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1 Changes From Data Freeze 3

• Increase of available genotyped cohort size by 3,231 participants.

2 Data Description

Data Freeze 4 is comprised of 60,215 genotyped participants of the Michigan Genomics Initiative
(MGI). 28,251 (≈ 47%) of participants are male and 31,964 (≈ 53%) are female. The median age for
males is 62 compared to 57 for females. The self-reported race of participants as recorded during a
medical office visit is Caucasian (51,967), African American (3,859), Unknown (2,229), Asian (1,829),
American Indian or Alaska Native (273), Native Hawaiian and Other Pacific Islander (58) (Figure 1).
The inferred majority genetic ancestry of the included participants is primarily European (53,054) with
smaller numbers of African (3,761), Eastern Asian (1,281), Central/South Asian (891), Western Asian
(780), and Native American (448). Although we primarily describe the MGI cohort using majority
ancestry labels, MGI participants exhibit a range of genetic admixture (Figure S1).

11,409 of participants in Data Freeze 4 are inferred to be related to at least one other participant
in the cohort at 3rd degree or closer. 7,906 MGI participants have at least one inferred 2nd degree or
closer relative (KING v2.2.7, Figure S2).

We assayed ≈ 570,000 genotypes for each participant via genome-wide genotyping array and im-
puted millions of additional genotypes with the Haplotype Reference Consortium r1.1 (HRC) or the
Trans-Omics for Precision Medicine r2 (TOPMed) reference panels [1, 2].

After imputation with the HRC panel, Data Freeze 4 contains 40,494,480 variants mapped to build
37 of the human genome. All variants imputed using the HRC reference panel are single nucleotide
variants (SNVs). Applying standard post-imputation filters to remove poorly imputed variants (Rsq <
0.3) and very rare variants (minor allele frequency (MAF) < 0.01%), resulted in a high-quality data set
containing 32,401,123 variants (Table 1, Table S1). In this high-quality data-set ≈ 32% (10,276,791)
have MAF ≤ 0.05% (Figure 2, Table S2).

After imputation with the TOPMed panel, Data Freeze 4 contains 307,896,277 variants mapped
to build 38 of the human genome. 285,879,432 and 22,016,845 of these variants are SNVs and indels,
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Figure 1: Genotype-inferred majority ancestry and self-reported race of MGI partic-
ipants. (A.) Majority ancestry as inferred for MGI participants using the ADMIXTURE software
with Human Genome Diversity Panel genotypes and continental population labels used as reference.
(B.) Race as self-reported by MGI participants during a medical office visit. The left plot in each
inset summarizes the full MGI cohort. The right plot in each inset is a zoom in view focusing on the
non-European/non-Caucasian component of the full MGI cohort.

# Variants
Data Set # Samples GRCh37 GRCh38

CoreExome-24 v1.0 19,831 571,625 570,506
CoreExome-24 v1.1 37,953 575,621 574,490
CoreExome-24 v1.3 2,431 574,822 573,648
CoreExome arrays merged (unphased) 60,215 499,575 498,711
CoreExome arrays merged (phased) 60,215 499,574 498,710
HRC Imputed (unfiltered) 60,215 40,494,480 -
HRC Imputed (filtered*) 60,215 32,401,123 -
TOPMed Imputed (unfiltered) 60,215 - 307,896,277
TOPMed Imputed (filtered*) 60,215 - 52,740,810

Table 1: Intermediate and imputed data sets. The total number of variants associated with
the intermediate and imputed data sets available with Data Freeze 4. Variant counts are given for
versions of Data Freeze 4 mapped to the coordinates of GRCh37 or GRCh38. *, Variants with Rsq <
0.3 or MAF < 0.01% excluded.

2



Figure 2: Distribution of variant frequency. The number of variants in the data sets imputed
with HRC or TOPMed that fall into different minor allele frequency bins. Only variants that pass the
standard post-imputation filter (Rsq ≥ 0.3 and MAF ≥ 0.01%) are plotted.

respectively. 48,986,377 SNVs and 3,754,433 indels (52,740,810 variants total) pass the standard post-
imputation Rsq and MAF filter (Table 1, Table S1). ≈ 49% (25,678,109) of variants imputed with
TOPMed that pass the standard post-imputation filter have MAF ≤ 0.05% (Figure 2, Table S2).

