A Visual Approach to Complex Analysis

Yuxuan Bao Yucheng Shi Justin Vorhees

University of Michigan

October 23, 2018
Table of Contents

1 Introduction
 - Visualization Tools
 - Research Motivation

2 Marden’s Theorem

3 Current Progress
Graphing Functions

- Real functions $f : \mathbb{R} \rightarrow \mathbb{R}$
Graphing Functions

- Real functions $f : \mathbb{R} \rightarrow \mathbb{R}$

$$f(x) = (x - 2)(x - 2)(x + 3)$$
Graphing Functions

- Real functions $f : \mathbb{R} \rightarrow \mathbb{R}$

 \[f(x) = (x - 2)(x - 2)(x + 3) \]

 ![Graph of a cubic function](image)

- Complex functions $g : \mathbb{C} \rightarrow \mathbb{C}$
Graphing Functions

- Real functions $f : \mathbb{R} \rightarrow \mathbb{R}$

\[f(x) = (x - 2)(x - 2)(x + 3) \]

- Complex functions $g : \mathbb{C} \rightarrow \mathbb{C}$

?
Phase Plots

- $z = re^{i\theta} \in \mathbb{C}$
Phase Plots

- $z = re^{i\theta} \in \mathbb{C}$
- Modulus = r, Phase = $e^{i\theta}$
Phase Plots

- \(z = re^{i\theta} \in \mathbb{C} \)
- Modulus = \(r \), Phase = \(e^{i\theta} \)

Figure: Phase Color Wheel
Phase Plots

- \(z = re^{i\theta} \in \mathbb{C} \)
- Modulus = \(r \), Phase = \(e^{i\theta} \)

Figure: Phase Color Wheel

Figure: \(f(z) = z \)
Phase Plot Examples

Figure: $f(z) = z$

Figure: $f(z) = (z - 2 - i)(z - 2 + i)(z + 2 - i)(z + 2 + i)$
Phase Plot Examples

Figure: $f(z) = z$

Figure: $f(z) = 1/z$
Roots of f, f'

- Research focus: relationship between roots of polynomial f and roots of f'
- Calculus I: Rolle’s Theorem

Complex Analysis: Gauss-Lucas Theorem
Table of Contents

1 Introduction
 ■ Visualization Tools
 ■ Research Motivation

2 Marden’s Theorem

3 Current Progress
Definition (Convex Hull)

Let X be a bounded subset of the plane, the convex hull can be visualized as the shape enclosed by a rubber band stretched around X.
Gauss-Lucas Theorem

Theorem (Gauss-Lucas Theorem)

Let P be a polynomial, the roots of P' all lie within the convex hull of the roots of P.

Figure: $f(z) = (z - 2 - i)(z - 2 + i)(z + 2 - i)(z + 2 + i)$
Marden’s Theorem

Theorem (Marden’s Theorem)

Suppose the roots of a third-degree polynomial f are z_1, z_2 and z_3 and they form a triangle. There is a unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. The foci of that ellipse are the zeroes of the derivative f'.
Table of Contents

1. **Introduction**
 - Visualization Tools
 - Research Motivation

2. **Marden’s Theorem**

3. **Current Progress**
Extension to Higher Degrees
References

Special thanks to our mentors, Professor Luke Edholm and Rachel Webb, and to the LoG(M) Leadership.