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ABSTRACT 

In different languages the names of numbers take different times to articulate. This 
chapter considers the role of language and representation in arithmetic. It reviews studies 
which demonstrate that digit word-length limits the short-term memory for digit 
sequences (such as telephone numbers or digit span as used in many intelligence tests). 
Three experiments are reported which show that a language’s number name word-lengths 
have a determinative influence upon the ease of mental calculation and counting in that 
language - some languages are more conducive to mental arithmetic than others. More 
general aspects of the effects of language word-length are also considered. 

INTRODUCTION 

The facility of human cognitive processes depends on the internalisation of effective 
representational systems and the greatest of all such systems is language. “Human beings do 
not live in the objective world alone, nor alone in the world of social activity as ordinarily 
understood, but are very much at the mercy of the particular language that has become the 
medium of expression for their society” (Sapir, in Spier, 1941). “A change in language can 
transform our appreciation of the Cosmos.” (Whorf, 1956). “‘This way,’ says the word, ‘is 
an interesting thought: come and find it.’ And so we are led on to rediscover old knowledge.” 
(Cooley, 1962). “Speech is the best show man puts on. It is his own ‘act’ on the stage of 
evolution, in which he comes before the cosmic backdrop and really ‘does his stuff‘.’’ (Whorf, 
1942). 

“The mathematical formula that enables a physicist to adjust some coils of wire, tinfoil 
plates, diaphragms, and other quite inert and innocent gadgets into a configuration in which 
they can project music to a far country puts the physicist’s consciousness on to a level strange 
to the untrained man. ... We do not think of the designing of a radio station or a power plant 
as a linguistic process, but i t  is one nonetheless. The necessary mathematics is a linguistic 
apparatus, and, without its correct specification of essential patterning, the assembled gadgets 
would be out of proportion and adjustment, and would remain inert. ... the mathematics used 
in such a case is a specialised formula-language, contrived for making available a specialised 
type of force manifestation through metallic bodies only,  namely, electricity, as we today 
define what we call by that name.” (Whorf, 1942). 

The history of mathematics, of logic, of computation, even of thought, is marked with the 
milestones of the developments of representational systems. 

In the case of mathematics the invention of positional notation was of enormous significance 
for civilisation. Early systems of numeration used by the Egyptians, Hebrews, Greeks and 
Romans were based on a purely additive system. Thus in the Roman symbolism, for example, 
one wrote: CXVIII = one hundred + ten + five + one + one + one. 
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A disadvantage of such additive notations was that more and more new symbols were 
needed as numbers got larger. But the chief problem was that computation with numbers was 
so difficult that only the specialist could handle any but the simplest problems. To realise the 
efficiency of our present positional notation, we have only to try to perform an addition by 
means of Roman numerals, for example: 

CCLXVI 266 
MDCCCVII 1807 

DCL 6.50 
MLXXX 1080 

MMMDCCCIII 3803 

Without converting the Roman numerals into our modern system the problem is difficult, if 
not impossible to solve. And this is only an addition - multiplication or division would be even 
worse. Such systems do not lend themselves to calculation because of the static nature of their 
basic numerals, which are essentially only abbreviations for recording the results of 
calculations already done by means of a counting board or abacus. “That is why, from the 
beginning of history until the advent of our modern positional numeration, so little progress 
was made in the art of reckoning.” (Dantzig, 1930). 

Additive systems are quite different from place-value (positional) systems which were 
independently conceived only four times in history. Three of these conceptions were by the 
Babylonians (in the early second millennium B.C.), the Mayas (probably in the Classic Period, 
third to ninth centuries A.D.), and the Chinese (shortly before the beginning of the Christian 
era), But these place-value systems were defective in comparison with the numeration 
developed by the Hindus that is still in use. This positional system has the agreeable property 
that all numbers, however large or small, can be represented by the use of a small set of 
different digit symbols (in the decimal system these are the Arabic numerals 0, 1,2, ..., 9) and 
the place-value principle is used consistently with powers of the base 10. In conjunction with 
the place-value principle, discovery of the zero made the decisive stage in a process of 
development without which we cannot imagine the progress of modern mathematics, science, 
and technology. The zero freed human intelligence from the counting board that had held i t  
prisoner for thousands of years, eliminated all ambiguity in the written expression of numbers, 
revolutionized the art of reckoning, and made it accessible to everyone (Ifrah, 1987). The most 
important advantage is that of ease of computation. The rules of reckoning with numbers 
represented in positional notation can be stated in the form of addition and multiplication tables 
for the digits, and these can be memorised once and for all. As Courant & Robbins (1941) 
extol: “The ancient art of computation, once confined to a few adepts, is now taught in  
elementary school. There are not many instances where scientific progress has so deeply 
affected and facilitated everyday life.” 

Another key example of the crucial importance of representation is to be found later in  the 
development of mathematics where we have retained the notation of Leibniz, drldy for the 
derivative,f(x) and I f ( x )  dx for the integral because it is extremely useful, allowing the limits 
of quotients and sums to be handled ‘as if‘ they were actual quotients or sums, notwithstanding 
the fact that Leibniz’ explanations and theory was clearly surpassed by Newton’s - “Leibniz’ 
notation is at least an excellent notation for the limit process; as a matter of fact, i t  is almost 
indispensable in the more advanced parts of the theory.” (Courant & Robbins, 1941, p. 43.5). 

As written representations vary in their efficiency, so do mental representations. Our entry 
into mathematics, the very beginnings which may one day allow us to consider the sublime 
calculus and beyond, lies in our being taught about number, counting and simple arithmetic. 
And each language has its own names for the digits and the operations thereon. These surface 
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features of language are, at first sight, an unlikely locus for cognitive constraint. Yet this 
chapter will demonstrate that such a simple feature as the time it takes to pronounce the names 
of the digits affects the ability of a native speaker of a language to remember numbers, to 
count, and to perform mental calculations. 

