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Introduction

Goal
Draw pictures to better understand the Schwarzian Derivative.

Some Preliminaries
We need to know about the stereographic projection and Möbius transformations.

Definition. A(n extended) stereographic projection is a function π : S2 → Ĉ that maps S2,
i.e. the surface of the unit sphere in R3, to the extended complex plane Ĉ = C ∪ {∞} (we
identify C with the xy-plane in R3).
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Let N in S2 denote the north pole. Each point P in S2−{N} is mapped to the intersection
of the unique line through N and P with the xy-plane, denoted as π(P ). However, when
P = N , this procedure fails, because there is no unique line through N and P . Notice that
the points near N are mapped to points that have large absolute value, so it makes sense
to map N to∞. So we set π(N) =∞.
This produces a bijection from the sphere S2 to the extended complex numbers Ĉ, thereby
equipping S2 with the algebraic structure of Ĉ; we call this the Riemann Sphere.

Definition. A Möbius transformation is a complex function of the form

M(z) =
az + b

cz + d

where a, b, c, d are complex numbers and ad − bc 6= 0. Being careful, we can extend the
domain and range of M to the extended complex plane Ĉ.

One of the key properties of Möbius transformations is that they preserve circles on the
Riemann Sphere.
Here we give three examples of Möbius transformations. Every Möbius transformation
can be decomposed as a composition of Möbius transformations similar to these three.

( a ) Hyperbolic: z 7→ 2z ( b ) Parabolic: z 7→ z + 1 ( c ) Elliptic: z 7→ iz

What is the Schwarzian Derivative?

Definition. Let f : C → C be a holomorphic function. The Schwarzian derivative of f
is the function

S(f ) = f ′′′

f ′
− 3

2

(f ′′
f ′

)2
The Schwarzian measures how much a function deviates from a Möbius transformation;
it vanishes for Möbius transformations but gives useful information about other maps.
We noted in the previous section that Möbius transformations take circles in the Riemann
sphere to other circles; but other functions may distort circles.

Example 1. Images of concentric circles un-
der the polynomial f (z) = z + z3/3; note the
self-intersection.

Definition. Let f : C → C be a holomorphic function, and let s ∈ C. The
osculating Möbius transformation of f at s is the unique Möbius transformation M(f, s)(z)
that matches f in value, first, and second derivative at s:

M(f, s)(s) = f (s), M ′(f, s)(s) = f ′(s), M ′′(f, s)(s) = f ′′(s).

The Schwarzian derivative is determined by the rate of change of the osculating Möbius
transformation as we change s. After some renormalization, ∂

∂wM(f, w) is a quadratic in
z − w. The leading coefficient of this quadratic is the Schwarzian derivative.

Why is the Schwarzian derivative important?
The Schwarzian is the unique operator with the following properties.
• Vanishes precisely for Möbius transformations: S(f ) = 0⇐⇒ f is a Möbius transformation
• Invariant under composition with Möbius transformations; if µ is a Möbius transforma-

tion, S(µ ◦ f ) = S(f )
It appears in many branches of mathematics, including hypergeometric functions and Te-
ichmüller theory.

Relation to Curvature

Motivation.
While Möbius transformations are the right framework for doing computations, they can
be difficult to visualize. On the other hand, it is relatively easy to see curvature–how ”bent”
one-dimensional curves are. Luckily, curvature is related to the Schwarzian derivative!
Definitions. Let γ : R → C be a smooth parameterized curve. Let T be the unit tangent
vector T (t) = γ′(t)/||γ′(t)||.
• The curvature of γ at t is defined to be

κ(t) =
d

dt
T (t).

(Note that this is invariant under different parameterizations for the curve im(γ).)
• The osculating circle of γ at t is the unique circle tangent to γ at t with the same curva-

ture; it has radius r = 1/κ.
The name osculating circle might remind you of osculating Möbius transformations. The
two are related by the following theorem.

Theorem 1. Let f : C→ C be a holomorphic function, let γ : R→ C be a parameterized
circle in C, and let z0 = γ(t0) be a point on this circle.
If µ = M(f, z0) is the osculating Möbius transformation of f at z0, then µ sends the
circle γ to the osculating circle of the curve f ◦ γ at the point f (z0).

To prove this, we use the following lemma relating curvature before and after applying a
holomorphic map.
Lemma. Let γ : R → C be a smooth parameterized curve, T be the unit tangent vector
T (t) = γ′(t)/||γ′(t)||. Let p = γ(s0) be a point on this curve. Let κ be the curvature of γ at
p. Then the curvature of f ◦ γ at f (p) is given by

κ̃ =
1

|f ′(p)|

(
=
[f ′′(p)T (s0)

f ′(p)

]
+ κ
)
.

The proof is a computation.
Proof of Theorem 1. Note that since µ = M(f, z0), we have µ(z0) = f (z0), µ′(z0) = f ′(z0),
µ′′(z0) = f ′′(z0).
Since the osculating circle is unique, it suffices to show that µ◦γ is tangent to f ◦γ at f (z0)
and has the same curvature.
• Tangent: We have µ(z0) = f (z0), so the two curves intersect. Moreover, µ′(z0) = f ′(z0),

so by the chain rule

(µ ◦ γ)′(t0) = µ′(z0)γ
′(t0) = f ′(z0)γ

′(t0) = (f ◦ γ)′(t0).

Thus the two curves are tangent.
• Equal curvature: by the lemma, we can write an expression in terms of derivatives for

the curvature of µ ◦ γ at µ(z0) = f (z0), and similarly for f . Since the first two derivatives
are equal,

1

|µ′(p)|

(
=
[µ′′(p)T (s0)

µ′(p)

]
+ κ
)
=

1

|f ′(p)|

(
=
[f ′′(p)T (s0)

f ′(p)

]
+ κ
)
.

Thus the circle im(µ ◦ γ) is the osculating circle of im(f ◦ γ) at f (z0).
By drawing nearby osculating circles to the images of circles under the
map f , we can see how the osculating Möbius transformation changes
and glean information about the shape of the Schwarzian derivative.

Example 2. Left: the images of concentric circles under f (z) = z + z3/3 (red), and oscu-
lating circles at equidistant points around them (blue). Right: the images under the same
map of circles with equal radii through a point (red), and osculating circles at that point
(blue).
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