Selected Publications (from > 240 peer-reviewed publications)

Parikh, V., Kozak, R., Martinez, V., & Sarter, M. (2007). Prefrontal acetylcholine controls cue detection on multiple time scales. Neuron, 56, 141-154. PubMed

Parikh, V., Man, K., Decker, M.W., & Sarter, M. (2008). Glutamatergic contributions to nAChR agonist-evoked cholinergic transients in the prefrontal cortex. Journal of Neuroscience, 28, 3769-3780. PubMed

Sarter, M., Parikh, V., & Howe, W.M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 10, 383-390. PubMed

Parikh, V., Ji, J., Decker, M.W., & Sarter, M. (2010). Prefrontal β2 subunit-containing and α7 nAChRs differentially control glutamatergic and cholinergic signaling. Journal of Neuroscience, 30, 3518-3530. PubMed

Hasselmo, M.E., & Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology Reviews, 36, 52-73. PubMed

Sarter, M., & Tricklebank, M. (2012). Revitalizing psychiatric drug discovery. Nature Reviews Drug Discovery, 11, 423-424. PubMed

Paolone, G., Lee, T.M., & Sarter, M. (2012). Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality and performance. Journal of Neuroscience, 32, 12115-12128. PubMed

Parikh, V., Howe, W.M., Welchko, R.C., Naughton, S.X., D’Amore, D.E., Han, D.H., Deo, M., Turner, D.L., & Sarter, M. (2013). Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability to aging. European Journal of Neuroscience, 37, 278-293. PubMed

Parikh, V., St. Peters, M., Blakely, R.D., & Sarter, M. (2013). The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. Journal of Neuroscience, 33, 2326-2337. PubMed

Demeter, E., Guthrie, S.K., Taylor, S.T., Sarter, M., & Lustig C. (2013). Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational sustained attention task. Schizophrenia Research, 144, 136-141. PubMed

Paolone, G., Angelakos, C.C., Meyer, P., Robinson, T.E., & Sarter, M. (2013). Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. Journal of Neuroscience, 33, 8321-8335. PubMed

Howe, M.W., Berry, A.S., Francois, F., Gilmour, G., Carp, J.M., Tricklebank, M., Lustig, C., & Sarter, M. (2013). Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: Converging electrochemical and fMRI evidence from rats and humans. Journal of Neuroscience, 33, 8742-8752. PubMed

Paolone, G., Mallory, C.S., & Blakely, R.D., & Sarter, M. (2013). Monitoring cholinergic neurotransmission during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits. Neuropharmacology, 75, 274-285. PubMed

Kucinski, A., Paolone, G., Bradshaw, M., Albin, R.L., & Sarter, M. (2013). Modeling fall propensity in Parkinson’s disease: Deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. Journal of Neuroscience, 33, 16522-16539. PubMed

Koshy Cherian, A., Gritton, H., Johnson, D.E., Young, D., Kozak, R., & Sarter, M, (2014). A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology, 82: 41-48. PubMed

Holmstrand, E.C., Lund, D., Cherian, A.K., Wright, J., Martin, R.F., Ennis, E.A., Stanwood, G.D., Sarter, M., & Blakely, R.D. (2014). Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance. Neurochemistry International, 73, 217-228. PubMed

Sarter, M., Lustig, C., Howe, W.M., Gritton, H., & Berry, A.S. (2014). Deterministic functions of cortical acetylcholine. European Journal of Neuroscience, 39, 1912-1920. PubMed

Sarter, M., Albin, R.L., Kucinski, A., & Lustig, C. (2014). Where attention falls: increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Experimental Neurology, 257, 120-129. PubMed

Berry, A.S., Demeter, E., Sabhapathy, S., English, B., Blakely, R.D., Sarter, M., & Lustig, C. (2014). Disposed to distraction? Genetic variation in the cholinergic system influences distractibility but not time-on-task effects. Journal of Cognitive Neuroscience, 25, 1981-1991. PubMed

Sarter, M. (2015). Behavioral-cognitive targets for cholinergic enhancement. Current Opinion in Behavioral Sciences, 4, 22-26. ScienceDirect