DIGIT LENGTH AND SHORT-TERM MEMORY 

BILINGUAL DIGIT NAMING RATE 

In Gwynedd in North Wales over 60% of the population speak Welsh (Baker, 1985). In 
1978 I was attempting to learn the language. Casual observation suggested that it mostly takes 
longer to articulate the names for digits in the Welsh language (dim, un, dau, tr i ,  pedwar, 
pump, chwech, sairh, wyth, naw, deg) than their English equivalents (nought, one, W O ,  rhree, 
four,five, six, seven, eight, nine, ten). Ellis & Hennelly (1980) therefore tested this in 12 
bilingual subjects who were required to read aloud as fast as possible 200 instances of 
randomly ordered digits in English, and in Welsh. There was a highly significant difference in 
reading time for the two languages: even though only one-third of the subjects rated 
themselves more competent in  English than in Welsh, every subject read the digits faster in  
English. It took on average 385 ms to read a Welsh digit compared with 321 ms to read an 
English digit. That is, on average, a subject would read six digits in English in the time taken 
to read five in Welsh. 

These cross-language digit name length differences may affect performance in tasks where 
vocal or subvocal articulation of digit names is involved, i.e. in short-term memory (STM) for 
digits, in counting, and in mental arithmetic. 

BILINGUAL STM SPAN 

Baddeley, Thomson & Buchanan (1975) demonstrated that immediate memory span for 
short words is greater than that for long words. This effect cannot be solely atmbuted to the 
number of syllables or phonemes in the stimulus. Rather the effect is truly one of word-length: 
even when the number of syllables and phonemes is held constant, the memory span for words 
which take a short time to articulate (e.g. wicket, phallic) is greater than that for words which 
take a long time to articulate (e.g. zygote, coerce). In general the span could be predicted on 
the basis of the number of words which the subject could read in approximately 2 s. Baddeley 
(1986) interprets such word-length effects in terms of the Working Memory model. In the 
original formulation (Baddeley & Hitch, 1974) items are encoded in STM in an articulatory 
code. Loss of information occurs by passive decay, but this can be countered by rehearsing 
the traces of decaying items. As long as all the items in a sequence can be refreshed within the 
decay time of the store, they can be maintained more or less indefinitely. If, however, the 
length of a sequence of spoken items exceeds the decay time, errors in recall will occur. Thus 
the rehearsal process is limited by temporal duration, and the articulatory loop is seen to be 
analogous to a tape loop of specific length which can hold a message which fits onto that length 
of tape. Thus subjects’ STM capacity is limited to roughly the amount of material that can be 
rehearsed sub-vocally in about 2 seconds (Baddeley, 1986; but see Gordon Brown [this 
volume] for some qualifications of this). 

In combination with the bilingual digit-name length differences, these findings led to the 
prediction that the immediate memory span for English digits will be greater than for Welsh 
digits, even in subjects who consider themselves more competent in  the Welsh language. Ellis 
& Hennelly (1980) therefore tested the same 12 subjects for their STM for Welsh and English 
digits. 
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For each condition the stimuli consisted of three mals at each length of string from two to 
ten digits and these were presented in ascending order of length. The subject listened to the 
string and, upon a cue to respond, tried to repeat the digits in the correct order and the same 
language of presentation, continuing in this fashion until there had been incorrect responses on 
three consecutive trials. STM span was calculated as 1 + (number of trials correcV3). 

The mean STM span for English was 6.55 which was significantly greater than that of 5.77 
for Welsh digits (p< 0.01). This was the case even though the majority of subjects were more 
proficient in the Welsh language and the difference is consistent with an explanation that it 
results from the word-length effect whereby Welsh digits take longer to articulate than English 
digits. 

Baddeley et al. (1975) demonstrated that a subject’s span could be predicted to be the 
number of words that could be read in approximately 2 s, and concomitantly demonstrated a 
significant correlation between subjects’ reading speed and memory span. Both of these 
findings were confirmed in Ellis & Hennelly (1980): (i) A Spearman rank-order correlation 
between the 12 subjects’ digit reading speeds and their STM spans was significant at rho = 
0.47 (p< 0.05); (ii) The mean time taken to read a Welsh digit was 385 ms, the mean Welsh 
span was 5.77; this number of digits could thus be read in 2.2 s. Comparable figures for the 
English language are a digit span of 6.55 items which at a reading rate of 321 ms/digit could be 
read in 2.1 s. 

BILINGUAL STM SPAN UNDER ARTICULATORY SUPPRESSION 

Digit span measured in the Welsh language is thus smaller than that measured in English. It 
is not possible to conclude, however, that this is necessarily an effect of word-length: both the 
span and reading rate differences might be attributable either to word-length differentials or to 
differences in degree of familiarity. This latter possibility must be considered as it seems that 
Welsh speakers do on occasion preferentially use English number names. For example, the 
year of the Ellis & Hennelly experiments was often referred to as ‘nineteen seventy-eight’ in 
preference to ‘mil naw saith wyth’ or the more clumsy ‘un mil naw cant saith deg wyth’. It is 
thus possible that numbers are a special case of language usage, and therefore the language 
competence self-ratings obtained for our bilingual subjects may not represent their language of 
preference when dealing with numbers. 

Effects of word-length and familiarity can be distinguished if articulatory suppression is 
used as an interference task. The word-length effect, which Baddeley et al. (1975) attribute to 
the functioning of the articulatory loop, is much reduced with visual stimulus presentation if the 
subject’s articulation is simultaneously suppressed by their repeatedly whispering an irrelevant 
phrase such as ‘the the the ...’. Therefore if the difference between English and Welsh digit 
spans is the result of the differential articulation time of the digit names, i.e. if it is a word- 
length effect, this difference should be either absent under articulatory suppression, or, if 
present, present in a much reduced form. 

