Research Statements in STEM

Larissa Sano, Ph.D.
Sweetland Center for Writing
07-May 2019
Workshop Objectives

- Understand the function and form of research statements
- Critique examples
- Consider strategies for writing more effectively
What are Research Statements?

a.k.a: “research summary”, “statement of research plan,” “statement of research interests and plans,” etc.

Part of application packet for academic positions

Communicate what you have done, how your research contributes to your field, and in what direction you think your work will progress
Research statements have a specific audience, function, and form

Audience
- Mainly members of a search committee + departmental faculty

Function
- *Present* your area of research
- *Demonstrate* the importance of your work
- *Convince* audience of your research ability
- *Propose* your future research plan

Text: Short (2-3 pages), formatted in a way that enhances readability; Can have a longer version with more specifics
Thinking like the Search Committee: What do they want to know?

What are your research interests and academic specialities?

What would you contribute as a faculty member and colleague?

What is your potential to develop your own research program?

How would you complement the mission of the department, school, and/or university?
Institutional Considerations

- Content and focus of your statement will differ depending on the institution
 - Research I university
 - Primarily Undergraduate Research Institutes

- Adjust scope of research endeavor, role of students, and importance of service to align with institution
Form of Research Statements

Form #1: Research statement as a description of your research and how it contributes to your field or discipline

Form #2: Research statement as a research proposal

Do you know what type of research statement is expected in your field? If in doubt, ask (your NextProf mentor, your PhD advisor, or the chair of the search committee)
Form #1: Situating your Research

1. Explain the relevance of your work (the “so what” question)
2. Identify the research problems or gaps in your field (i.e., situate your work - how does it fit in?)
3. Give context for your work esp. previous research
4. Demonstrate your research accomplishments
5. Identify your future research directions (next 3-5 years)
6. Note how you might engage students in your work (as needed)
7. Use Figures and Sources (as needed)
How might you organize Form #1?

Consider a Chronological Order

- Executive Summary/Overview (first paragraph)
 - Address: why is research important, what is approach, what are long-term goals,
- Graduate Research (by project)
- Postdoctoral Research (by project)
- Future Research (by project)

From Peter Fiske 1997
Form #2: Research Statement as Proposal

1. Identify the gap or problem that your research will address
 a. Gap: what remains unknown about your topic
 b. Problem: issue for which you are developing a solution (more common in engineering, computer science)

2. Propose research questions, research aims, or problem statements

3. Explain how you will answer these questions
How might you organize Form #2?

Background and Significance of your Research
○ What is known, what is not known

Project Plan
○ Objectives/Questions/Hypotheses
○ Aims/Questions/Hypotheses
○ General Methods

Importance/Impact of Proposed Work

Connection with University/College
Beyond form, Research Statements require you to explain the **Relevance** of your Work

Give context for why your work is important

Identify problems in your field that your work will address (what motivates it?)

Present some of the key questions or objectives for your work

Demonstrate your research ability, by highlighting your skills as well as key contributions and collaborations
Examples - Research Statement
I am interested in the evolutionary processes that originate “mega-diverse” biotic assemblages and in the role of ecology in shaping the evolution of diversity across large temporal and spatial scales. Different evolutionary processes combine to generate extraordinary but unevenly distributed diversity across the tree of life. Why are some groups of organisms highly diverse, while closely related groups are exceedingly species poor or functionally conserved? How does adaptation affect diversification in highly diverse clades? For instance, many believe that adaptive radiation—the rapid diversification of an ancestor into ecologically and functionally specialized lineages—may explain the origin of large swaths of biodiversity. However, most classic examples of adaptive radiation represent relatively recent diversification events in island-like environments such as the Hawaiian archipelago or the east African Great Lakes. Whether adaptive radiations may explain the origin of widely distributed, comparatively older clades at continental scales remains much less explored. Moreover, if adaptive radiation can explain macroevolutionary divergence at these large scales, how does it happen? How long does it take? How do groups that undergo adaptive radiation differ from those that do not? And ultimately, whatever their pattern of divergence, how do long-coexisting clades coevolve into the hyper diverse continental systems we see in regions like the Amazon or Central Africa?

