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Major Changes from v1.1 
• Freeze 3 data that were imputed using the TOPMed reference panel are now available, providing an increased 

number of well-imputed variants for analysis. Sections 2, 4.2, and 5.3 provide new information for these data.  

• Figure 2 now reports the number of variants present in the imputed data sets after the application of standard 

post-imputation filters to exclude poorly imputed variants (Rsq < 0.3) or very rare variants (MAF < 0.01%). 

• Table 4 now summarizes non-reference-homozygote genotype call concordance.   

1 Overview 
Data Freezes are regular releases of phased and imputed genetic data sets derived from samples of participants in 

the Michigan Genomics Initiative (MGI) cohort. This document provides a brief description of the properties of Data 

Freeze 3, released in March 2020. This data description is followed by an overview of the data generation methods, 

sample- and variant-level quality control (QC) strategies, and data quality evaluation.  

2 Data Description 
The Freeze 3 data sets contain phased and imputed haplotypes of 56,984 individuals of predominantly European 

(51,521) majority ancestry along with smaller numbers of predominantly African (3,198), East Asian (973), Central/South 

Asian (641), Native American (333), and Western Asian (318) descent (Figure 1).  

Figure 1. Ancestry for samples in the Freeze 3 MGI cohort. (A.) Majority ancestry inferred from genetic data. 

(B.) Self-reported ancestry by study participants.   

A. B. 
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Freeze 3 data are available mapped to the coordinates of the Human Genome Reference Consortium Human Build 

37 (GRCh37) or 38 (GRCh38). These versions were imputed with the Haplotype Reference Consortium r1.1 (HRC) or the 

Trans-Omics for Precision Medicine r2 (TOPMed) genotype reference panels, respectively1,2.  

 After imputation with the HRC panel, Freeze 3 

contains 502,255 genotyped and 39,954,964 imputed 

only variants for a total of 40,457,219. All variants 

imputed using the HRC reference panel are single 

nucleotide variants (SNVs). Applying standard post-

imputation filters to remove poorly imputed variants (Rsq 

< 0.3) and very rare variants (minor allele frequency 

(MAF) < 0.01%), resulted in a high-quality data set 

containing 32,477,751 variants. After imputation with the 

TOPMed panel, Freeze 3 contains 501,607 genotyped and 

307,016,210 imputed only variants for a total of 

307,517,817 variants. 21,981,323 and 285,536,494 of 

these variants are indels and SNVs, respectively. 

3,692,031 indels and 48,165,288 SNVs (51,857,319 

variants total) pass the standard post-imputation Rsq and 

MAF filter. Among variants imputed with the TOPMed 

panel, 49% have MAF < 0.05%; among variants imputed 

with the HRC panel, 33% have MAF < 0.05% (Figure 2).  

The different types of data that are available with the release of Data Freeze 3 are described in Table 1. The 

imputed data sets where standard post-imputation Rsq and MAF filters have been applied have the highest quality 

imputed and genotyped variants. Intermediate files that include more variant calls are also available. The rawest form of 

data available are genotype calls for each array after sample-level QC; these data sets include appropriately flagged low-

quality variants. A data set produced by merging data from both array versions is also available. These merged data have 

undergone both sample- and variant-level QC but are not phased. All data sets are provided in VCF format. 

To access these data, please apply 

through our ticketing system (submit a 

"Custom Data Request" in JIRA): 

https://doctrjira.med.umich.edu/. You 

will need to submit an IRB application 

through IRBMED to access these data, 

which you can apply for in eResearch 

Regulatory Management: 

https://its.umich.edu/academics-

research/research/eresearch. For further 

assistance, please contact the Research 

Scientific Facilitators at 

phdatahelp@umich.edu, who can guide 

you through the data request process.  

  

Intermediate and Imputed Data Sets  
 

# Samples # Variants 

  GRCh37 GRCh38 

Genotyped Array 1.0 20,023 603,583 603,583 

Genotyped Array 1.1 37,088 607,778 607,778 

Merged Genotyped 56,984 502,256 501,608 

Phased 56,984 502,255 501,607 

HRC Imputed (unfiltered) 56,984 40,457,219 - 

HRC Imputed (filtered*) 56,984 32,477,751 - 

TOPMed Imputed (unfiltered) 56,984 - 307,517,817 

TOPMed Imputed (filtered*) 56,984 - 51,857,319 

*Variants with R2< 0.3 AND/OR MAF < 0.01% excluded 
 

 

 Table 1. The total number of samples and variants associated with the 

imputed and intermediate data sets available with Data Freeze 3.  

