(III), hexakis(diphenylphosphinic amide)-, tris-(hexafluorophosphate), 23:180

SmN₃O₁₃C₈H₁₆, Samarium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151

- SmN₃O₁₄C₁₀H₂₀, Samarium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- SmN₄O₂C₄₉N₃₃, Samarium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2 -)]-, 22:160

SmN₄O₂C₃₅H₄₇, Samarium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160

Sm₄N₁₂O₅₄C₃₆H₇₂, Samarium(III), tris(1,4,7,-10,13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

Sn, Tin, pentatitanium tetrasulfide preparation in liquid, 23:161

- SnBr₂C₁₂H₁₀, Tin, dibromodiphenyl-, 23:21
- SnKC₁₂H₂₇, Stannate(1-), tributylpotassium, 25:112

SnKC₁₈H₁₅, Stannate(1-), triphenylpotassium, 25:111

SnSC₁₈H₃₂, tin, (benzenethiolato)tributyl-, 25:114

Sn₂N₂SC₆H₁₈, Sulfur diimide, bis(triethylstannyl)-, 25:44

 $Sn_2N_2S_2C_6H_6$, 1,3 λ^4 ,2,4,5-Dithiadiazastannole, 5,5-dimethyl-, 25:53

Sn₂N₄S₄C₄H₁₂, Tin, bis[μ-mercaptosulfur diimidato(2-)]tetramethyldi-, 25:46

TbCl₃, Terbium chloride, 22:39

 $TbF_{18}N_6O_6P_{12}C_{72}H_{72}$, Terbium(III), hexakis-(diphenylphosphinic amide)-, tris(hexafluorophosphate), 23:188

- $\text{TbN}_3O_{13}C_8H_{16}$, Terbium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- TbN₃O₁₄C₁₀H₂₀, Terbium(III), trinitrato-

(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

TbN₃O₁₅C₁₂H₂₄, Terbium(III), (1,4,7,10,13,-16-hexaoxacyclooctadecane)trinitrato-, 23:153

TbN₄O₂C₄₉H₃₅, Terbium, (2,4-pentanedionato)[5,10,15,20-tetraphenylporphyrinato(2−)]-, 22:160

TbN₄O₂C₃₅H₄₇, Terbium, (2,2,6,6-tetramethyl-3,5-heptanedionato)(5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160

Tb₄N₁₂O₅₁C₃₀H₅₀, Terbium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153

Tb₄N₁₂O₅₄C₅₆H₇₂, Terbium(III), tris(1,4,7,10,-13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155

TcCl₁NOC₁₆H₃₆, Technetate(V), tetrachlorooxo-, tetrabutylammonium (1:1), 21:160

TeClF₅, Tellurium chloride pentafluoride, 24:31

TeF₅HO, Tellurate(VI), pentafluorooxo-, hydrogen, 24:34

 $Te_2F_{10}O_2Xe$, Tellurate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:36

Te₃BF₁₅O₃, Tellurate(VI), pentafluorooxo-, boron(3+) (3:1), 24:35

ThB₂K₁₄O₇₈W₂₂, Thorate(IV), bis(undecatungstoborato)-, tetradecapotassium, 23:189

ThK₁₀O₇₈P₂W₂₂, Thorate(IV), bis(undecatungstophosphato)-, decapotassium, 23:189

ThK₁₆O₁₂₂P₄W₃₄, Thorate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:190

ThN₄O₄C₃₄H₄₂, Thorium, bis(2,4-pentanedionato)[5,10,25,20-tetraphenylporphyrinato(2-)]-, 22:160