Kucinski, A., Albin, R.L., Lustig, C., & Sarter, M. (2015). Modeling fall propensity in Parkinson’s disease: extensive striatal dopamine loss-associated freezing of gait. Behavioural Brain Research, 282, 155-164. PubMed

Berry, A.S., Blakely, R.D., Sarter, M., & Lustig, C. (2015). Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. NeuroImage, 108, 386-395. PubMed

Sarter, M., & Kim, Y. (2015). Interpreting chemical neurotransmission in vivo: techniques, time scales and theories. ACS Chemical Neuroscience, 6, 8-10. PubMed

Gritton, H.J., Howe, M.W., Mallory, C.S., Hetrick, V.L., Berke, J.D., & Sarter, M. (2016). Cortical cholinergic signaling controls the detection of cues. Proceedings of the National Academy of Sciences, 113, E1089-1097. PubMed

Sarter, M., Lustig, C., Berry, A.S., Gritton, H., Howe, W.M., & Parikh, V. (2016). What do phasic cholinergic signals do? Neurobiology of Learning and Memory, 130, 145-151. PubMed

Sarter, M., Lustig, C., Blakely, R.D., & Koshy Cherian, A. (2016). Cholinergic genetics of visual attention: human and mouse choline transporter capacity variants influence distractibility. Special Issue: Influence of the cholinergic system on visual processing. Journal of Physiology, 110, 10-18. ScienceDirect

Lustig, C., & Sarter, M. (2016). Attention and the cholinergic system: relevance to schizophrenia. Current Topics in Behavioral Neuroscience (Special Issue: Translational Neuropsychopharmacology, edited by T. W. Robbins and B.J. Shahakian), 28, 327-362. PubMed

Kucinski, A., de Jong, I.E.M., & Sarter, M. (2016). Reducing falls in Parkinson’s disease: Interactions between donepezil and the 5-HT6 receptor antagonist idalopirdine on falls in a rat model of impaired cognitive control of complex movements. European Journal of Neuroscience, 45, 217-231. PubMed

Pitchers, K.K., Wood, T.R., Skrzynski, C.J., Robinson, T.E., & Sarter, M. (2016). The ability of cocaine and cocaine-associated cues to compete for attention. Behavioural Brain Research, 320, 302-315. PubMed

Kim, K., Müller, M.L.T., Bohnen, N.I., Sarter, M., & Lustig, C. (2017). Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson’s Disease patients with defined cholinergic losses. NeuroImage, 149, 235-204. PubMed

Berry, A.S., Sarter, M., & Lustig, C. (2017). Distinct frontoparietal networks underlying attentional effort and cognitive control. Journal of Cognitive Neuroscience, 29, 1212-1225. PubMed

Koshy Cherian, A., Kucinski, A., Pitchers, K., Yegla, B., Parikh, V., Kim, Y., Valuskova, P., Gurnani, S., Lindsley, C.W., Blakely, R.D., & Sarter, M. (2017). Unresponsive choline transporter as a trait neuromarker and a causal mediator of bottom-up attentional biases. Journal of Neuroscience, 37, 2945-2952. PubMed

Howe, W.M., Gritton, H.J., Lusk, N., Roberts, E.A., Hetrick, V., Berke, J.D., & Sarter, M. (2017). Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling during cue detection. Journal of Neuroscience, 37, 3215-3230. PMCID: PMC5373115

Koshy Cherian, A., Parikh, V., Wu, Q., Mao-Draayer, Y., Wang, Q., Blakely, R.D., & Sarter, M. (2017). Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochemistry International, 108, 410-416. PubMed

Pitchers, K.K.., Philips, K.B., Jones, J.L., Robinson, T.E., & Sarter, M. (2017) Diverse roads to relapse: A discriminative cue signaling cocaine availability is more effective in renewing cocaine-seeking in goal-trackers than sign-trackers, and depends on basal forebrain cholinergic activity. Journal of Neuroscience, 37, 7198-7208. PubMed

Pitchers, K.K., Kane, L., Robinson, T.E., & Sarter, M. (2017). “Hot” versus “cold” behavioral-cognitive styles: Motivational-dopaminergic versus cognitive-cholinergic processing of a Pavlovian cocaine cue in sign- and goal-tracking rats. European Journal of Neuroscience, in press. PubMed