 

Figure 2. Number of high-quality variants (Rsq > 0.3, 

MAF > 0.01%) in the data sets imputed with the HRC or 

TOPMed reference panels binned by minor allele 

frequency.  

https://doctrjira.med.umich.edu/
https://its.umich.edu/academics-research/research/eresearch
https://its.umich.edu/academics-research/research/eresearch
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3 Data Production 
 

3.1 Genotype Calling 
All samples were genotyped by the University of Michigan Advanced Genomics Core on one of two custom array 

versions based on the Illumina Infinium CoreExome-24 bead array platform:UM_HUNT_Biobank_11788091_A1/Array 

1.0 or UM_HUNT_Biobank_v1-1_20006200_A1/Array 1.1. Both arrays were designed with the same backbones 

containing probes corresponding to ~570,000 variants: ~240,000 tag single nucleotide variants and ~280,000 exonic 

variants. Custom probes corresponding to ~60,000 variants were incorporated into each array to detect candidate 

variants from GWAS, nonsense and missense variants, ancestry informative markers, and Neanderthal variants. This 

custom content included probes corresponding to ~30,000 predicted Loss-of-Function (LoF) variants. LoF variants 

require de-novo genotyping by two probe-based design. Due to a design flaw, ~21,000 predicted LoF variants in the 

custom content were paired with only a single probe during the array design. As these single probes are not optimal for 

LoF variant detection, LoF variants associated with a single probe design were flagged as “experimental” and excluded 

from the data set before phasing and imputation. Samples were genotyped on a rolling basis in batches of 

approximately 576 to 1,152 samples.  

To improve genotyping accuracy, all accumulated sample batches processed on each genotyping array were 

combined for array-wise genotype calling at the time of Data Freeze creation. Raw Intensity Data files produced from 

array scanning were imported into GenomeStudio 2.0 running the Genotyping Module v2.0.4 and the GenTrain 

clustering algorithm v3.0. Automatic clustering of variants was performed following the GenomeStudio Genotyping 

Module protocol3. Where automatic clustering performed poorly, manual review and curation of cluster definitions was 

performed4. Data were then exported from GenomeStudio and used as input for the rare variant caller ZCall (v3.4) to 

recover rare variants that may have been misclustered by the automatic clustering process5.   

3.2 Merging Data Across Genotyping Arrays 
MGI samples have been genotyped across multiple array versions. These array versions had identical design 

backbones but were synthesized in different batches. After removing variants where genotype data significantly differed 

across arrays (see Section 4.2, Variant QC), variants that represented the intersection of both arrays were used as input 

for phasing.  

3.3 Phasing 
Phasing was performed on the merged genotype data across all participants to estimate haplotypes. The data set 

was first divided into 23 separate files containing genotype data for chromosomes 1-22 or the non-pseudoautosomal 

(PAR) regions of chromosome X. Each of these files were independently phased using the software EAGLE (v 2.4.1)6. 

Genetic map coordinates were inferred by using a reference genetic map of GRCh37 or GRCh38 that was available with 

the distribution of Eagle. The entire MGI cohort was phased together without the use of a reference panel (“within-

cohort” phasing). 

3.4 Imputation 
Imputation was used to expand the size of the phased data sets by estimating genotypes that were not directly 

assayed on the arrays. We offer two data sets, one imputed with the HRC reference panel mapped to GRCh37, the other 

imputed with the TOPMed reference panel mapped to GRCh38.  

3.4.1 Imputation with the HRC Reference Panel 
 The HRC reference panel consists of 64,940 predominantly European haplotypes and 40,457,219 genetic 

variants1. In preparation for imputation, data files corresponding to chromosomes 1-22 or the non-PAR regions of 

chromosome X  were divided into chunks using the automated chunking feature of the imputation software Minimac4 
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(v1.0.0)7. Minimac4 was set to output data in hard genotype, estimated alternate allele dosage, and estimated haploid 

alternate allele dosage formats. After the imputation process, chunked data were merged to the chromosome-level.  