My program addresses these and related questions by studying the evolution of Neotropical freshwater fishes, the most diverse freshwater fish fauna on earth, with an estimate exceeding 8,000 species in 43 endemic families or subfamilies. Despite representing approximately 10% of vertebrate diversity, our understanding of the evolutionary history of Neotropical freshwater fishes is remarkably limited. I argue that this fauna provides an exceptional system to address fundamental questions about evolutionary processes resulting in megadiverse assemblages at continental scales through deep evolutionary time.
Macroevolution of Neotropical cichlids - My lab uses phylogeny-based comparative methods to analyze the patterns and rates of evolution of lineages and phenotypes of cichlids and of Neotropical freshwater fishes. We perform comparative analyses on phenotypic traits including ecologically relevant morphometric characters (ecomorphology), biomechanical and functional morphological measures of performance (feeding and swimming), body size, habitat, diet data and life history traits to understand adaptive diversification along multiple dimensions of cichlid ecology. So far, our analyses have shown that at least two major Neotropical clades originated following patterns compatible with “ancient adaptive radiation” (López-Fernández et al. 2013, *Evolution*). Diversification in the South American tribe Geophagini resulted in highly disparate lineages spanning a vast portion of total cichlid morphological and functional diversity, while limiting diversification in other coexisting cichlid clades. Subsequent colonization of Central America by the tribe Heroini resulted in a second episode of adaptive divergence largely congeneric with that of South American Geophagini (López-Fernández et al. 2013 *Evolution*, Arbour & López-Fernández 2016 *Proc.Roy.Soc.B*). Altogether, our work indicates that these radiations occurred along axes of feeding and swimming specialization (López-Fernández et al. 2013 *Evolution*, Arbour & López-Fernández 2013 *Proc.Roy.Soc.B*, 2014 *J.Evol.Biol.*, Astudillo-Clavijo et al. 2015 *BMC Evol.Biol.*). We are also linking measures of ecological performance such as diet and habitat use with functional morphological attributes of cichlids at macroevolutionary scales (Arbour et al. *Evolution In Revision*, Astudillo-Clavijo et al. In prep.). We have shown that, in Neotropical cichlid radiations, ecological opportunity was associated with accelerated rates of phenotypic divergence (Arbour & López-Fernández 2016 *Proc.Roy.Soc.B*). In the two subclades of Geophagini, divergence was dominated by substrate sifting (López-Fernández et al. 2014 *PLoS ONE*) and by innovations for fast jaw movement and predation (Arbour & López-Fernández 2013 *Proc.Roy.Soc.B*, 2014 *J.Evol.Biol.*). Other dimensions of adaptive divergence we are analyzing include body size variation (Steele & López-Fernández 2014 *PLoS ONE*) and structural changes in vision proteins (Schott et al. 2014 *Mol.Biol.Evol.*, Hauser et al. In prep.). Extensive convergence among clades of Neotropical cichlids occurred along distinct functional axes (e.g. feeding biomechanics, swimming morphology) and resulted in various convergent adaptive optima or peaks (Arbour & López-Fernández 2014; Astudillo-Clavijo et al. 2015). We are currently exploring whether patterns of convergent evolution observed in one dimension (e.g. diet) are correlated with adaptive peaks in other functional dimensions (e.g. swimming). Ultimately, I would like to address the adaptive diversification of cichlids from a perspective of multidimensional adaptive landscapes in which optima for each axis are represented simultaneously. Such an approach would allow integrating major functional axes of divergence into a holistic picture of ecological specialization and trade-offs during adaptive radiations.
Read first two pages

Where does the researcher identify the role and importance of the work she plans to do?

How does she identify her research questions?

What details does she include to convince you of her ability to do this work?

What is one thing that might improve this part of the research statement?
Dr. Jena Johnson, Assistant Professor
EES - University of Michigan

Research Statement
The metabolic consumption and byproducts of microscopic and macroscopic organisms has continually changed the chemistry of our planet, which is in turn has both stimulated and limited the adaptive landscape that life can explore. This intimate relationship between geology, chemistry, and biology also forms a powerful tool that we can harness to understand the history of life and environments on Earth—as life impacts the geochemistry around it. Organisms are leaving unique chemical signatures of their presence and activity. Therefore, my research is driven by one of the fundamental questions in Geobiology: how can we identify and interpret the record of life and its impact on the environment, preserved in sediments and rocks?

I argue that a multi-faceted approach is required to understand the complexities of the interface between geology and biology. A critical problem in studying ancient sediments, especially those preserved in deep-time Archean and Proterozoic basins, is distinguishing between primary signals and secondary overprints acquired from late-stage diagenesis, hydrothermal fluids and metamorphism. I use microscale and nanoscale techniques to extract original information from Precambrian rocks. To decipher the primary signals left by early life, it is necessary to study modern biogeochemical processes, especially the preservable microbial precipitates generated as a result of specific microbial activities. This is best accomplished by combining laboratory experiments to understand processes on a mechanistic level and modern field analogues to probe similar natural and complex environments.