Eight bilingual subjects were therefore tested for their digit spans in Welsh and English with 
visual presentation and articulatory suppression. The digit strings were presented sequentially 
on a memory drum at a rate of one item per second. To ensure that the stimuli were processed 
in the required language, digit words were presented, e.g. ‘pedwar’ or ‘four’, as opposed to 
the digit figures. The subjects were again required to report the component digits of the strings 
in the correct order at the end of smng presentation. The major difference between this and the 
prior procedure was that throughout the period of digit string presentation the subject was to 
whisper the sequence ‘a-b-c-d’ in a continuous cycle at the fastest rate compatible with clarity 
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of pronunciation. The subjects were tested on both conditions with order of presentation 
counterbalanced. 

The mean digit spans under articulatory suppression in Welsh and English were 3.75 and 
4.00 respectively, a non- significant difference. These figures are to be compared with those 
of 5.77 and 6.55 where no suppression was used and stimulus presentation was auditory. 

It must therefore be concluded that the bilingual digit span differential is a word-length 
effect. Even for subjects who consider themselves more proficient in Welsh, the structure of 
the Welsh digit names necessitates that it is easier to remember lists of numbers in English. 
This effect, albeit relatively small (the English span being 114 per cent that of the Welsh span) 
must be assumed to be operative in everyday situations such as the short-term remembering of 
telephone numbers. 

INTELLIGENCE TESTING 

Individual differences in the span of immediate memory, as measured using strings of 
random digits as stimuli, have commonly been utilized as sub-components of intelligence tests. 
In the Terman-Memll(1974). for example, a 10 year old child is tested on their ability to repeat 
six-digit smngs in the correct order. Similarly, in the Wechsler Intelligence Scale for Children 
(WISC, 1949) the same age child is tested for their ability to repeat digit smngs both in their 
original and reversed order. The sum of forwards and reversed spans measured on this test are 
compared with the norm score of 9 for a child of this age. 

The development or modification of intelligence tests for use with different languages or 
dialects must be accompanied by re-normalisation. As Burt (1939) stated in reference to the 
use of the WISC in England: testers in England ‘should be supplied with a standardised 
procedure and with standardised norms - a procedure which has been experimentally adjusted 
to English idioms and to English customs, norms which have been statistically deduced from 
extensive trials with English children, trained in English homes and taught in English schools.’ 
Norms for different adaptations of an intelligence test should not be directly compared with an 
aim to deducing intellectual differences between the populations from which these norms were 
derived. Our demonstrations reinforce this claim - cross-lingual differences in word-length 
result in different magnitudes of digit span as measured in those languages and this entails that 
digit span norms cannot be compared across languages as an indicator of cultural intellectual 
differences. 

Table 1 

Digit span scores (sum of digit spans forwards and reversed) for the American population 
tested in English on the WISC procedure, and the Welsh population tested in Welsh on the 

WCIS translation of WISC digit span procedure. 

Subjectage 6.10 7.10 8.10 9.10 10.10 11.10 12.10 13.10 14.10 15.10 
(years) 

WISC digit 
span score 7 8 8 9 9 10 10 10 11 11  

WCIS digit 
spanscore 7 7 8 8 8 9 9 9 9 10 

William & Roberts (1972) developed a Welsh language Children’s Intelligence Scale 
WCIS) by modifying and translating the Wechsler Intelligence Scale for Children (WISC). 
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The WISC was experimentally adjusted to Welsh idioms and to Welsh customs and norms 
were statistically deduced from extensive trials with Welsh-speaking children taught in Welsh 
schools. The digit span sub-test of the WCIS, was in effect, a direct translation of that of the 
WISC, the same digit smngs are used. The norms on this test are compared to those of the 
original WISC in Table 1 where the digit span figures represent the sum of digit span forwards 
and digit span reversed. It can be seen that the norms for the Welsh sample are reliably less 
than those of the American sample. However this cannot be taken to imply intellectual 
differences between the two populations, rather they are the result of the differing languages - 
English digits are easier to remember than Welsh digits as a consequence of their word-length. 

RECENT CONFIRMATIONS IN OTHER LANGUAGES 

Ellis & Hennelly (1980) suggested that this digit name length effect would also operate in 
other languages, i.e. languages would be more or less conducive to number memorability and 
manipulation/calculation as a function of the word-length of the languages’ number names. 
They called for a survey of the word-lengths of the digit names in a wide variety of languages 
and there have since been a number of replications in other languages. 

Stigler, Lee & Stevenson (1986) demonstrated that Mandarin Chinese number words ( i ,  er, 
sun, si, wu, liu, chi, ba,  jiou, shi) were of a significantly shorter pronunciation (0.40 s per 
digit for university students) than English number words (0.53 s per digit; see also Liu & 
Shen, 1977). (Note that here and hereafter, mean digit naming times are not comparable 
across studies because of differences in procedures and subjects in the different experiments]. 
Associated with these differences the mean digit span for the Chinese subjects was 9.2 whilst 
that of the Americans was 7.2. (We might speculate that, had George Miller (1956) been of 
Chinese extraction, the magical number would have been 9!]. As in the Working Memory 
model, Stigler et al. (1986) interpret the finding that the total pronunciation duration for a 
subject’s maximum span did not differ between Chinese and Americans as evidence for a 
temporally limited store. 

Naveh-Benjamin & Ayres (1988) investigated digit word-length and memory span in 
English, Spanish, Hebrew and Arabic. The mean number of syllables per word for the digits 
used (0-6, 8-9) were 1 .O, 1.6, 1.9, and 2.3 respectively and this led to reliable differences in 
digit naming time with English fastest at 0.26 s per digit and Arabic slowest at 0.37 s per digit. 
As a result the digit STM spans in these languages were 7.2, 6.4, 6.5 and 5.8 respectively. 
Again digit span was approximately predicted by the number of digits that could be read in 2 s. 