3.4.2 Imputation with the TOPMed Reference Panel 
The TOPMed reference panel includes haplotypes from 194,512 ancestrally diverse samples and 308,107,085 

genetic variants2. Imputation was performed using the TOPMed Imputation Server pipeline (v1.2.7) at 

https://imputation.biodatacatalyst.nhlbi.nih.gov/. Due to a limit on sample size by the pipeline, the full MGI cohort was 

divided at random into 3 evenly sized sub-cohorts and each sub-cohort was imputed separately. After imputation was 

complete, genotypes from the sub-cohorts were merged with Bcftools (v1.9)8.  

3.5 Ancestry Inference   
The majority ancestry of MGI participants corresponding to each sample was first inferred by performing principal 

component analysis using PLINK (v1.9)9. Principal component calculations were based off a reference genotype panel of 

Human Genome Diversity Project (HGDP) samples10. MGI samples were projected onto the space created by the first 

two principal components of the HGDP samples. MGI samples were inferred to be of European ancestry if they fell 

within a circle drawn around European HGDP samples. The circle was defined by a radius that was 1/8 the distance 

between the European HGDP sample centroid and the centroid formed between European, East Asian, and African 

HGDP samples. A similar approach was taken to infer the ancestry of East Asian and African samples. The majority 

ancestries of samples that did not fall into the areas defined by these circles were inferred  with the software 

ADMIXTURE11. MGI samples were merged with a reference panel of HGDP samples. Merged data were analyzed by 

running ADMIXTURE in supervised mode using the number of HGDP super-populations (K=6) as a template. Ancestry 

inferred by this method was summarized to the largest ancestry fraction reported by ADMIXTURE.   

4 Data Quality Control 

 

4.1 Sample QC  
Sample-level QC was 

performed on a rolling basis as 

batches of samples were genotyped. 

This approach allowed prompt 

response and issue remediation if 

needed. A sample was flagged per 

batch and excluded from the Data 

Freeze if any of the following issues 

were raised during sample QC: (1) 

patient had withdrawn from the 

study, (2) genotype-inferred sex did 

not match the self-reported gender 

of the patient or self-reported 

gender was missing, (3) sample had 

an atypical sex chromosomal 

aberration (e.g. Klinefelter 

syndrome), (4) sample shared a 

kinship coefficient > .45 with 

another sample with a different ID, (5) sample-level call-rate was below 99%, (6) sample was a technical duplicate or 

twin of another sample with a higher call-rate either within the same array or across arrays, (7) estimated contamination 

level exceeded 2.5%, (8) call-rate on any individual chromosome was five-fold lower than that of all other chromosomes, 

or (9) sample was processed in a DNA extraction batch that was flagged for technical issues (Table 2). Sample QC 

Table 2. Numbers of samples excluded from Data Freeze 3 based on various QC 

outcomes. Sample exclusion counts are distributed among the arrays on which 

samples were processed.  

Samples Excluded by QC in Each Array 

   #Failing Samples 

Description  Array 1.0 Array 1.1 

Excluded DNA extraction batches 746 73 

Duplicated sample with higher call-rate in same array 128 58 

Sample pair w/ Identical IDs & discordant genotypes  16 2 

Sample pair w/ different IDs & similar genotypes 10 494 

Unusual XY composition, e.g. Turner syndrome 32 65 

No gender information available 1 94 

Reported gender different from genotype inferred sex 121 91 

Estimated contamination > 2.5 % 118 144 

Chromosomal call-rate drop > 5 % 15 39 

Sample call-rate < 99% 97 115 

Duplicated sample with higher call-rate in another array 79 35 

Total Samples: 1,363 1,210 

 

https://imputation.biodatacatalyst.nhlbi.nih.gov/
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analysis was performed with in-house developed R scripts. Pairwise relatedness between samples was estimated using 

the relationship inference software KING (v2.1.3)12. Contamination between samples was estimated by the 

contamination detection software VICES13. PLINK was used to determine sample level call-rates.   