The genotype data sets that are available with the release of Data Freeze 4 are described in Table 1.
The imputed data sets where standard post-imputation Rsq and MAF filters have been applied have
the highest quality imputed and genotyped variants. Intermediate files that include more variant calls
are also available: The rawest form of data with genotype calls for each array after sample-level quality
control (QC) (with appropriately flagged low-quality variants), a data set merging data from all array
versions after sample- and variant-level QC (unphased), and the unfiltered set of HRC- or TOPMed
imputed variants. All data sets are provided in VCF format.

To access these data, please apply through our ticketing system (submit a ”Custom Data Request”
in JIRA): https://doctrjira.med.umich.edu/. You will need to submit an IRB application
through IRBMED to access these data, which you can apply for in eResearch Regulatory Management:
https://its.umich.edu/academics-research/research/eresearch. For further assistance, please
contact the Research Scientific Facilitators at phdatahelp@umich.edu, who can guide you through
the data request process.

3 Data Production

3.1 Genotype Calling

The University of Michigan Advanced Genomics Core (AGC) genotyped the samples of MGI partici-
pants on one of three custom array versions based on the Illumina Infinium CoreExome-24 v1.0, v1.1,
or v1.3 bead array. All the arrays we used were designed with the same backbones containing probes
corresponding to ≈ 570,000 variants: ≈ 240,000 tag single nucleotide variants and ≈ 280,000 exonic
variants. We incorporated custom probes corresponding to ≈ 60,000 variants into each array to detect
candidate variants from GWAS, nonsense and missense variants, ancestry informative markers, and
Neanderthal variants. This custom content included probes corresponding to ≈ 30,000 predicted Loss-
of-Function (LoF) variants. LoF variants require de novo genotyping by two probe-based design. Due
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to a flaw in our design, ≈ 21,000 predicted LoF variants in the custom content were paired with only a
single probe during the array design. As these single probes are not optimal for LoF variant detection,
we flagged LoF variants associated with a single probe design as “experimental” and excluded them
from the data set before phasing and imputation. The AGC genotyped samples on a rolling basis in
batches of ≈ 576 to 1,152 samples.

To produce genotype callsets, we imported raw Intensity Data files from array scanning into
GenomeStudio 2.0 running the Genotyping Module v2.0.4 and the GenTrain clustering algorithm
v3.0. To define the clusters that genotype calls are based on, we performed automatic clustering by
following the GenomeStudio Genotyping Module protocol [3].

We performed two rounds of genotyping for most MGI samples. We first called sample genotypes
per sample batch processed by the AGC. We used these preliminary callsets for sample-level QC (see
subsection 4.1) and generated them by automatic clustering of only those samples belonging to each
respective batch. We then called sample genotypes per array at the time of Data Freeze creation. These
higher-quality callsets were generated by automatic clustering of all high-quality samples processed to
date on each array.

Where array-based automatic clustering performed poorly, we performed manual review and cura-
tion of cluster definitions [4]. We used the rare variant caller ZCall (v3.4) to recover rare variants that
may have been misclustered during the array-based automatic clustering process [5]. Due to limited
sample size, we did not manually review cluster definitions or perform the associated ZCall work for
the CoreExome v1.3 array.

3.2 Merging Data Across Genotyping Arrays

We first filtered to exclude variants where genotype data significantly differed across the 3 array versions
we used to genotype MGI participants (see section subsection 4.2). We then merged these filtered data
keeping only variants that intersect all array versions.

3.3 Phasing

We phased merged genotype data to estimate haplotypes. We divided the data set into 23 separate files
containing genotype data for chromosomes 1-22 or the non-pseudoautosomal regions of chromosome
X. We phased these files using the software Eagle (v 2.4.1) [6], using the reference genetic map of
GRCh37 or GRCh38 distributed of Eagle. We phased the MGI cohort without the use of a reference
panel (“within-cohort” phasing).