As Baddeley (1990) observes, the record so far for speed of articulation goes to Cantonese 
speakers of Chinese residing in Hong Kong. Hoosain (1979) had demonstrated that the digit 
span for such undergraduates was 9.9 and Hoosain (1986, 1987) and Hoosain and Salili 
(1987) showed this to be a result of the pronunciation speed and sound duration (0.3 1 s per 
digit) of Cantonese number names compared to English (0.38 s per digit). Hoosain and Salili 
used the identical procedure as Ellis & Hennelly to measure digit reading speed in Chinese and 
this resulted in an estimate of 0.26 s per digit compared with 0.32 s for English and 0.39 s for 
Welsh in Ellis & Hennelly. 

In summary, it is clear that there are differences between languages in the lengths of their 
digit names and these affect the time it takes a native speaker to articulate them. Material in 
STM decays rapidly unless it is refreshed by the use of the articulatory loop for rehearsal. 
Thus bilingual digit-name length differences affect performance in tasks such as short-term 
memory for digits which involve vocal or subvocal articulation of digit names. Other potential 
tasks where these surface features of language might play a determining role include counting 
and mental arithmetic. 



Word-length Effect in Working Memory I43 

DIGIT LENGTH AND MENTAL CALCULATION 

Mental arithmetic falls into two distinct classes: associative and procedural. Some answers 
(e.g. 5 x 9 = ?) we just ‘know’ - the answer is stored in long-term memory and the association 
is recalled directly. Other problems (e.g. 254 x 187 = ?) have not been learned, but most 
people do know h o w  to compute them and, by following the rules of multiplication, the 
appropriate answers can be produced. In this type of problem the procedural routines 
applicable to its solution are stored, the numerical product per se is not. These types of sum 
have been considered (Hunter, 1957) to involve short-term storage of (a) the original problem 
(if e.g. presented auditorily), (b) the results of interim calculation stages or routines, (c) the 
particular stage the subject is at in the calculation as a whole. The similarity between the short- 
term storage involved in digit span tasks and that in mental calculation is illuminated in the 
following stream of consciousness from Joyce: 

“- Bill, sir? she said, halting. Well, it’s seven mornings a pint at twopence is 
seven twos is a shilling and twopence over and these three mornings a quart at 
fourpence is three quarts is a shilling and one and two is two and two, sir.” 

In working out a complex problem the fundamental difficulty is not a lack of number facts, 
but rather it is trying to remember where we are in the problem and what has been achieved at 
each stage. As the complexity of the problem increases, the amount of temporary information 
to be kept track of also increases and this can defeat our short-term memory capacity leading to 
resort to pencil and paper for external scratch-pad memory. 

It is clear from introspection that we use internal speech in keeping track during 
reconstructive arithmetic problems. If you are not convinced, try doing the following sum 
under Articulatory Suppression (i.e. whilst repeatedly saying ‘the the the ...’) : 4798 x 7. It is 
likely that you find it very difficult, if not impossible, when you are denied the short-term 
storage facility afforded by internal speech. But you can probably do this sum quite easily 
under normal conditions. There is also experimental confirmation. Groen & Parkman (1972) 
demonstrated that 6-7 year old children counted to themselves when doing simple additions - 
they would start with the larger of the two digits presented (whatever the order of presentation) 
and increment the counter a number of times equivalent to the smaller of the two digits with a 
time of about 0.4 seconds per increment, a rate consistent with that of their counting aloud. In 
adults simple addition has become a highly over-learned skill and the slope of the regression 
line is now a mere 20 milliseconds, much faster than the rate of internal speech counting which 
is at best one number every 150 msec (Landauer, 1962; Restle, 1970; Groen & Parkman, 
1972; Ashcraft & Fierman, 1982). However, adults still resort to short-temi memory and 
articulatory rehearsal to keep track during more complicated sums as is shown by Sokolov 
(1972) who recorded the electromyogram activity of the speech musculature of adults 
performing mental arithmetic and thus revealed their considerable sub-vocal articulatory 
activity. Sokolov (1972) also demonstrates that suppressing covert articulation by having 
subjects pronounce irrelevant speech sounds during mental calculation imp:iirs performance. 

Lindsay and Norman (1972) and Kahneman (1973) similarly argue that such mental 
calculations are limited by the need to hold information temporarily in a transient working store 
and Hitch (1978a.b) demonsuates that forgetting increases during the course of calculation as a 
function of the number of calculational stages intervening between initial presentation and 
subsequent utilisation of information. 

On the basis of the findings of Ellis & Hennelly (1980) it may be predicted that bilingual 
differences will also be found in mental calculation tasks which involve short-temi storage. If 
this storage in any way involves articulatory encoding (the level at which word-length effects 
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are thought to operate, see Baddeley er al., 1975) then bilingual differences in efficiency should 
be found. We should note, however, that the analysis given here is the normative one. People 
can choose or learn different ways of doing mental arithmetic. For example learning to use a 
mental abacus as a calculational tool affects the mathematical competence and digit spans of 
those who acquire this skill (Hatano, Miyake, & Binks, 1977; Stigler, 1984), and expert 
calculators have a wide range of idiosyncratic number knowledge and routines (Hunter, 1977). 

As bilingual number-name word-length differences show their effects at a short-term storage 
level, bilingual differences are not expected in associative mental arithmetic problems (e.g. 5 x 
9) where little or no short-term storage or manipulation is involved and the answer is directly 
retrieved from long-term memory. Similarly, bilingual differences are less to be expected in 
written calculation where the child can (but may not) use the visible page as a permanent 
working store which provides an efficient substitute for human working storage (Hitch, 1978; 
Lindsay and Norman, 1972). 

The prediction is therefore that WelshEnglish number-name word-length differences will 
result in slower and less accurate calculation in  Welsh for problems which involve an 
appreciable short-term working storage load. 

EXPERIMENT 1 

Subjects 

25 bilingual ‘Welsh’ and 25 ‘English’ children between the ages 9-12 years were tested 
individually. The ‘Welsh’ children were drawn from 3 schools, the ‘English’ children from 4. 
The criteria for ‘Welsh’ and ‘English’ were (a) attendance at a predominantly Welsh/English 
speaking school, and (b) the same main language had to be used both at home and at school. 
The ‘Welsh’ children performed the mental calculations in their preferred Welsh, the ‘English’ 
children in English. 

