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1 Overview 
Data Freezes are regular releases of phased and imputed genetic data sets derived from samples of patients 

in the Michigan Genomics Initiative (MGI) cohort. This document provides a brief description of the properties of 

Data Freeze 3 released by the MGI in March 2020. This data description is followed by an overview of the data 

generation methods, sample- and variant-level quality control (QC) strategies, and data quality evaluation.  

2 Data Description 
The Freeze 3 data sets contain phased and imputed haplotypes of 56,984 individuals of predominantly 

European (51,521) majority ancestry along with smaller numbers of predominantly African (3,198), East Asian 

(973), Central/South Asian (641), Native American (333), and Western Asian (318) descent (Figure 1).  

Figure 1. Ancestry for each sample in the MGI cohort. (A.) Majority ancestry inferred from genetic data. (B.) 

Self-reported ancestry by study participants.   
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After genotype imputation, the data set 

contains 502,255 genotyped variants and 

39,954,964 imputed variants for a total of 

40,457,219 variants (Table 1). Among that total, 

30,029,291 variants (74%) are rare with a minor 

allele frequency (MAF) < 0.5% (Figure 2). Applying 

standard filters to remove poorly imputed 

variants (Rsq < 0.3) and very rare variants (MAF < 

0.01%), generated a high-quality data set 

containing 32,477,751 variants.  

The different types of data that are available 

with the release of Data Freeze 3 are described in 

Table 1. The Phased & Imputed filtered data set 

has the highest quality imputed and genotyped variants. Intermediate files that include more variant calls are 

also available. The rawest form of data available are genotype calls for each array after sample-level QC 

including appropriately flagged low-quality variants. A set of data produced by merging data from both array 

versions is available. These merged data have undergone both sample- and variant-level QC but are not phased. 

All datasets are provided in VCF format.    

To access these data, please apply through our ticketing 

system (submit a "Custom Data Request" in JIRA): 

https://doctrjira.med.umich.edu/. You will need to submit an 

IRB application through IRBMED to access these data, which 

you can apply for in eResearch Regulatory Management: 

https://its.umich.edu/academics-

research/research/eresearch. For further assistance, please 

contact the Research Scientific Facilitators at 

phdatahelp@umich.edu, who can guide you through the data 

request process. 

3 Data Production 
 

3.1 Genotype Calling 
All samples were genotyped by the University of Michigan Advanced Genomics Core on one of two custom 

array versions based on the Illumina Infinium CoreExome-24 bead array platform, 

UM_HUNT_Biobank_11788091_A1/Array 1.0 and UM_HUNT_Biobank_v1-1_20006200_A1/Array 1.1. Both 

arrays were designed with the same backbones containing probes corresponding to ~570,000 total variants. This 

included ~ 240,000 tag single nucleotide and ~280,000 exonic variants. Custom probes corresponding to ~60,000 

variants were incorporated into each array to detect candidate variants from GWASs, nonsense and missense 

variants, ancestry informative markers, and Neanderthal variants. This custom content included probes 

corresponding to ~30,000 predicted Loss-of-Function (LoF) variants. LoF variants require de-novo genotyping by 

Figure 2. Number of variants in the phased and 

imputed data set (unfiltered) binned by minor 

allele frequency. 

Intermediate and Imputed Data Sets 
 

# Samples # Variants 

Genotyped Array 1.0 20,023 603,583 

Genotyped Array 1.1 37,088 607,778 

Merged Genotyped 56,984 502,256 

Phased 56,984 502,255 

Phased & Imputed unfiltered 56,984 40,457,219 

Phased & Imputed filtered* 56,984 32,477,751 

*Variants with R2< 0.3 AND/OR MAF < 0.01% excluded 

Table 1. The total number of samples and variants 

associated with the imputed and intermediate data sets 

available with Data Freeze 3.  
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two probe-based design. Due to a design flaw, ~21,000 predicted LoF variants in the custom content were 

paired with only a single probe during the array design. As these single probes are not optimal for detection of 

LoF variants, LoF variants associated with a single probe design were flagged as “experimental” and excluded 

from the data set before phasing and imputation. Samples were genotyped on a rolling basis in batches of 

approximately 576 - 1,152 samples.  

