Thriving in graduate school and preparing for the next career stage requires skills and strategies that many students have not learned through their undergraduate experiences. These skills not only include scientific writing and teaching, but also navigating professional relationships and ethics. Strategies for developing the non-technical skills and insights necessary for succeeding in graduate school are sometimes called the ‘hidden academic curriculum’. We cannot assume that all students enter their graduate programs with the knowledge or the background to figure out this hidden curriculum. If under-prepared, the bumpy transition to graduate school can derail students. A graduate course for entering students that addresses the hidden curriculum promotes equity and inclusion by equalizing the playing field and ensuring that all students are equipped to navigate graduate school. All students, regardless of their background, identity, and socioeconomic status, can benefit from increased preparation for the major shift between undergraduate and graduate education, which is substantially less structured and emphasizes critical evaluation of research and creation of new knowledge over learning established material.

Many science departments have recognized this gap in preparation and offer first year graduate courses that teach students how to navigate graduate school and academia in general. Here, we compare notes and share the ways that programs at seven different universities have worked to make this hidden curriculum transparent. For example, many of our courses include discussions of imposter syndrome, publication authorship, time management, networking, career preparation, implicit bias and field safety. A centralized course allows students to explore these issues together and develop a cohort that they can turn to as they navigate graduate school. Some of our courses assign writing an application for external fellowships, improving students’ competitiveness for these awards and benefitting both the students and the
university's reputation. In this presentation, we provide examples of materials and activities to include in such seminars, a map of how the different topics are covered across the seven programs represented and best practices from our experience with the material.

Geological Society of America Abstracts with Programs. Vol 52, No. 6, 2020
doi: 10.1130/abs/2020AM-356008

© Copyright 2020 The Geological Society of America (GSA), all rights reserved.

Authors

Michele L. Cooke
University of Massachusetts Amherst

Christopher J. Bell
The University of Texas at Austin

Mya Breitbart
University of South Florida

Emily Cooperdock
University of Southern California Earth Sciences

Naomi Levin
University of Michigan Earth & Environmental Sciences

Anita Marshall

Nathan A. Niemi
University of Michigan

Liane Stevens

Have a question or comment? Enter it here.

View Related

Session

153: T237. Supporting and Advancing Geoscience Education Beyond 2020: Individual, Department, Program, and Institutional-Level Approaches to Student Success II

David D. Mrofka¹, Peter J. Berquist² and Becca Walker¹, (1)Department of Earth Sciences and Astronomy, Mt. San Antonio College, Walnut, CA(2)Geology Department, Thomas Nelson Community College, Williamsburg, VA

Wednesday, 22 October, 2020
Topical Sessions

Technical Programs

A NEW COURSE FRAMEWORK TO DEMYSTIFY THE HIDDEN CURRICULUM OF GEOSCIENCE GRADUATE PROGRAMS

DONALDSON, Amanda1, RICHARDSON, Christina2, ZIMMER, Margaret2, GORSKI, Galen2, MURPHY, Colleen2, PENSKY, Jennifer1, PRICE, Adam2 and SERRANO, Araceli2, (1)101 Western Ct, Santa Cruz, CA 95060-3022, (2)Earth and Planetary Sciences, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064

VISION AND CHANGE: WHAT GRADUATE GEOSCIENCE EDUCATION SHOULD ACCOMPLISH FOR M.S. AND PH.D. GRADUATES

RYAN, Jeffrey, School of Geosciences, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620, MOSHER, Sharon, University of Texas at Austin Jackson School of Geosciences, 2305 Speedway Stop C1160, Austin, TX 78712-1689 and KEANE, Christopher, Geoscience Workforce, American Geological Institute, 4220 King Street, Alexandria, VA 22302

GEOSCIENCE SCHOLARSHIP (GEOS) TO IMPROVE RECRUITMENT AND RETENTION OF ACADEMICALLY TALENTED STUDENTS

SHELDON, Amy, FARTHING, Dori J., GIORGIS, Scott and WARNER, Nicholas H., Geological Sciences, SUNY Geneseo, 1 College Circle, Geneseo, NY 14454

FIELD EXPERIENCES INCREASE HIGH SCHOOL STUDENTS’ INTEREST IN STUDYING GEOSCIENCES

DAHL, Robyn1, PARK, Soojin2, WERNETTE, Shelly3, WOMACK, Tyler2 and DROSER, Mary L.4, (1)Western Washington Univ. Geology & SMATE, 516 High St, Bellingham, WA 98225-5946, (2)Graduate School of Education, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, (3)1005 Via Zapata Apt 302, Riverside, CA 92507-6226, (4)Earth and Planetary Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92521

IMPROVING UNDERGRADUATE STUDENT SUCCESS IN MATHEMATICS WHILE BUILDING PATHWAYS TO THE GEOSCIENCES: CONTEXTUALIZING PRE-CALCULUS CONCEPTS WITH VOLCANIC HAZARD THEMED PROBLEMS

HERNANDEZ, Lindsey D.1, LOWE, J.2, GRIFFITH, Elizabeth M.1, GRIFFITH, W. Ashley1 and JORGENSEN, Theresa A.2, (1)School of Earth Sciences, The Ohio State University, Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210, (2)Department of Mathematics, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019