The two groups were matched for age, intelligence as determined using the Deeside 
intelligence test, and, as far as possible, socio-economic background. All the children were of 
average or above average intelligence as determined using the intelligence tests. The ‘Welsh’ 
children attended schools in Gwynedd, as did some of the ‘English’ children, the remainder 
being from Wolverhampton. 

Apparatus and procedure 

Practice sums and 24 test sums were presented on a Commodore Pet 2001 Personal 
Computer. The children were individually instructed, in their own language, that they could 
start a ma1 by pressing a key, and that, using the numeric keys, they were to type in the answer 
to the sum which appeared on the screen as soon as they had worked it out. This was to be 
followed by pressing the ‘return’ button. The completion times accurate to 1/6Os were 
recorded for each sum, as were the responses. 

There were 6 examples of four sum types in the test trials: 

Type 1 Simple multiplication e.g. 5 x 3 = 
Type 2 Simple multiple-figure (3, 2) addition e.g. 305 + 42 = 
Type 3 Complex multiple-figure (3,2) addition with carrying e.g. 134 + 88 = 
Type 4 Multiple figure (9) addition e.g. 5 + 3 + 7  + 4 + 9 + 8 + 6 + 5 -+ 3 = 

These were presented in standard format with addens aligned vertically. The sum remained 
displayed throughout the trial. No interim workings (either written or keyed) were allowed, 
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and the answer was to be input in left to right order (i.e. 305 + 42 requires a ‘347’ response 
rather than that in the typical order of calculation ‘743’). 

It can be seen that sum type 1 is associative (should the child have learnt his tables), sum 
type 2 requires use of reconstructive strategies with little associated short-term memory 
involvement, and sum types 3 and 4 require reconstructive strategies with carrying and a 
considerably greater short-term memory load is incurred. 

Results 

The response time data were analysed as a 3 factor ANOVA (2 Groups x 4 Sum types x 6 
Sums) with subjects nested within groups. The Groups factor (F(1,48) = 6.75, p < 0.05) 
demonstrates that on average the ‘English’ children solved the sums faster than the ‘Welsh’ 
children (mean response times 18.9s and 24.1s respectively). The Sum type factor (F(3,144) 
= 153.5, p < 0.01) is significant, a Duncan’s Multiple Range Test demonstrates that Type 1 
sums produced the fastest responses, Type 2 the next fastest, and Types 3 and 4, which did 
not differ from each other significantly, produced the slowest responses. The most interesting 
finding is the significance of the Group x Sum type interaction (F(3,144) = 3.84, p < 0.05). 
The relevant interaction means can be seen in Table 2. A Duncan’s Multiple Range Test shows 
that whilst the ‘Welsh’ children do not differ significantly from the ‘English’ children in the 
average speed at which they answer Type 1 or Type 2 sums, the ‘Welsh’ children are 
significantly (p < 0.01) slower at answering Type 3 and 4 sums which involve carrying and 
many interim stages. 

Table 2 

Mean Response Latencies (s) for the ‘Welsh’ and ‘English’ Children on the Four types of 
Sum. 

Sum Type ‘Welsh’ ‘English’ difference p 

1 Simple multiplication 8.77 7.25 1.52 n.s. 
2 Simple multiple-figure addition 14.45 12.43 2.02 n.s. 
3 Complex multiple-figure addition 35.86 27.73 8.13 p < .01 
4 Multiple figure addition 37.15 28.02 9.13 p < .01 

_____ 

Table 3 

Mean Errors out of 6 for the ‘Welsh’ and ‘English’ Children on the Four types of Sum. 

Sum Type ‘Welsh’ ‘English’ d P 

1 Simple multiplication 0.24 0.16 0.08 n.s.  
2 Simple multiple-figure addition 0.64 0.20 0.44 n.s. 
3 Complex multiple-figure addition 1.96 1.56 0.40 n.s. 
4 Multiple figure addition 1.60 0.96 0.64 p=.06 

Total 4.44 2.88 p< .01 

The ‘Welsh’ children also differed from the ‘English’ children in that they made 
significantly more errors (Group means 4.44 and 2.88 respectively). A 3 factor ANOVA 
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demonstrates a significant Group difference (F( 1,48)=7.2, p<.Ol), a significant effect of Sum 
type (F(3,144)=27.28, pc.01) but the Group by Sum type interaction failed to reach 
significance (F(3,144)=0.69, n.s.). In Table 3 there is a numerical trend whereby there is a 
greater difference between the Groups on the non-associative sums, and independent samples t 
tests assessing group differences on each of the Sum types fail to reach significance except in 
the case of the multiple figure addition sums which was marginally significant at p=.06. These 
data are illustrated in the left-hand graphs of Figure 1.  

EXPERIMENT 2 

Experiment 1 demonstrates an interaction whereby Welsh children are slower and more 
error-prone on sums which involve considerable working storage. However, these are also the 
sums which involve more calculational steps and so, notwithstanding the matching of the 
children for intelligence and SES, it might be argued that it is calculational complexity rather 
than the temporary storage demands that underlie these effects. 

In order to clarify this issue we therefore ran a second study where any need for calculation 
was removed and the dependent variable was simply the time to pass through typical interim 
numerical solutions. We asked a subject to do aloud the mental calculations for the sums in 
Experiment 1 and we transcribed the interim numbers that he generated. Thus a Type 1 sum ‘7 
x 3’ transcribes as ‘7 3 21’ corresponding to ‘7 times 3 is 21’; a Type 2 sum ‘204 + 41’ as ‘ 1  4 
5 4 0 4 2 245’ corresponding to ‘ 1  and 4 is 5 , 4  and 0 is 4 , 2  answer 245’; a Type 3 sum ‘688 
+ 75’ as ‘8 5 13 3 1 7 8 8 16 6 1 6 7 763’ corresponding to ‘8 and 5 is 13,3 down carry 1 and 
7 is 8 and 8 is 16.6 down carry 1 and 6 is 7, answer 763’; a Type 4 sum ‘9 + 4 + 3 + 6 + 7 + 
4 + 3 + 7 + 6’ as ‘9 4 13 3 16 6 22 7 29 4 33 3 36 7 43 6 49’. The transcriptions for the six 
sums of each type were written on cards, with one card for each sum type. 