To improve genotyping accuracy, all accumulated batches of samples processed on each genotyping array 

were combined for array-wise genotype calling at the time of Data Freeze creation. Raw Intensity Data files 

produced from array scanning were imported into GenomeStudio 2.0 running the Genotyping Module v2.0.4 

and the GenTrain clustering algorithm v3.0. Automatic clustering of variants was performed as per the 

GenomeStudio Genotyping Module protocol1. Where automatic clustering performed poorly, manual review 

and curation of cluster definitions was performed2. Data were then exported from GenomeStudio and used as 

input for the rare variant caller ZCall (v3.4) to recover rare variants that may have been misclustered by the 

automatic clustering process3.   

3.2 Merging Data Across Genotyping Arrays 
MGI samples have been genotyped across multiple array versions. These array versions had identical design 

backbones but were synthesized in different batches. After removing variants where genotype data significantly 

differed across arrays (see Section 4.2, Variant QC), data corresponding to variants that were represented on 

both arrays were combined. These combined data were used as input for phasing.  

3.3 Phasing 
Phasing was performed on the merged genotype data to estimate haplotypes. The data set was first divided 

into 23 separate files containing genotype data for chromosomes 1-22 or the non-pseudoautosomal (PAR) 

regions of chromosome X. Each of these files were independently phased using the software EAGLE (v 2.4.1)4.  

Genetic map coordinates were inferred by using a reference genetic map of hg19 that was available with the 

distribution of Eagle. The entire MGI cohort was phased together without the use of a reference panel (“within-

cohort” phasing). 

3.4 Imputation 
Imputation was used to expand the size of the phased data set by estimating genotypes that were not 

directly assayed on the arrays. In preparation for imputation, data files corresponding to chromosomes 1-22 or 

the non-PAR regions of chromosome X  were divided into chunks using the automated chunking feature of the 

imputation software Minimac4 (v1.0.0)5. Each prepared chunk of the data set was then imputed against the 

Haplotype Reference Consortium r1.1 reference panel of 64,940 haplotypes6. Minimac4 was set to output data 

in hard genotype, estimated alternate allele dosage, and estimated haploid alternate allele dosage formats. 

After the imputation process, chunked data were merged to the chromosome-level.  

3.5 Ancestry Inference   
The majority ancestry of individuals corresponding to each sample was first inferred by performing principal 

component analysis using PLINK (v1.9)7. Principal component calculations were based off a reference genotype 

panel of Human Genome Diversity Project (HGDP) samples8. MGI samples were projected onto the space 

created by the first two principal components of the HGDP samples. MGI samples were inferred to be of 
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European ancestry if they fell within a circle drawn around European HGDP samples. The circle was defined by a 

radius that was 1/8 the distance between the European HGDP sample centroid and the centroid formed 

between European, East Asian, and African HGDP samples. To provide a more granular level of ancestry 

information, samples that were not inferred as European by projection PCA were analyzed with the software 

ADMIXTURE9. MGI samples were merged with a reference panel of HGDP samples. Merged data were analyzed 

by running ADMIXTURE in supervised mode using the number of HGDP super-populations (K=6) as a template. 

Ancestry inferred by this method was summarized to the largest ancestry fraction reported by ADMIXTURE.   

4 Data Quality Control 

 

4.1 Sample QC  
Sample-level QC was performed on a rolling basis as batches of samples were genotyped. This approach 

allowed prompt response and issue remediation at sites of sample and data production if needed. A sample was 

flagged per batch and excluded from the Data Freeze if any of the following issues were raised during sample 

QC:  (1) patient had withdrawn from the study, (2) genotype-inferred sex did not match the self-reported gender 

of the patient or self-reported gender was missing, (3) sample had an atypical gonosomal aberration (e.g. 

Klinefelter syndrome), (4) sample shared a kinship coefficient > .45 with another sample with a different ID, (5) 

sample-level call-rate was below 99%, (6) sample was a technical duplicate or twin of another sample with a 

higher call-rate either within the same array or across arrays, (7) estimated contamination level exceeded 2.5%, 

(8) call-rate on any individual chromosome was five-fold lower than that of all other chromosomes, or (9) 

sample was processed in a DNA extraction batch that was flagged for technical issues (Table 2). Sample QC 

analysis was performed with in-house developed R scripts. Pairwise relatedness between samples was 

Table 2. The number of samples excluded from Data Freeze 3 based on various QC outcomes. Sample exclusion 

counts are distributed among the arrays that samples were processed on.  