4.2 Variant QC 
To determine genotyping array probe specificity, probes were mapped to the sequences of GRCh37 or GRCh38 

and the revised Cambridge Reference Sequence of human mitochondrial DNA (rCRS) using the sequence alignment tool 

BLAT (v. 351)14. Variants where corresponding array probe(s) did not uniquely and perfectly map to the chromosome 

sequences of the GRCh37, GRCh38, or the rCRS reference were excluded from analysis.  

Several quality control flags were assigned to the remaining variants that were represented on both arrays (Table 

3). “GenTrain” and “Cluster Separation” scores are internal QC metrics from the GenomeStudio Genotyping Module that 

measure the overall quality of clusters produced by the GenTrain algorithm4. Cluster Separation and GenTrain scores 

range from 0 to 1, with lower scores suggesting poor cluster separation and lower cluster quality4. Variants with a 

GenTrain score < 0.15 and/or a Cluster Separation score < 0.3 were excluded from the final data set.   

Deviation from Hardy-Weinberg equilibrium (HWE) for each variant was first tested at the array level in a sub-

population of the complete MGI cohort that contained only individuals with recent European ancestry that were 

unrelated to the second degree (KING). HWE was rejected if an exact test produced a p-value < 10-4. 

To detect array-specific batch effects, Fisher’s exact test (FET) was performed on variants that were represented on 

both arrays and passed QC. Variants that were associated with a p-value < 10-3 were assumed to differ between arrays 

due to batch-effects introduced during the genotyping process. Variants with a p-value below this threshold were 

pruned from the data set before merging genotype data across both arrays. After merging arrays, deviation from HWE 

was again tested in a subset of individuals with recent European ancestry that were unrelated to the second degree 

(PLINK, KING). Variants with a p-value < 10-6 were removed from the merged data set. Additionally, variants with a MAF 

of 0 across all individuals in the merged data set (monomorphic variants) were removed. 

  

Variants Excluded by QC in Each Array  
 

# Failing Variants GRCh37 # Failing Variants GRCh38 

Exclusion Flag Array 1.0 Array 1.1 Both Arrays Array 1.0 Array 1.1 Both Arrays 

GenTrain score < 0.15 27 1,643 11 27 1,600 11 

Cluster Separation score < 0.3 1,583 718 948 1,587 712 950 

Call-rate < 99% 15,631 1,720 2,981 15,641 1,725 2,968 

HWE test p < 10-4 within array 2,240 1,678 1,260 2,188 1,608 1,256 

FET p < 10-3 between arrays 0 0 1,766 0 0 1,769 

Minor allele frequency of 0 0 0 39,915 0 0 39,820 

HWE test p < 10-6 after array merge 0 0 33 0 0 49 

Total Variants: 18,122 4,531 45,969 18,100 4,452 45,869 

 
 Table 3. QC outcomes for variants that were represented on both arrays. Depicted are the numbers of variants that 

failed either uniquely on Array 1.0 or uniquely on Array 1.1 for each exclusion flag. The number of variants that 

failed on both arrays are also shown. 
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5 Data Quality Evaluation 
 

5.1 Genotype Concordance 
Pairs of samples that were genotyped more than once on each array version (technical duplicate samples) allowed 

for the assessment of genotype call concordance on each array. 153 and 304 pairs of technical duplicate samples were 

genotyped on UM_HUNT_Biobank_11788091_A1/Array 1.0 and UM_HUNT_Biobank_v1-1_20006200_A1/Array 1.1, 

respectively. Genotype call concordance rate between samples was determined by evaluating: (# concordant calls / # 

total calls) x 100. This calculation was performed both at all sites and only those sites where at least one sample of the 

duplicate pair had a non-reference-homozygote call. Concordance was measured before application of variant-level QC 

and after removing variants that failed QC. Removing variants that failed QC led to increased genotype call concordance 

on both arrays (Table 4).   

5.2 Phasing Evaluation 
Phasing quality was evaluated by switch error rate 

(SWE)15. To develop a “gold standard” phased reference 

sample, 77 parent-parent-child trios were first identified in 

the full MGI cohort with KING. The trios were phased using 

pedigree information with Beagle v4.016. The parents of each 

trio were then removed from the full MGI cohort before 

phasing the remaining samples with Eagle as described in 

Section 3.3, Phasing. Children from the trios that were 

phased with Eagle were then compared to their “gold 

standard” pedigree phased counterparts. SWE across all 

autosomes was determined by evaluating the total number 

of strand switches that occurred over the total number of 

heterozygous sites where strand switches were possible15. 