3.4 Imputation

We performed genotype imputation on the phased data sets to infer additional genotypes not directly
assayed by array. We offer two data sets, one imputed with the HRC reference panel mapped to
GRCh37, the other imputed with the TOPMed reference panel mapped to GRCh38.

The HRC reference panel consists of 64,940 predominantly European haplotypes and 40,405,505
genetic variants [7]. The TOPMed reference panel includes 194,512 haplotypes and 308,107,085 genetic
variants from diverse samples [2].

We used the TOPMed Imputation Server pipeline (v1.5.7) at https://imputation.biodataca

talyst.nhlbi.nih.gov/ to impute MGI with the TOPMed reference panel. We used the Michigan
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Imputation Server pipeline (v1.5.7) at https://imputationserver.sph.umich.edu/ to impute MGI
with the HRC reference panel.

Due to server limits on sample size, we divided the full MGI cohort into 3 evenly sized sub-cohorts
and imputed each sub-cohort separately. We reconstructed the full MGI cohort by merging imputed
sub-cohorts with Bcftools (v1.9) [8].

3.5 Genetic Ancestry Inference

For the purpose of cohort description, we inferred the majority ancestry of MGI participants by using
the software ADMIXTURE [9]. We merged genotypes of MGI samples with those of a reference
panel of Human Genome Diversity Project (HGDP) samples [10]. These merged data were analyzed
by running ADMIXTURE in supervised mode using the number of HGDP continental populations
(K=7) as a template. Genetic ancestry inferred by this method was summarized to the largest Q value
(ancestry fraction) reported by ADMIXTURE.

4 Data Quality Control

4.1 Sample QC

We performed sample-level QC on a rolling basis as batches of samples were genotyped. This approach
allowed us to promptly detect and resolve issues if needed. A sample was flagged per batch and excluded
from the Data Freeze if any of the following issues were raised during sample QC: (1) participant had
withdrawn from the study, (2) genotype-inferred sex did not match the self-reported gender of the
participant or self-reported gender was missing, (3) sample had an atypical sex chromosomal aberration
(e.g. Klinefelter syndrome), (4) sample shared a kinship coefficient ≥ .45 with another sample with
a different ID, (5) sample-level call-rate was below 99%, (6) sample was a technical duplicate or twin
of another sample with a higher call-rate, (7) estimated contamination level exceeded 2.5%, (8) call-
rate on any individual chromosome was ≤ 95%, or (9) sample was processed in a DNA extraction
batch that was flagged for technical issues (Table 2). Our sample QC analysis was performed with
in-house developed R and Python scripts. We estimated pairwise relatedness between samples with
KING (v2.1.3), contamination between samples with VICES, and sample call-rates with PLINK (v1.9)
[11, 12, 13].

4.2 Variant QC

To determine genotyping array probe specificity, we mapped probes to the sequences of GRCh37 or
GRCh38 and the revised Cambridge Reference Sequence of human mitochondrial DNA (rCRS) using
the sequence alignment tool BLAT (v.351) [14]. We excluded variants where corresponding array
probe(s) did not uniquely and perfectly map to the chromosome sequences of the GRCh37, GRCh38,
or the rCRS reference.

We assigned quality control flags to the remaining variants that intersected all arrays. The number
of well-mapping sites that fail in each array are provided in Table 3. “GenTrain” and “Cluster Sepa-
ration” scores are internal QC metrics from the GenomeStudio Genotyping Module that measure the
overall quality of clusters produced by the GenTrain algorithm [4]. Cluster Separation and GenTrain
scores range from 0 to 1, with lower scores suggesting poor cluster separation and lower cluster quality
[4]. We excluded variants with a GenTrain score < 0.15 and/or a Cluster Separation score < 0.3 from
the final data set.
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CoreExome-24 v1.0 CoreExome-24 v1.1 CoreExome-24 v1.3
Sample QC Flag # % # % # %