I apply these integrated approaches using a variety of spectrocscopic and microscale imaging tools including scanning electron microscopy and energy dispersive spectrometry, synchrotron X-ray spectroscopy and spectroscopic mapping, Raman spectroscopy, and X-ray diffraction. I intend to lead a question motivated, collaborative lab that links modern microbe-mineral interactions to the ancient mineral record, focusing in particular on two key elements in geobiological cycles throughout Earth history: iron and manganese. Both of these elements are essential cofactors for crucial biogeochemical processes such as electron transport and photosynthesis, and redox transitions of iron and manganese lead to sequestration or release of toxins and trace metals. These redox reactions are often mediated by microbes, tying the Fe and Mn cycles to the carbon and oxygen cycles, and there is much to explore about how these cycles evolve under different environmental conditions and how and when branches of these elemental cycles evolved. Not only will understanding the redox cycling of iron and manganese better constrain our current environmental system, but Fe and Mn also were also more prevalent in Earth’s Precambrian oceans and likely critical electron donors and acceptors for early life.

Previous Research
Manganese: Minerals, Microbes, and the Evolution of Oxidizing Photosynthesis
My PhD thesis centered on the interactions between manganese minerals and unraveling ancient microbial activity. Deep-time manganese deposits can elucidate paleo-environmental aqueous chemistry and oxidizing potential. Manganese oxidation today only occurs using oxygen or related species like reactive oxygen species, except in cyanobacteria, algae, and plants, where Mn(IV) is oxidized prior to water oxidation. This exception forms the basis of an evolutionary hypothesis that predicts Mn(IV) was an electron donor for phototrophs before oxygenic photosynthesis. In the first portion of my thesis, I examined ancient manganese-enriched marine sediments from 2.42 billion years ago (Ga), just prior to the appearance of atmospheric oxygen (around 2.3 Ga). I used microscale spectroscopic measurements and imaging to show that the manganese was deposited as part of the original sediments - although it had been reduced during early diagenesis (Johnson et al., 2013). I also tested proxies for oxygen (multiple sulfur isotope fractionation and redox-sensitive detrital pyrite and uranium grains) and confirmed that no significant environmental oxygen was present (Johnson et al., 2012; Johnson et al., 2014). Therefore, the manganese deposition at 2.42 Ga is evidence for the hypothesized transitional photosystem between early anaerobic phototrophs and oxygen-producing cyanobacteria.

Notes: use of first person (“I argue”, “I apply”, “I intend”); analytical techniques; MI specific section
Disease CD (DCD) is a lethal childhood disease, which is caused by mutations of the legolas gene. Legolas deficiency renders the cell type a membrane susceptible to contraction-induced injury, leading to loss of ambulation by adolescence and death by the 2nd-3rd decade of life. Currently, no cure exists for DCD and therapies are limited to corticosteroids that broadly suppress the immune response to injured tissue type a, implicating chronic inflammation as an important determinant of disease severity. Perturbations of the immune system in abc mice, a mouse model of DCD, have shown that the immune system contributes to the pathogenesis of DCD by exacerbating tissue type adamage. However, the inflammatory response to injury is also critical in mediating tissue type a regeneration. This dichotomous role for the immune system can be partly explained by distinct subsets of immune cells that either exacerbate tissue injury or promote repair. For instance, Cell type b (CTB) that are induced by pro-inflammatory cytokines such as Cytokine 1 and Cytokine 2 promote cell type e injury. In contrast, other type cytokines such Cytokine 3, Cyt 4 and Cyt 5 induce Cell type c (CTC), which antagonize the action of Cell type b via an arginase-dependent mechanism. Recent studies indicate that Cell type F and Cell type G (CTG) both have the capacity to modulate the activation status of Cell type d. Moreover, we found that modulation of these lymphoid populations in abc mice regulates the severity of disease B. However, whether these populations directly regulate tissue type a injury and repair, or indirectly through the modulation of tissue type a cell type d activation during disease d remains to be addressed.

Research strategy: During the first 3-5 years of operation, my lab will focus on investigating the functional role of Cell type F and Cell type G during disease d using a combined expertise in immunology and tissue type a physiology. We will use mouse genetics, histological assays, cellular and molecular techniques, gene expression profiling methods, single cell analysis using various flow cytometry platforms, and tissue type a performance tests to study Cell type F and Cell type G in tissue type a disease. We will modulate Cell type F and CTG numbers or functionality at various stages of disease using mouse genetics and pharmacological approaches to test the hypothesis that Cell type F and CTG function cooperatively to suppress the pro-inflammatory response to injured tissue type a, decrease cell type e injury and promote tissue type a regeneration. To examine the translational implications of our basic research we will examine human tissue type a biopsies using histological and biochemical assays to examine the activation and functional state of tissue type a Cell type F and Cell type G in DCD and healthy patients. In later years my lab will begin to address whether the preliminary observations regarding Cell type F and CTG function in DCD are specific to this disease or are a generalized inflammatory response to injured tissue type a that extend to other tissue type a diseases. This would allow us to assess whether the therapeutic implications of our work are applicable to a broader class of tissue type a disease. We will define the direct and indirect mechanisms by which Cell type F and Cell type G regulate tissue type a injury and repair during tissue type a diseases by addressing the following specific aims:

Aim 1. To test the hypothesis that Cell type F-derived CYT 5 suppresses tissue type a inflammation.