Samples Excluded by QC in Each Array 
 

# Failing Samples 

Exclusion Flag Description  Array 1.0 Array 1.1 

TECH_ISSUE Excluded DNA extraction batches 746 73 

TECH_DUPLICATE_SAME_ARRAY Duplicated sample with higher call-rate in same array 128 58 

TECH_DUPLICATE_ERROR Sample pair w/ Identical IDs & discordant genotypes  16 2 

UNEXPECTED_DUPLICATE Sample pair w/ different IDs & similar genotypes 10 494 

UNUSUAL_XY Unusual XY composition, e.g. Turner syndrome 32 65 

GENDER_MISSING No gender information available 1 94 

GENDER_MISMATCH Reported gender different from genotype inferred sex 121 91 

HIGH_CONTAMINATION Estimated contamination > 2.5 % 118 144 

LARGE_CHR_CNV Chromosomal call-rate drop > 5 % 15 39 

LOW_CALL_RATE Sample call-rate < 99% 97 115 

TECH_DUPLICATE_ACROSS_ARRAYS Duplicated sample with higher call-rate in another array 79 35 
 

Total Samples: 1,363 1,210 
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estimated using the relationship inference software KING (v2.1.3)10. Contamination between samples was 

estimated by the contamination detection software VICES11. PLINK was used to determine sample level call-

rates.   

4.2 Variant QC 
To determine genotyping array probe specificity, probes were mapped to the Human Genome Reference 

Consortium Human Build 37 (GRCh37) and the revised Cambridge Reference Sequence of human mitochondrial 

DNA (rCRS) using the sequence alignment tool BLAT (v. 351)12. Variants where corresponding array probe(s) did 

not uniquely and perfectly map to the chromosome sequences of GRCh37 or the rCRS reference were excluded 

from analysis.  

Several quality control flags were assigned to the remaining variants that were represented on both 

arrays (Table 3). “GenTrain” and “Cluster Separation” scores are internal QC metrics from the GenomeStudio 

Genotyping Module that measure the overall quality of clusters produced by the GenTrain algorithm2. Cluster 

Separation and GenTrain scores range from 0 to 1, with lower scores suggesting poor cluster separation and 

lower cluster quality2. Variants with a GenTrain score < 0.15 and/or a Cluster Separation score < 0.3 were 

excluded from the final data set.   

Deviation from Hardy-Weinberg equilibrium (HWE) for each variant was first tested at the array level in 

a sub-population of the complete MGI cohort that contained only individuals with recent European ancestry that 

were unrelated to the second degree (KING). HWE was rejected if an exact test produced a p-value < 10-4. 

To detect array-specific batch effects, Fisher’s exact test was performed on variants that were represented 

on both arrays and passed QC. Variants that were associated with a p-value < 10-3 were assumed to differ 

between arrays due to batch-effects introduced during the genotyping process. Variants with a p-value below 

this threshold were pruned from the data set before merging genotype data across both arrays. After merging 

arrays, deviation from HWE was again tested in a subset of individuals with recent European ancestry that were 

Variants Excluded by QC in Each Array 
  

# Failing Variants 

Exclusion Flag Description Array 1.0 Array 1.1 Both Arrays 

LOW_GENTRAIN GenTrain score < 0.15  27 1,643 11 

LOW_CLUSTER_SEP Cluster Separation score < 0.3  1,583 718 948 

LOW_CALLRATE Call-rate < 99% 15,631 1,720 2,981 

HWE_ARRAY HWE test p < 10-4 within array  2,240 1,678 1,260 

BATCH_EFFECT Fisher’s exact test p < 10-3 between arrays 0 0 1,766 

MONOMORPHIC Minor allele frequency of 0 0 0 39,915 

HWE_MERGED HWE test p < 10-6 after array merge 0 0 33 
 

Total Variants: 18,122 4,531 45,969 

     

     Table 3. QC outcomes for variants that were represented on both arrays. Depicted are the numbers of 

variants that failed either uniquely on Array 1.0 or uniquely on Array 1.1.  The number of variants that 

failed on both arrays are also shown.  
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unrelated to the second degree (PLINK, KING). Variants with a p-value < 10-6 were removed from the merged 

data set. Additionally, variants with a MAF of 0 across all individuals in the merged data set (monomorphic 

variants) were removed. 

