PP048-03 - Reconstructing precipitation δ¹⁸O from lacustrine carbonates using δ¹⁸O, Δ₄⁷, and Δ'¹⁷O: a modern case study from Junín, Peru with implications for paleoclimate

Abstract
Paleoclimate studies often aim to reconstruct oxygen isotopes of precipitation ($\delta^{18}O_p$) because $\delta^{18}O_p$ tracks regional climate change. Lacustrine carbonates are particularly alluring archives of past $\delta^{18}O_p$, because they allow for the construction of long records, with robust chronologies. However, disentangling the influences of $\delta^{18}O_p$, formation temperature, and local hydrology on $\delta^{18}O$ of carbonates ($\delta^{18}O_C$) from lake systems can be challenging, especially if past lake temperatures or water budgets were very different from modern conditions. A recent drilling effort from Lake Junín (Chinchaycocha; 11 °S, 76 °W) in the Peruvian Andes has produced well-dated, high resolution (decadal-centennial) records of $\delta^{18}O_C$, which have the potential to provide an unprecedented record of $\delta^{18}O_p$ and climate change in the Tropics from the last 700,000 years, if we can control for the influence of water temperature and lake water evaporation. Here, we use a combination of carbonate clumped isotope paleothermometry (ΔT) and triple oxygen isotope analyses ($\Delta^{17}O$) from lake waters and carbonates from the Junín region today to understand how they constrain temperature and lake water evaporation, respectively. We report data from two fast-turnover and two slow-turnover flow-through lake systems in the Junín Region (residence times of ≤ 1 year and > 1 year, respectively). We find that Δ temperatures of actively-forming carbonates agree with measured lake water temperatures. Slow-turnover lake systems have higher average $\delta^{18}O$ values and lower $\Delta^{17}O$ values than fast-turnover systems, which is consistent with triple oxygen isotope mass balance models for evaporative loss. Finally, we reconstruct unevaporated catchment precipitation $\delta^{18}O$ values ($\delta^{18}O$) from modern surface water and calculated carbonate parent-water $\delta^{18}O$ and $\Delta^{17}O$ values. The average $\delta^{18}O$ ≅ -15.3 ‰ (1 σ = 1.8 ‰; n = 24; λ = 0.524) is in agreement with local amount weighted mean annual precipitation ($\delta^{18}O$ = -15.4 ‰). Our findings suggest that a combination of $\delta^{18}O$, $\Delta^{17}O$, and Δ measurements from Lake Junín carbonates can be used to generate regional $\delta^{18}O$ records and that this approach can be applied to carbonate from drill cores to build reliable records of $\delta^{18}O$ and past hydroclimate in the Peruvian Andes.

Authors
Sarah A. Katz
University of Michigan Ann Arbor
Naomi E. Levin
University of Michigan Ann Arbor
Donald T Rodbell
Union College
David P Gillikin
Union College
Benjamin Passey
University of Michigan Ann Arbor

View Related

PP048 - Development and Application of Quantitative Proxies of Terrestrial Climate Variability

Paleoceanography and Paleoclimatology

Similar

Deep ocean $\delta^{18}O$ seawater values in the middle Miocene: a new paradox?
Sevasti Modestou¹, Thomas Leutert², Julie Knutsen³, Caroline H Lear⁴, Alvaro Fernandez⁵, Eirik Vinje Galaasen¹ and Nele Meckler⁶, (1)University of Bergen, Department of Earth Science, Bergen, Norway, (2)Max Planck Institute
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple oxygen isotope trend recorded by Precambrian cherts: A perspective from combined bulk and in situ secondary ion probe measurements</td>
<td>David O Zakharov¹, Johanna Marin-Carbonne⁵, Julien Alleon⁴ and Ilya Bindeman⁵, (1)University of Lausanne, Lausanne, Switzerland, (2)University of Oregon, Department of Earth Sciences, Eugene, OR, United States</td>
</tr>
<tr>
<td>Paleoclimatic and Environmental Reconstruction of Lacustrine Carbonates from the late Cretaceous to middle Eocene Sheep Pass Formation, Nevada</td>
<td>Juliana Olsen-Valdez¹, Kathryn E Snell¹, Lizzy Trower¹, Sarah Widlansky² and William Clyde², (1)University of Colorado Boulder, Department of Geological Sciences, Boulder, CO, United States, (2)University of New Hampshire, Durham, NH, United States</td>
</tr>
<tr>
<td>Reconstructing Environmental Temperature, Humidity, & δ¹⁸O Precipitation from Stable & Clumped Isotope Compositions of Global Land Snails</td>
<td>Hayley Lauren Bricker¹, Jesse Bloom Bateman², Bryce Mitsunaga¹, John Arthur Mering¹, Yurena Yanes⁶, Eric A Oches⁷, Robert Eagle⁶ and Aradhna E. Tripati⁷, (1)University of California, Los Angeles, Earth, Planetary, and Space Sciences, Los Angeles, CA, United States, (2)SUNY Cortland, Biological Sciences, Cortland, NY, United States, (3)University of California, Los Angeles, Institute of the Environment & Sustainability, Los Angeles, CA, United States, (4)Brown University, Department of Earth, Environmental, and Planetary Sciences, Providence, RI, United States, (5)University of Waikato, Hamilton, New Zealand, (6)University of Cincinnati, Geology, Cincinnati, OH, United States, (7)Bentley University, Natural and Applied Sciences, Waltham, MA, United States, (8)University of California, Los Angeles, Atmospheric & Oceanic Sciences, Los Angeles, CA, United States</td>
</tr>
</tbody>
</table>