Finding Real Polynomials
Trey Austin, Allen Macaspac, Hannah Moon, Alex Kapiamba, Jasmine Powell, Rebecca R. Winarski
Laboratory of Geometry at Michigan

Introduction
Rabbit Polynomial: The rabbit polynomial is $P_R(z)$ such that $P_R(z) = z^2 + k$ for $k \approx -0.12226 + 0.7449i$

Rabbit, corabbit, and airplane Special quadratic polynomials whose critical points $z = 0$ are 3 periodic.

The Julia sets of the rabbit, corabbit, and airplane respectively.

Key Definitions
- **Homeomorphisms** are continuous bijective maps from $\mathbb{C} \to \mathbb{C}$ with continuous inverses.
- **Mapping classes** are isotopy classes of homeomorphisms.

Theorem 1: (Dehn) Let ϕ be a mapping class. Then ϕ can be written as a finite product of Dehn twists.

Three marked points

Theorem 2
Assume P_R is a polynomial with three marked points. A mapping class can be written uniquely as the product of two finite Dehn twists, T_x, T_y, and their inverses.

Lifting

$P_R = \text{Sq} \circ \text{Rot}$
A function f lifts if there exists a function \tilde{f} such that $P_R \circ \tilde{f} = f \circ P_R$

Goal
Make a program that finds proportion of mapping classes f such that $f \circ P_R$ is equivalent to the rabbit, corabbit, or airplane

Program Methodology

Rules for Lifting
Given a mapping class written as the product of T_x, T_y, and their inverses,
- If the sum of exponents on T_x are even, the mapping class lifts.
- T_x^2 lifts to $T_x^{-1}T_y^{-1}$
- T_x lifts to T_x^{-1}
- $T_yT_xT_y^{-1}$ lifts to the identity

End conditions:
- Id: rabbit
- T_x: airplane
- T_x^{-1}: corabbit

$n > 3$ marked points

Program Results

Mapping Classes of Length 10
- Total Mapping Classes: 118,096
- Number of Rabbits: 25,095 / 21.25%
- Number of Corabbits: 25,134 / 21.28%
- Number of Airplanes: 67,867 / 57.47%

Promising Directions
Using Trees to Classify Mapping Classes

Theorem 3: (Poirier) Every quadratic polynomial has a unique tree in \mathbb{C} such that every marked point is a vertex, all leaves are marked points, unmarked vertices have valence ≥ 3, and the preimage of the tree under the rabbit is homotopic to itself.

- Trees can similarly be used to identify the polynomial in question. We’ve learned that each branched cover that is equivalent to a polynomial (any of our Dehn-twisted rabbits) has a unique tree fixed when we take the pre-image.
- With this information, we can then determine that the trees associated with our twisting can also determine which polynomial will be lifted to.
- Why Trees? Trees give us a combinatorial method of understanding mapping classes. In other words, trees are easier to understand.

Acknowledgements
We would like to give special thanks to Professor Becca R. Winarski and our Grad Advisors Jasmine Powell and Alex Kapiamba, as well as all of the faculty involved with LogM.