TiClC₁₀H₁₀, Titanium(III), chlorobis(η⁵-cyclopentadienyl)-, 21:84

TiCl₂, Titanium chloride, 24:181

TiCl₃O₃C₁₂H₂₄, Titanium(III), trichlorotris-(tetrahydrofuran), 21:137

TiCL₄O₂C₈H₁₆, Titanium(IV), tetrachlorobis-(tetrahydrofuran)-, 21:135

TiFeH_{1.94}, Iron titanium hydride, 22:90

TiHNbO₅, Hydrogen, pentaoxoniobatetitanate(1-), 22:89

- TiKNbO₅, Potassium, pentaoxoniobatetitanate(1-), 22:89
- TiO₂C₁₂H₁₀, Titanium, dicarbonylbis(η⁵-cyclopentadienyl)-, 24:149
- $TiO_2C_{22}H_{30}$, Titanium, dicarbonylbis(η^5 -pentamethylcyclopentadienyl)-, 24:152
- Ti₅Sn, Titanium sulfide preparation in liquid tin, 23:161
- TIC₆H₅, Thallium(I), cyclopentadienyl-24:97
- TlClF₄C₆H, Thallium(III), chlorobis(2,3,4,6tetrafluorophenyl)-, 21:73 _____, chlorobis(2,3,5,6-tetrafluoro-
- ____, chlorobis(2,3,5,6-tetrahuorophenyl)-, 21:73
- TlClF₁₀C₁₂, Thallium(III), chlorobis(pentafluorophenyl)-, 21:71, 72
- TlCl₃, Thallium chloride, 21:72
- Tl₂N₄PtC₄, Platinate(II), tetracyano-, dithallium, 21:153
- $Tl_4N_4O_3PtC_5$, Platinate(II), tetracyano-, thallium carbonate (1:4:1), 21:153, 154
- TmCl₃, Thulium chloride, 22:39
- TmCl₆Cs₂Li, Cesium lithium thulium chloride, 22:10
- TmF₁₈N₆O₆P₁₂C₇₂H₁₂, Thulium(III), hexakis-(diphenylphosphinic amide)-, tris-(hexafluorophosphate), 23:180
- TmN₃O₁₃C₈H₁₆, Thulium(III), trinitrato-(1,4,7,10-tetraoxacyclododecane)-, 23:151
- $TmN_3O_{14}C_{10}H_{20}$, Thulium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151
- TmN₃O₁₅C₁₂H₂₄, Thulium, (1,4,7,10,13,16hexaoxacyclooctadecane)trinitrato-, 34:153
- $TmN_4O_2C_{35}H_{47}$, Thulium, (2,2,6,6-tetramethyl-3,5-heptanedionato)[5,10,15,20tetraphenylporphyrinato(2 -)]-, 22:160
- Tm₄N₁₂O₅₁C₃₀H₆₀, Thulium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:153
- Tm₄N₁₂O₅₄C₃₆H₇₂, Thulium(III), tris(1,4,7,10,-13,16-hexaoxacyclooctadecane)dodecanitratotetra-, 23:155
- UCl₄, Uranium(IV) chloride, 21:187
- UF₂O₂, Uranium(VI), difluorodioxo-, 25:144

- UF₃HO₂ · 2H₂O, Uranate(VI), trifluorodioxo
 - hydrogen, dihydrate, 25:145
- UF₅, Uranium(V) fluoride, β -, 21:163
- UF₆K, Uranate(V), hexafluoro-, potassium, 21:166
- UF₆NP₂C₃₆H₃₀, Uranate(V), hexafluoro-, μnitrido-bis(triphenylphosphorus)(1+), 21:166
- UF₆Na, Uranate(V), hexafluoro-, sodium, 21:166
- UK₁₀O₇₈P₂W₂₂, Uranate(IV), bis(undecatungstophosphato)-, decapotassium, 23:186
- UK₁₆O₁₂₂P₄W₃₄, Uranate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:188
- UO₅C₁₀H₂₅, Uranium(V), pentaethoxy-, 21:166
- VClC₁₀H₁₀, Vanadium(III), chlorobis(η^s-cyclopentadienyl)-, 21:85
- VCl₂, Vanadium chloride, 21:185
- VCl₃O₃C₁₂H₂₄, Vanadium(III), trichlorotris-(tetrahydrofuran)-, 21:138
- VS₂, Vanadium disulfide, 24:201
- V2, Divanadium, 22:116
- V₂LiO₅, Lithium divanadium pentaoxide, 24:202
- WBF₄N₂P₄C₅₆H₅₅, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]-(isocyanomethane)[(methylamino)methylidyne]-, trans-, tetrafluoroborate(1-), 23:11
- WBF₄N₂P₄C₆₄H₆₁, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)](2-isocyano-2-methylpropane)[(methylamino)methylidyne]-, trans-, tetrafluoroborate(1-), 23:12
- WB₂F₈N₂P₄C₅₆H₅₆, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]bis[(methylamino)methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:2
- WB₂F₈N₂P₄C₆₈H₆₄, Tungsten(IV), bis[1,2ethanediylbis(diphenylphosphine)]bis-[(4-methylphenyl)amino]methylidyne]-, trans-, bis[tetrafluoroborate(1-)], 23:14