Subjects 

Three groups of 25 subjects each were used. These were all shop-keepers or assistants in 
the Bangor-Caernarfon area of North Wales. Their ages ranged from 17 to 67. Two of the 
groups were bilingual in that they claimed their proficiency in Welsh was better than that in 
English but both languages had been acquired in childhood. The third group comprised 
monoglot English speakers. 

Procedure 

The subjects were approached in their shops early in the morning whilst trading was quiet. 
They were asked to read the numbers on the cards at a comfortable fast rate making as few 
mistakes as possible. Twenty five of the bilingual subjects were randomly chosen and asked to 
read the numbers in Welsh and 25 in English. The English group read in English. The 
subjects were timed for each card and also for the time it took them to count from 1 to 100 as 
quickly as possible. 

Results 

The reading times for the 6 sums of each type and the counting times are shown in the right- 
hand graph of Figure 1 where it can be seen that there is no difference between the bilingual 
subjects performing in English and the English subjects, but bilingual subjects are slower 
reading out the interim numbers in Welsh, and this is more pronounced with sum types 3 and 
4. This is confirmed by ANOVA with a significant group effect (F(2,72)=40.3, p<.OOl), a 
significant sum type effect (F(2,288)=567.2, p<.OOl) and a significant group by sum type 
interaction (F(8,288)=25.1, p<.OOl). Figure 1 also shows the solution times and the error 
rates for the subjects actually doing these sums in Experiment 1 .  The scale differences on the 
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two graphs involving time reflect (i) the differing subjects in the two experiments, and (ii) 
hading times for Experiment 2 are for 6 sums but involve no calculations. 

FIGURE 1 

Mental Calculation Performance 
Experiment 1 
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20 3 l  
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60 

40 
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Type 1 Type 2 Type 3 5 p e  4 Type I Type 2 5 p e  3 Type 4 Vpe 1 Type 2 Type 3 Type 4Count l - lM)  

There is a clear correspondence between the time it takes here to name the numbers involved 
in the interim calculations and the actual times taken and the errors made when people to do the 
sums in the two languages. 

Discussion 

It is clear that the relative time differences between the languages on the different types of 
sum are preserved even when we take out the calculation components and simply record the 
articulation times for the interim ‘workings’. The close relationship between these interim 
‘workings’ naming latencies and the actual times taken to do the sums suggest that people do 
go through these stages of interim calculation and that the latency effects found in Experiment 1 
really are a result of the differing articulation rates for numbers in Welsh and English. The fact 
that the differential error rates on the sums closely parallel these latencies is consistent with the 
notion of the involvement of a temporally limited STM store. Loss from this store affects 
computational accuracy and is greater with longer names for the digits involved. 

EXPERIMENT 3 

The procedure of the fiist experiment was strictly controlled, and the sum types, with 
prevention of interim written working. perhaps artificial. To determine whether these results 
are of any significance in the classroom a field study was undertaken. 
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Method 

74 Primary Schools in Gwynedd and Clwyd were randomly selected from the 
telephone directory and the head-teachers of these schools were asked whether they would 
arrange for their 9, 10 and 1 1  year old children to attempt the sums on a test sheet. This sheet 
of 60 sums contained 6 examples of the following types of sum: 3 + 4; 7 x 6; 9 + 2 + 8 + 4 + 6 
+ 3; 754 - 231; 384 - 197; 563 x 2; 84990 + 52529; 36 + 59 + 42 + 19 + 36 + 54; 224 -+ 4; 29 
x 24. Those head-teachers who responded were sent the necessary number of forms, and were 
asked to administer the test ensuring that the children noted both the language(s) of math 
teaching and the language they used in mental calculation. No other instructions were given. 
Children were assigned to the Welsh or the English group on the basis of the language used in 
mental calculation. 

As a result, error data for 88 nine year olds, 118 ten year olds and 43 eleven year olds were 
obtained for each group, i.e. 249 Welsh and 249 English children. 

The ‘English’ children used in this study represented a random sample by age from a 
considerably larger pool of respondents since it was much more difficult to find children 
performing the test in Welsh even though the mathematics instruction in the vast majority of the 
schools was bilingual. 

Results 

The average number of errors was 9.7 for the ‘Welsh’ children and 7.0 for the ‘English’ 
children (Mann-Whitney U Test, z = 2.34, p c 0.01, 1 tailed). This difference, although 
statistically significant, is small, being of the order of 3 sums out of a possible 60. 

Discussion 

The results of Experiment 1 confirm the speculation that the longer word-length of Welsh 
digit-names which result in smaller Welsh digit span (Ellis and Hennelly, 1980) also result in 
relative slowness and increased errors in reconstructive mental calculation in Welsh. 

It might be claimed that the procedure of Experiment 1 was artificial in  that no written 
workings were allowed. However, bilingual differences were found at their largest in long 
addition, sum type 4, where typically no interim workings are used. These sums were 
designed to represent analogues of the calculations performed traditionally by shop-keepers, 
albeit the case that the mental solution of this type of problem has now been made unnecessary 
by the advent of the electronic till. 

In a less rigourously controlled environment, with subjects under no time stress and where 
memory loads are reduced by the use of written scratchpad memory (Experiment 3), bilingual 
differences can be seen to a lesser extent in the significant difference between the number of 
sums which the ‘Welsh’ and ‘English’ children could attempt successfully. Such differences 
were also perhaps reflected by the fact that in these bilingual schools surveyed i t  was 
considerably easier to find children who perform mental calculation i n  English. One 
headmaster, totally unprompted, enclosed a note with the return of the test sheets. This reads: 
“...I would like to add that they are Welsh speaking and taught in their mother tongue, but one 
and all prefer to calculate in English. The answer apparently is ‘It’s easier in English’!’’ 

