Math 412. The Symmetric Group S_n .

DEFINITION: The **symmetric group** S_n is the group of bijections from any set of n objects, which we usually call simply $\{1, 2, \ldots, n\}$, to itself. An element of this group is called a **permutation** of $\{1, 2, \ldots, n\}$. The group operation in S_n is *composition* of mappings.

PERMUTATION STACK NOTATION: The notation $\begin{pmatrix} 1 & 2 & \cdots & n \\ k_1 & k_2 & \cdots & k_n \end{pmatrix}$ denotes the permutation that sends i to k_i for each i.

CYCLE NOTATION: The notation $(a_1 \ a_2 \ \cdots \ a_t)$ refers to the (special kind of!) permutation that sends a_i to a_{i+1} for i < t, a_t to a_1 , and fixes any element other than the a_i 's. A permutation of this form is called a **t-cycle**. A 2-cycle is also called a **transposition**.

THEOREM 7.24: Every permutation can be written as a product of *disjoint cycles* — cycles that all have no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of transpositions, not necessarily disjoint.

A. WARM-UP WITH ELEMENTS OF \mathcal{S}_n

- (1) Write the permutation $(1\ 3\ 5)(2\ 7) \in \mathcal{S}_7$ in permutation stack notation.
- (2) Write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 2 & 4 & 7 & 5 \end{pmatrix} \in \mathcal{S}_7$ in cycle notation.
- (3) If $\sigma = (1\ 2\ 3)(4\ 6)$ and $\tau = (2\ 3\ 4\ 5\ 6)$ in S_7 , compute $\sigma\tau$; write your answer in stack notation. Now also write it as a product of disjoint cycles.
- (4) With σ and τ as in (4), compute $\tau \sigma$. Is S_7 abelian?
- (5) List all elements of S_3 in **cycle notation**. What is the order of each? Verify Lagrange's Theorem for each element of S_3 .
- (6) What is the inverse of $(1\ 2\ 3)$? What is the inverse of $(1\ 2\ 3\ 4)$? How about $(1\ 2\ 3\ 4\ 5)^{-1}$? How about $[(1\ 2\ 3)(3\ 4\ 5)]^{-1}$?

B. The Symmetric group S_4

- (1) What is the order of S_4 ?
- (2) List all 2-cycles in S_4 . How many are there?
- (3) List all 3-cycles in S_4 . How many are there?
- (4) List all 4-cycles in S_4 . How many are there?
- (5) List all 5-cycles in S_4 .
- (6) How many permutations in S_4 are not cycles? Find them all.
- (7) Find the order of each element in S_4 . Why are the orders the same for permutations with the same "cycle type"?
- (8) Find cyclic subgroups of S_4 of orders 2, 3, and 4.
- (9) Find a subgroup of S_4 isomorphic to the Klein 4-group. List out its elements.
- (10) List out all elements in the subgroup $H = \langle (1\ 2\ 3), (2\ 3) \rangle$ of S_4 generated by $(1\ 2\ 3)$ and $(2\ 3)$. What familiar group is this isomorphic to? Can you find four different subgroups of S_4 isomorphic to S_3 ?

C. EVEN AND ODD PERMUTATIONS. A permutation is **odd** if it is a composition of an odd number of transposition, and **even** if it is a product of an even number of transpositions.¹

Skeptic mathematicians that you have been trained to be, you realize, perhaps, that this definition may be problematic. Why? What should be proved to ensure the definition is well-defined? This is handled in the book, in Section 7.5.

- (1) Write the permutation (123) as a product of transpositions. Is (123) even or odd?
- (2) Write the permutation (1234) as a product of transpositions. Is (1234) even or odd?
- (3) Write the $\sigma = (12)(345)$ a product of transpositions in two different ways. Is σ even or odd?
- (4) Prove that every 3-cycle is an even permutation.

D. THE ALTERNATING GROUPS

- (1) Prove that the subset of even permutations in S_n is a subgroup. This is the called the **alternating group** A_n .
- (2) List out the elements of A_2 . What group is this?
- (3) List out the elements of A_3 . To what group is this isomorphic?
- (4) How many elements in A_4 ? Is A_4 abelian? What about A_n ?

E. The Symmetric group S_5

- (1) Find one example of each type of element in S_5 or explain why there is none:
 - (a) A 2-cycle
 - (b) A 3-cycle
 - (c) A 4-cycle
 - (d) A 5-cycle
 - (e) A 6-cycle
 - (f) A product of disjoint transpositions
 - (g) A product of 3-cycle and a disjoint 2-cycle.
 - (h) A product of 2 disjoint 3 cycles.
- (2) For each example in (1), find the order of the element.
- (3) What are all possible orders of elements in S_5 ?
- (4) What are all possible orders of cyclic subgroups of S_5 .
- (5) For each example in (1), write the element as a product of transpositions. Which are even and which are odd?
- F. Discuss with your workmates how one might prove Theorem 7.26. One way is by using Theorem 7.24 and the calculations you did in E (5). Another is by pure thinking.²
- G. PERMUTATION MATRICES. We say that an $n \times n$ matrix is a **permutation matrix** if it can be obtained from the $n \times n$ identity matrix by swapping columns (or rows).
 - (1) List out all 3×3 permutation matrices.
 - (2) Prove that the set \mathcal{P}_3 of 3×3 permutation matrices is a subgroup of $GL_3(\mathbb{R})$.
 - (3) Find an isomorphism between S_3 and P_3 . Prove that under your isomorphism, the alternating subgroup A_3 of S_3 is identified with $P_3 \cap SL_3(\mathbb{R})$.
 - (4) Find the order of each element of the subgroup of permutation matrices in $GL_3(\mathbb{R})$.
 - (5) For any n, the set \mathcal{P}_n of all $n \times n$ permutation matrices is a group isomorphic to \mathcal{S}_n . Can you explain why?

BONUS. What are the possible orders of elements in S_6 ? What are the possible orders of elements in S_7 ? Prove that S_{12} has an element of order 35.

²Hint: Imagine lining everyone in the class up in a straight line. How can we put the class in alphabetical order by a sequence of swaps?