Sites with Mendelian errors and those sites heterozygous in 

all trio members were not considered in the SWE calculation. 

SWE varied among different populations of inferred majority ancestry ranging from 1.9% in Europeans to 7.9% in East 

Asians (Figure 3). 

5.3 Imputation Evaluation 
Imputation quality was measured by the Rsq and EmpRsq metrics produced by the imputation software Minimac4. 

The Rsq metric estimates imputation quality at imputed sites by the formula Var(HDS) / (p(1-p)) where HDS is the 

estimated haploid alternate allele dosage and p is the mean of HDS. EmpRsq is an imputation quality metric available at 

Figure 3. Evaluation of phasing performance by 

switch error rate (SWE). SWE is summarized 

across several inferred majority ancestry groups. 

Table 4. Concordance of genotype calls that were made for identical samples that were genotyped twice on the same 

array. Genotype concordance was evaluated at both all genotyped sites and only those sites where at least one sample 

had a non-reference-homozygote (NRH) call. Concordance was measured both before and after the application of 

variant-level QC.  

Array-based Genotype Concordance 
  

Pre-Variant QC Concordance [%] Post-Variant QC Concordance [%]  
Pairs of Duplicates All NRH All NRH 

Array 1.0 153 99.74 99.58 99.91 99.84 

Array 1.1 304 99.91 99.87 99.94 99.92 
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all sites that were both genotyped and imputed. It is defined as the Pearson correlation coefficient of known and 

imputed genotypes as if the known genotypes were masked. For the data set that was imputed with the TOPMed 

reference panel, Rsq and the MAF of each variant were estimated for the merged data set by taking the mean of each of 

these values across 3 separately imputed sub-cohorts (see Section 3.4.2, Imputation with the TOPMed Reference Panel). 

Both imputation quality metrics improved with increasing MAF when using either the HRC or TOPMed panel. Direct 

comparisons of imputation quality between Freeze 3 data imputed using the HRC or TOPMed reference panels are 

possible at sites that are imputed by both panels. Imputation of Freeze 3 using the TOPMed panel resulted in a relative 

increase in mean Rsq and EmpRsq compared to HRC-based imputation across all MAF bins except for the lowest bin 

([0,0.01] %, Figure 4A-B). Rsq at all sites that were imputed by either the HRC or TOPMed panels were also evaluated. 

Rsq of SNVs and indels that were imputed using the TOPMed panel are comparable, no indels were imputed when using 

the HRC panel as reference (Figure 4C-D).  

A. 

C. 

Figure 4. Summary of imputation quality metrics for the data sets imputed with the HRC or TOPMed 

reference panels. 404,279 sites that were genotyped on the arrays and imputed across both reference 

panels were used to evaluate: (A.) the estimated correlation between imputed and expected genotypes 

(Rsq) and (B.) the Pearson correlation coefficient of known and imputed genotypes (EmpRsq). Rsq is 

summarized for all single nucleotide variants (SNVs) or indels that were imputed by using either the (C.) 

TOPMed reference panel (285,509,108 SNVs, 21,981,323 indels) or (D.) HRC reference panel (40,359,612 

SNVs).  

B. 

D. 
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5.4 Principal Component Calculation 
The first 10 principal components for all samples in the cohort were calculated from quality-controlled 

genotype data. The data were first pruned to remove all variants with a MAF < 1%. Additionally, pairs of variants 

with a squared correlation > 0.5 within a walking window of 500 variants and a step size of 5 were thinned 

(PLINK). Variants in the major histocompatibility complex region were also removed. Relationship inferences 

were made to identify all individuals that were related to the second degree (KING). 8,342 inferred related 

samples were separated from the remaining 48,642 unrelated samples. Principal components were computed 

from the unrelated samples using FlashPCA2 v2.017. The related samples were then projected onto the principal 

components of the unrelated samples. Using the same approach that was applied to the full MGI cohort, a 

second set of principal components were generated for only those samples with inferred majority European 

ancestry (45,293 unrelated & 6,228 related samples, Figure 5). 
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