5 Data Evaluation 
 

5.1 Genotype Concordance 
Pairs of samples that were 

genotyped more than once on each array 

version (technical duplicate samples) 

allowed for the assessment of genotype 

call concordance on each array. 153 and 

304 pairs of technical duplicate samples 

were genotyped on 

UM_HUNT_Biobank_11788091_A1/Array 

1.0 and UM_HUNT_Biobank_v1-

1_20006200_A1/Array 1.1, respectively. 

Genotype call concordance rate between 

samples was determined by evaluating: (# 

concordant calls / # total calls) x 100. 

Concordance was measured first before the application of variant-level QC and again after removing those 

variants that failed QC. Removing variants that failed QC led to increased genotype call concordance on both 

arrays (Table 4).   

5.2 Phasing Evaluation 
Phasing quality was evaluated by switch error rate (SWE)13. To develop a “gold standard” phased 

reference sample, 77 parent-parent-child trios were first identified in the full MGI cohort with KING. The trios 

were phased using pedigree information with Beagle v4.014. 

The parents of each trio were then removed from the full 

MGI cohort before phasing the remaining samples with 

Eagle as described in Section 3.3, Phasing. Children from 

the trios that were phased with Eagle were then compared 

to their “gold standard” pedigree phased counterparts. 

SWE across all autosomes was determined by evaluating 

the total number of strand switches that occurred over the 

total number of heterozygous sites where strand switches 

were possible13. Sites with Mendelian errors and those sites 

heterozygous in all trio members were not considered in 

the SWE calculation. SWE varied among different 

populations of inferred majority ancestry ranging from 1.9% 

in Europeans to 7.9% in East Asians (Figure 3). 

Array-based Genotype Concordance  
 

Pairs of Duplicates Pre-Variant QC 
Concordance 

Post-Variant QC 
Concordance 

Array 1.0 153 99.74 % 99.91% 

Array 1.1 304 99.91 % 99.94% 

  

 Table 4. Concordance of genotype calls that were made for 

identical samples that were genotyped twice on the same array. 

Genotype concordance was measured both before and after the 

application of variant-level QC.  

Figure 3. Evaluation of phasing performance by 

switch error rate (SWE). SWE is summarized across 

several inferred majority ancestry groups.    
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5.3 Imputation Evaluation 
Imputation quality was measured by the metrics produced by the imputation software Minimac4. The 

metrics summarize imputation quality by estimating the correlation between imputed and expected genotypes 

at both all imputed sites (Rsq metric) and those sites both genotyped and imputed (Leave-one-out Rsq metric). 

Both quality control metrics improved with increasing MAF (Figure 4).  

 

 

5.4 Principal Component Calculation 
The first 10 principal components for all samples in the cohort were calculated from quality-controlled 

genotype data. The data were first pruned to remove all variants with a MAF < 1%. Additionally, pairs of variants 

with a squared correlation > 0.5 within a walking window of 500 variants and a step size of 5 were thinned 

(PLINK). Variants in the major histocompatibility complex region were also removed. Relationship inferences 

were made to identify all individuals that were related to the second degree (KING). 8,342 inferred related 

samples were separated from the remaining 48,642 unrelated samples. Principal components were computed 

from the unrelated samples using FlashPCA2 v2.015. The related samples were then projected onto the principal 

components of the unrelated samples. Using the same approach described above, a second set of principal 

components were generated for only those samples with inferred majority European ancestry (45,293 unrelated 

& 6,228 related samples, Figure 5). 

A. 

Figure 4. Summary of imputation quality estimates for the phased and imputed data set (unfiltered) 

provided by the imputation software Minimac4. The estimated correlation between imputed and expected 

genotypes over several MAF bins at (A.) all imputed sites by Rsq and (B.) sites that were both typed and 

imputed by Leave-one-out Rsq (LooRsq).  

B. 
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A. 

Figure 5. Plots of the first and second principal components for (A.) all samples in the MGI cohort and (B.) 

those samples with majority European ancestry.  For both cohorts, samples inferred to be related were 

projected onto the principal components of unrelated samples.  

 

B. 
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