Although the differences obtained in this study are statistically significant, they are fairly 
small in Experiment 3 where written calculation is used. These bilingual differences, although 
interesting, are therefore considered of less significance in the real-world educational setting 
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where few situations demand calculation without the use of external memory of paper, 
calculator or fingers. 

Relative WelshEnglish number name word-length has been shown to affect both the 
memorability of digit strings (e.g. telephone numbers) (Ellis and Hennelly, 1980), and the 
ease of mental calculation in these languages. There is no reason to doubt that this effect also 
operates in other languages. Languages will be more or less conducive to number 
memorability and calculation, and this will be dependent upon the word-length of the 
languages’ number names. 

COUNTING 

Figure 1 illustrates the difference in time taken for bilingual individuals to count from 1 to 
100 in Welsh and English. It is apparent that this difference is greater than that found for the 
reading of interim (one or two digit) calculations for sum types 1 through 4.  It is likely that 
this effect is a result of the even greater redundancies in Welsh counting above ten. Thus there 
is no equivalent to the ‘-ty’ suffix in English, but rather each decade must be expressed as two 
words (10 deg, 20 dau ddeg, 30 tri deg, 40pedwar deg, etc.), a contrast clearly illustrated by 
the economy of, e.g. forty four in comparison with pedwar deg pedwar. Welsh, like other 
Celtic languages, Breton and Irish, also allows a more traditional, and even longer, form of 
counting in a system centring on twenties (and, to a lesser extent fifteens). Thus 15 is 
pymtheg, 19 pedwar ar bymrheg, 20 ugain, 31 un ar ddeg ar hugain, 40 deugain, etc. Welsh 
is by no means the only language which uses bases other than ten. Thus in French vingt and 
quatre-vingts for 20  and 80 suggest that for some purposes a system with base 20 might have 
been used. In Danish the word for 70, halvfirsindstyve means half way (from three times) to 
four times twenty. The Eskimos of Greenland, the Tamanas of Venezuela, and the Ainus of 
Japan are three of the many other people who count by the scores, showing a universal 
tendency for people to take off their socks as well as their gloves in order to count. Thus for 
53, for example, the Greenland Eskimos use the expression inup pinga-jugsane arkanek- 
pingusut, “of the third man, three on the first foot” (Ifrah, 1987). The Babylonian astronomers 
took a system of notation that was partly sexagesimal (base 60) from their predecessors, the 
Sumerians, and this is believed to account for the customary division of the hour and the 
angular degree into 60 minutes (Courant & Robbins, 1941). 

There are various processes underlying the counting of the number of objects in an array. 
Kaufman, Lord, Reese & Volkmann (1949) demonstrate that adults can provide a rapid, 
confident, and accurate report of the numerosity of small arrays of elements (up to six or seven 
items) presented for short durations - they name this phenomenon subirizing. With larger 
arrays subjects become increasingly inaccurate unless display times are lengthened to allow 
actual counting. Logie & Baddeley (1987) show that there is a linear increase in time taken for 
subjects to count the number of items (between 8 and 25) in arrays, with a slope of 
approximately 0.32 s per additional item. This latency increase is close to that which one 
would expect for subvocal counting. Furthermore, the fact that articulatory suppression affects 
both counting time and accuracy suggests that internal articulation (i.e. subvocalisation of a 
running total) is required for the accurate counting of arrays of elements. Although we have 
not directly investigated effects of language digit word-length on subjects’ latency of counting 
the number of elements in an array, we have demonstrated clear differences in the time taken to 
count from 1->100 in different languages, and this taken together with the Logie & Baddeley 
findings, provides clear reason to suggest that language digit word-length effects will also 
operate here. 

Hurford (1975) has produced a linguistic theory of numbering systems, distinguishing 
between a set of primitive numbers (e.g. in English and typically 0 to 9 and units such as the 
‘-ty’ in twenty) combined according to base rules to form compound numbers such as 29. 
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Compound numbers cannot be directly combined - thus 20 + 9 is fwenry-nine, but 20 + 11 is 
not twenty-eleven. Combining compound numbers such as 20 + 11 involves first their 
unpacking into primitives (e.g. 20 + 10 + 1) and then repacking them so that the larger 
leftmost units take on the largest possible value. Thus twenty-eleven is ill-formed but rhirty- 
one is not. One problem of the English counting system is the idiosyncratic way in which 
names are formed for numbers in the teens. Number names from 20 to 99  are formed by 
suffixing a decade name with a unit value. But number names such as eleven and rwelve do 
not preserve the decade name, and the later teens must be addressed by a ‘Switch’ rule 
(Hurford, 1975) whereby the unit value precedes the decade name, with the decade name being 
the special term teen. The reported examples of non-standard numbers being produced by 
American children consist of the improper concatenation of legitimate number names, and 
Miller & Stigler (1987) demonstrate that American children have a particular problem with the 
non-standard teens (e.g. treating them as primitives and generating non-standard numbers like 
forty-rwelve for 52) whereas Chinese children never make such errors, Mandarin having no 
equivalent to the teens, but rather forming these by the regular compounding of a decade value 
with a unit value. Chinese also lacks the special (and slightly confusing) decade names such as 
twenty, decades are the compound of the value and fen (fwenry seven is, in  effect, two-ten- 
seven : er shi qi). 

Here again we see clear effects of linguistic legacy on mental arithmetic. The transparent 
Chinese counting system makes it easier for Chinese children to induce the difference between 
primitive and compound numbers. This induction is more difficult in English, and children 
frequently show confusion over what is or is not a primitive number that can be combined in 
forming compound numbers. Thus there are large country differences generally favouring 
Chinese over American children in counting (Miller & Stigler, 1987). 