UNUSUAL XY 19 0.09 70 0.18 11 0.37
GENDER MISMATCH 94 0.44 103 0.26 5 0.17
GENDER MISSING 0 0 2 0.01 20 0.68
LOW CALLRATE 97 0.46 143 0.37 18 0.61
LARGE CHR CNV 18 0.08 41 0.10 2 0.07
HIGH CONTAM 118 0.56 201 0.51 38 1.29
TECH ISSUE 739 3.49 80 0.20 1 0.03
TECH DUP ERROR 14 0.07 4 0.01 4 0.14
TECH DUP 333 1.57 656 1.68 411 13.92
UNEXPECTED DUP 22 0.10 61 0.16 28 0.95

Total Unique Failing Samples 1,394 6.58 1,195 3.06 477 16.16

Table 2: Sample QC outcomes. The total numbers and percentages of samples that fail var-
ious sample QC flags. UNUSUAL XY, unusual XY composition (e.g. Turner syndrome); GEN-
DER MISMATCH, reported gender different from genotype-inferred sex; GENDER MISSING, no gen-
der information available; LOW CALLRATE, sample call-rate < 99 %; LARGE CHR CNV, chromoso-
mal call-rate drop > 5 %; HIGH CONTAM, estimated contamination > 2.5 %; TECH ISSUE, excluded
DNA extraction batch; TECH DUP ERROR, sample pair w/ identical IDs & dissimilar genotypes;
TECH DUP, sample with same ID and similar genotypes as other sample; UNEXPECTED DUP,
sample pair w/ different IDs & similar genotypes.

# Failing Variants GRCh37 # Failing Variants GRCh38
Variant QC Flag CE v1.0 CE v1.1 CE v1.3 CE v1.0 CE v1.1 CE v1.3

HWE 3,405 2,888 432 3,380 2,865 423
LOW CALLRATE 17,922 4,157 1,767 17,871 4,100 1,743
LOW CLUSTER SEP 2,410 1,534 590 2,395 1,513 577
LOW GENTRAIN 37 1,553 69 36 1,510 69

Total Unique Failing Variants 21,051 7,294 2,133 20,983 7,211 2,103

Table 3: Array-based variant QC. The number of well-mapping sites that fail variant QC
flags in each array. Counts are given for versions of Data Freeze 4 mapped to the coordinates of
GRCh37 or GRCh38. CE, CoreExome-24; HWE, Hardy-Weinberg equilibrium test p < 10-4 before
array merge; LOW CALLRATE, call-rate < 99%; LOW CLUSTER SEP, Cluster Sep. score < 0.3;
LOW GENTRAIN, GenTrain score < 0.15.

We tested variants for deviation from Hardy-Weinberg equilibrium (HWE) using a sub-population
of MGI participants with majority European ancestry that were inferred to be unrelated to the 2nd

degree by KING (v2.1.3). HWE was rejected if an exact test produced a p-value < 10-4. For each
CoreExome array, there were instances of variants failing QC by more than one of our array-based
variant QC measures (Figure S3, Figure S4).

For each variant, we tested the hypothesis that genotype frequency does not differ between array
versions with Fisher’s exact test (FET). We assumed variants with a p-value < 10-3 differed in frequency
due to batch-effects introduced during the genotyping process. ≈ 2,700 variants were excluded from
each array based on FET results (Table S3).

After merging data across arrays, we tested again for deviation from HWE in a subset of indi-
viduals with majority European ancestry that were inferred to be unrelated to the 2nd degree. ≈ 60
variants with a p-value < 10-6 were excluded from each array (Table S3). We also excluded ≈ 36,000
monomorphic variants (MAF = 0) from each array (Table S3).
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All Sites NRH Sites
Array # Pairs Pre-QC Post-QC Pre-QC Post-QC

CoreExome-24 v1.0 127 99.80 99.94 99.68 99.89
CoreExome-24 v1.1 318 99.90 99.95 99.88 99.93
CoreExome-24 v1.3 277 99.91 99.96 99.90 99.96

Table 4: Array-based genotype concordance. Concordance of genotype calls from samples
genotyped twice on the same array. Genotype concordance was evaluated at both all genotyped sites
and only those sites where at least one sample had a non-reference-homozygote call. Concordance
was measured both before and after the application of variant-level QC. Values are expressed as the
percentage of concordant calls out of all compared calls. NRH, non-reference-homozygote.