- WCl₂NP₃C₁₅H₃₂, Tungsten(IV), dichloro-(phenylimido)tris(trimethylphosphine)-, 24:198
- WCl₂NP₃C₂₄H₅₀, Tungsten(IV), dichloro-(phenylimido)tris(triethylphosphine)-, 24:198
- WCl₂NP₃C₃₀H₃₈, Tungsten(IV), dichlorotris(dimethylphenylphosphine)-(phenylimido)-, 24:198
- WCl₂NP₃C₄₅H₄₄, Tungsten(IV), dichlorotris(methyldiphenylphosphine)(phenylimido)-, 24:198
- WCl₂N₂P₄C₆₆H₅₆, Tungsten(0), bis(1-chloro-4-isocyanobenzene)bis[1,2-ethanediyl-(diphenylphosphine)]-, trans-, 23:10
- WCl₂N₄C₁₈H₃₂, Tungsten(IV), dichlorotris-(2-isocyano-2-methylpropane)(phenylimido)-, 24:198
- WCl₂N₄C₃₀H₂₆, Tungsten(IV), dichlorotris-(1-isocyano-4-methylbenzene)(phenylimido)-, 24:198
- WCl₃NP₂C₁₂H₃₂, Tungsten(V), trichloro-(phenylimido)bis(trimethylphosphine)-, 24:196
- WCl₃NP₂C₁₈H₃₅, Tungsten(V), trichloro-(phenylimido)bis(triethylphosphine)-, 24:196
- WCl₃NP₂C₂₂H₄₇, Tungsten(V), trichlorobis-(dimethylphenylphosphine)(phenylimido)-, 24:196
- WCl₃NP₂C₄₂H₃₅, Tungsten(V), trichloro-(phenylimido)bis(triphenylphosphine)-, 24:196
- WCl₄NC₆H₅, Tungsten(VI), tetrachloro-(phenylimido)-, 24:195
- WCl₄N₂P₄C₆₆H₅₄, Tungsten(0), bis(1,3-dichloro-2-isocyanobenzene)bis[1,2ethanediylbis(diphenylphosphine)]-, *trans*-, 23:10
- WCl₄O, Tungsten chloride oxide, 23:195
- WF4O, Tungsten fluoride oxide, 24:37
- WF₉NO, Tungstate(VI), pentafluorooxo-, tetrafluoroammonium (1:1), 24:47
- WNO₅P₂C₄₁H₃₁, Tungstate(1-), pentacarbonylhydrido-, μ-nitrido-bis(triphenylphosphorus)(1+), 22:182
- WN₂O₂P₄C₆₈H₆₂, Tungsten(0), bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-isocyano-4-methoxybenzene)-, *trans*-, 23:10
- $WN_2O_3S_4C_{13}H_{20}$, Tungsten, tricarbonylbis-

(N,N-diethylcarbamodithioato)-, 25:157

- WN₂P₄C₅₆H₅₄, Tungsten(0), bis[1,2-ethanediylbis(diphenylphosphine)]bis(isocyanomethane)-, *trans*-, 23:10
- WN₂P₄C₆₂H₆₆, Tungsten(0), bis[1,2-ethanediylbis(diphenylphosphine)]bis(2-isocyano-2-methylpropane)-, trans-, 23:10
- WN₂P₄C₆₆H₅₈, Tungsten(0), bis[1,2-ethanediylbis(diphenylphosphine)]bis(isocyanobenzene)-, *trans*-, 23:10
- WN₂P₄C₆₈H₆₂, Tungsten(0), bis[1,2-ethanediylbis(diphenylphosphine)]bis(1-iocyano-4-methylbenzene)-, *trans*-, 23:10
- W₄Ag₈O₁₆, Silver tungstate, 22:76
- W₂HKO₁₀C₁₀, Tungstate(1-), μ-hydrido-bis-[pentacarbonyl-, potassium, 23:27
- W₁₁BO₃₉, Undecatungstoborate(9-) thorium complexes, 23:189
- W₁₁O₃₉P, Undecatungstophosphate(7-) thorium and uranium complexes, 23:186
- $W_{17}O_{61}P_2$, Heptadecatungstodiphosphate-(10-)
- thorium and uranium complexes, 23:188
- W₂₂B₂K₁₄O₇₈Th, Thorate(IV), bis(undecatungstoborato)-, tetradecapotassium, 23:189
- W₂₂K₁₀O₇₈P₂Th, Thorate(IV), bis(undecatungstophosphato)-, decapotassium, 23:189
- W₂₂K₁₀O₇₈P₂U, Uranate(IV), bis(undecatungstophosphato)-, decapotassium, 23:180
- W₃₉K₁₆O₁₂₂P₄Th, Thorate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:190
- W₃₄K₁₆O₁₂₂P₄U, Uranate(IV), bis(heptadecatungstodiphosphato)-, hexadecapotassium, 23:188
- $XeF_{10}O_2Se_2$, Selenate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:29
- $XeF_{10}O_2Te_2$, Tellurate(VI), pentafluorooxo-, xenon(2+) (2:1), 24:36