Example: **Modified Research Statement BioMedical UCSF**

What are the different sections of this statement?

Where is the research gap identified?

What questions does the researcher seek to answer?
Why might you use Figures or Graphs?

Figure 5. Step-wise spliceosome assembly. Adapted from Reference 18.

Figure 7. (A) Schematic of 3-color FRET instrument. A heating laser is used to initiate a T-jump inside a single, adhered cell on a microscope stage. The 3-color FRET labeled protein's donor is excited inside the cell with a white LED and a camera is used to simultaneously detect changes in donor, D, and acceptor, A, fluorescence averaged over the entire cell as they respond to temperature perturbation. (B) Thermodynamics and kinetics extracted from temperature induced dissociation of U170K-SL1.
First paragraph - hardest + most important

“Power positions” - beginning of piece and end of piece; start of sentence

If having a hard time starting, then move to other sections of your piece

Revisit your introduction again and again and determine if or how it frames your research statement and research approach
Creating Strong Sentences

- Sentence length: shorter ones are often easier to read
- Pay attention to the subject of a sentence: these establish what the sentence (+ even paragraph) is about
- Subject-verb separation: avoid too much distance between the subject and the verb of the main clause
- Connections - look for ways to connect sentences, i.e., how are they related, how do they build on each other?
I am interested in the evolutionary processes that originate “mega-diverse” biotic assemblages and in the role of ecology in shaping the evolution of diversity across large temporal and spatial scales. Different evolutionary processes combine to generate extraordinary but unevenly distributed diversity across the tree of life. Why are some groups of organisms highly diverse, while closely related groups are exceedingly species poor or functionally conserved? How does adaptation affect diversification in highly diverse clades? For instance, many believe that adaptive radiation—the rapid diversification of an ancestor into ecologically and functionally specialized lineages—may explain the origin of large swaths of biodiversity. However, most classic examples of adaptive radiation represent relatively recent diversification events in island-like environments such as the Hawaiian archipelago or the east African Great Lakes. Whether adaptive radiations may explain the origin of widely distributed, comparatively older clades at continental scales remains much less explored. Moreover, if adaptive radiation can explain macroevolutionary divergence at these large scales, how does it happen? How long does it take? How do groups that undergo adaptive radiation differ from those that do not? And ultimately, whatever their pattern of divergence, how do long-coexisting clades coevolve into the hyper diverse continental systems we see in regions like the Amazon or Central Africa?

My program addresses these and related questions by studying the evolution of Neotropical freshwater fishes, the most diverse freshwater fish fauna on earth, with an estimate exceeding 8,000 species in 43 endemic families or subfamilies. Despite representing approximately 10% of vertebrate diversity, our understanding of the evolutionary history of Neotropical freshwater fishes is remarkably limited. I argue that this fauna provides an exceptional system to address fundamental questions about evolutionary processes resulting in megadiverse assemblages at continental scales through deep evolutionary time.
Writing clearly and concisely

- Too many words distract from those that really matter
- Eliminate filler words (actually, quite, essentially, much, very, several, really, etc.)
- Use active verbs
- Pay attention to word choice, use a thesaurus
- Remove unnecessary words and phrases (there are many papers stating.... It was observed that.... It has been found that....)
Getting Feedback about your Statement

You will need *at least* one outside perspective about your statement (you are too close to it!)

Use NextProf Mentors to get advice about content and how well material “engages” them

Ask adviser (or someone equivalent) for feedback on content such as presentation of research problems, driving questions, contribution, etc.

Ask peers for feedback on readability, prose, etc.
Proofread carefully

Print out a hard copy (essential)

Read each sentence out loud

Check for typos, grammatical errors, long sentences

Have a peer or colleague also read the final draft
Pulling it all together: Final Checklist

Content
- Is the research described important? Is it new? Will it produce important contributions to its field?
- Is the research program "just right" in scope? Not too narrow? Not too broad?
- Are there enough details about the research plan to be convincing?
- Is there a balance of individual work plus potential for collaboration?

Form
- 2-3 pages in length, a useful figure as needed, references as needed
- Clear and logical in layout, includes sections focused on themes
- Is there flow within and between paragraphs? Are sentences easy to read?
- Did you get feedback on the content and form?
Helpful Resources

University of Pennsylvania Career Services

Carleton College Career Preparation

University of Washington Academic Careers Research Statements

UCSF Office of Career Development