More important is the realisation that counting is the entree to mathematics. The child’s 
ability to reason arithmetically rests on their representations of numerosity. Developmental 
investigations make it clear that the young child obtains such representations of by counting - 
“the judgement of equivalence or order, the application of the operations of addition, 
subtraction, and identity, and the process of solving all depend on counting” (Gelman & 
Gallistel, 1978; p. 244; Miller & Gelman, 1983). Furthermore, counting provides an important 
source of feedback for the learning of arithmetical relationships (Siegler & Robinson, 1982). 
This view is confirmed by studies of children with specific arithmetical learning disability 
(ALD). ALD children have a specific working memory deficit in relation to processing 
numerical information - they are particularly poor at working memory tasks involving counting 
but not those involving more general language processing (Siege1 & Ryan, 1989). Performance 
on working memory tasks which involve counting increases as a function of speed of 
counting, and asking adults to count i n  an unfamiliar language causes a drop in their 
performance on counting-working-memory tasks to levels of 6 years old children (Case, 
Kurland & Goldberg, 1982). In line with this, Hitch & McAuley (in press) demonstrate that it 
is impaired counting that affects the acquisition of arithmetical skills as well as their execution 
in ALD children. 

The counting systems of a language, and the names that it has for its numbers, affect the 
ease of counting in that language. This, in turn, affects the development of arithmetical 
competence in its speakers. 

MORE GENERAL ASPECTS OF LANGUAGES’ WORD-LENGTHS 

Languages differ on many dimensions relevant to efficient communication. Cherry (1966) 
states “The relationship between the whole structure of a language (the morphemic, syntactic, 
grammatical formalism) and the outside world associations (its semantic functioning) is 
extremely complicated; it is essentially empirical and, above all, varies between different 
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languages. Again, redundancy is built into the structural forms of different languages in 
diverse ways. No general laws exist.” 

In considering word-length we are addressing just one of the factors contributing to the 
redundancy of a language. Within this limited area, however, there do appear general laws. 
Cherry (1966) observes “... under the natural stress of human economising; the most 
frequently used words are the shortest; when a word comes into frequent and popular use we 
tend to abbreviate it (UNESCO, NATO, gas).” Zipf (1935) formulated the law of 
abbreviation: whenever a long word or phrase suddenly becomes common, we tend to shorten 
it. Similarly Miller and Newman (1958) suggest that an evolutionary process of selection has 
been working in favour of short words and demonstrated empirically that the average 
frequency of words of i letters in length is a reciprocal function of their average rank with 
respect to increasing length. 

If the value of some redundancy in allowing detection of errors in transmission or reception 
under non-optimal conditions is for the present ignored (cf. e.g. van Amerongen, 1975), then 
it can be seen that having a minimum-redundancy code is desirable. Miller and Chomsky 
(1963) demonstrate this from an economic viewpoint: there is a cost to communication and the 
average length of the message is an appropriate measure of this cost since it takes either more 
time or more equipment to transmit more symbols. In a given period of time, more information 
can be transmitted using a low redundancy short code. High frequency words, by definition, 
are those commonly used for communication. It is these which have apparently evolved to be 
of short word-length and low redundancy. 

If languages are compared for average word-length, moreover, gross differences can be 
seen. Fuchs (1968) devised the following mathematical relationship for the mean frequency 
distribution hi  of i-syllabic words when the mean number of syllables is i: 

This relationship appears valid for all languages. The only criterion that vanes from one 
language to another is the value i for the average number of syllables. For example, in nine 
languages investigated by Fuchs, this value was as small as 1.41 for English, ranging through 
2.10 for Arabic and Greek, and as large as 2.46 for Turkish. The English language appeared 
to contain the highest proportion of monosyllabic words i.e. it requires the least number of 
syllables to convey a given amount of information, and proponents of English as a lingua 

fruncu have suggested (van Amerongen, 1975) that this may be one reason why English has to 
so great an extent become adopted as an international language. 

These considerations of language efficiency as a function of word-length have arisen from 
the viewpoint of interpersonal communication. In addition, however, word-length has been 
shown to affect a number of functions involved in intrapersonal information processing and 
manipulation, e.g.. reading and short term memory span (Baddeley et af. 1975) and mental 
calculation (Ellis and Hennelly, 1980 and the experiments reported here). 

Word-length effects operate at an articulatory encoding level. It must therefore be concluded 
that efficiency at any task which involves articulation will to some extent be a function of the 
length of the words to be so encoded. The generation of speech is the most obvious example 
of such a task. In addition, Kleiman (1975) speculates that any condition in which information 
enters the system more rapidly than it can be semantically processed may cause the subject to 
use articulatory encoding as a back-up store. Given the large cross-lingual differences in 
average word-lengrh it can be concluded that, as a function of word-length, languages differ in 
the efficiency at which they can be used to communicate and manipulate information. 
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CONCLUSIONS AND BROADER CONSIDERATlONS 

We have demonstrated a range of effects of languages’ numbering systems, their word 
length and their transparencies in forming number names from prinlitives, that affect the facility 
of speakers of that language in remembering numbers, in counting, and in mental calculation. 

There are very large national and cultural differences in mathematics ability (Hush ,  1967; 
Stevenson, Lee & Stigler, 1986; Stigler, Lee & Stevenson, 1987). Thus American children lag 
behind Japanese and Chinese children in mathematics ability (Stevenson et al., 1986) and 
Israeli children clearly surpass English who in turn are better than Swedish children at 13 years 
old ( H u s h ,  1967). The linguistic relativity effects reviewed here play but one role in 
determining these. We must remember that counting and mental arithmetic are merely the 
portals of mathematics and play little role in the abstractions of algebra, geometry, sets, 
calculus, proofs, logic, ..., and mathematical creativity. Also important in determining this 
skill-base in the populace are the children’s schooling, the attitudes of their parents and their 
culture towards mathematics, the involvement of parents and children in school-work, teacher 
training and competence, and the child’s expectations and aspirations (Hush.  1967; Stevenson 
et al., 1986; Stigler et al., 1987). 
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