YCl₃, Yttrium chloride, 22:39 anhydrous, 25:146

YN₄O₂C₄₉H₃₅, Yttrium, (2,4-pentanedionato)-[5,10,15,20-tetraphenylporphyrinato-(2-)]-, 22:160 YbCl₃, Ytterbium chloride, 22:39

YbF₄N₄O₂C₅₅H₄₃, Ytterbium, [5,10,15,20-tetrakis(3-fluorophenyl)porphyrinato-(2-)](2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:160

YbF₁₈N₆O₆P₁₂C₇₂H₇₂, Ytterbium(III), hexakis(diphenylphosphinic amide)-, tris-(hexafluorophosphate), 23:180

YbN₃O₁₃C₈H₁₆, Ytterbium(III), trinitrato-(1,4,7,10-tetraoxacyclododecaane)-, 23:151

YbN₃O₁₄C₁₀H₂₀, Ytterbium(III), trinitrato-(1,4,7,10,13-pentaoxacyclopentadecane)-, 23:151

- YbN₃O₁₅C₁₂H₂₄, Ytterbium(III), (1,4,7,10,-13,16-hexaoxacyclooctadecane)trinitrato-, 23:153
- YbN₄O₂C₅₃H₄₃, Ytterbium, (2,4-pentanedionato)[5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2-)]-, 22:156
- YbN₄O₂C₅₉H₅₅, Ytterbium, [5,10,15,20-tetrakis(4-methylphenyl)porphyrinato(2 –)]-(2,2,6,6-tetramethyl-3,5-heptanedionato)-, 22:156
- Yb₄N₁₂O₅₁C₃₀H₄₀, Ytterbium(III), dodecanitratotris(1,4,7,10,13-pentaoxacyclopentadecane)tetra-, 23:152

Yb₄N₁₂O₅₄C₃₆H₇₂, Ytterbium(III), tris(1,4,7,-10,13,16-hexacyclooctadecane)dodecanitratotetra-, 23:155

ZnClF₆N₄PC₂₄H₂₈, Zinc(II), chloro(2,9-dimethyl-3,10-diphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)-, hexafluorophosphate(1-), 22:111

- ZnN₄O₁₀S₂C₁₄H₁₆ · 2H₂O, Zinc(II), tetraaquabis(o-sulfobenzoimidato)-, dihydrate, 23:49
- ZnN₈S₂C₆H₆, Zinc(II), bis(thiocyanato-*N*)bis-µ-(1*H*-1,2,4-triazole-*N*¹:*N*²)-, *poly*-, 23:160
- ZnP₂S₄C₇₂H₆₀, Zincate(II), tetrakis(benzenethiolato)-, bis(tetraphenylphosphonium), 21:25
- ZrBr, Zirconium bromide, 22:26
- ZrCl, Zirconium chloride, 22:26
- ZrCl₄O₂C₈H₁₆, Zirconium(IV), tetrachlorobis(tetrahydrofuran)-, 21:136
- ZrO₂C₁₂H₁₀, Zirconium, dicarbonylbis(η⁵cyclopentadienyl)-, 24:150
- ZrO₂C₂₂H₃₀, Zirconium, dicarbonylbis(η⁵pentamethylcyclopentadienyl)-, 24:153