5 Data Quality Evaluation

5.1 Genotype Concordance

We measured genotype concordance using 127, 318, and 277 pairs containing samples that were geno-
typed twice on the CoreExome-24 v1.0, CoreExome-24 v1.1, or CoreExome-24 v1.3 arrays, respectively.
We considered genotypes concordant if they matched perfectly between samples. We evaluated con-
cordance across a set of all genotypes and a set of only those genotypes where at least one sample of
the duplicate pair had a non-reference-homozygote call. We measured concordance before and after
removing variants that failed QC. For all arrays, removing variants that failed QC led to increased
genotype call concordance (Table 4).

5.2 Phasing Quality

We evaluated phasing quality by switch error rate (SWE), a metric that describes the total number
of strand switches that occur over the total number of heterozygous sites where strand switches are
possible [15]. To obtain known maternal and paternal haplotypes, we used pedigree information
inferred with KING (v2.1.3) to phase 118 trios using Beagle v4.0 [16]. We then removed the parents
of each trio from the full MGI cohort before phasing the remaining samples with Eagle as described in
subsection 3.3. We calculated SWE by counting switches that occurred at heterozygous sites between
children phased with Eagle or their Beagle pedigree phased counterparts [15]. Sites with Mendelian
errors and sites that were heterozygous in all trio members were excluded from our SWE calculation.
SWE increases with decreasing chromosome length and is on average lower in European participants
(Figure 3).

5.3 Imputation Quality

We used the ”Rsq” and ”EmpRsq” metrics produced by the imputation software Minimac4 to evaluate
imputation quality. The Rsq metric estimates imputation quality at all imputed sites by the formula:

Rsq =
1
2n ×

∑2n
i=1(Di − p̂)2

p̂(1 − p̂)

where p̂ is the frequency of the alternate allele, Di is the allele dosage for the ith haplotype and n
is the number of samples that are evaluated [17].

The EmpRsq metric measures imputation quality at all sites that were both genotyped and imputed.
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Figure 3: Phasing quality. Evaluation of phasing quality in trio children of the MGI cohort
by switch error rate (SWE). SWE is summarized across several genotype-inferred majority ancestry
groups. SWE across all autosomes was determined by evaluating the total number of strand switches
that occurred over the total number of heterozygous sites where strand switches were possible. The
value given in parentheses in the legend is the number of trio children used to estimate switch error
rate.

It is defined as the Pearson correlation coefficient of known and imputed genotypes as if the known
genotypes were masked. We estimated Rsq, EmpRsq, and the MAF of each variant by taking the
mean of each of these values across 3 separately imputed chunks (see subsection 3.4).

Both Rsq and EmpRsq improved with increasing MAF when using either the HRC or TOPMed
panel (Figure 4). Direct comparisons of imputation quality between data imputed using the HRC or
TOPMed reference panels are possible at sites that are imputed by both panels. Imputation of Data
Freeze 4 using the TOPMed panel resulted in a relative increase in mean Rsq and EmpRsq compared
to HRC-based imputation across all MAF bins. We also evaluated Rsq at all sites that were imputed
by either the HRC or TOPMed panels. Rsq of indels imputed using the TOPMed panel are comparable
to Rsq of SNVs imputed with the TOPMed panel, no indels were imputed when using the HRC panel
as reference.

5.4 Principal Components

We calculated the first 20 principal components for all samples in the cohort. The data were first
pruned to remove all variants with a MAF < 1%. Additionally, we thinned pairs of variants with
a squared correlation > 0.5 within a walking window of 500 variants and a step size of 5 (PLINK).
We also excluded variants in the major histocompatibility complex region (6:25000000-33500000). We
used KING (v2.2.7) to identify 52,309 participants unrelated to the 2nd degree or closer and computed
principal components using these samples with FlashPCA2 v2.0 [18]. The remaining 7,906 related
samples were then projected onto the principal components of the unrelated samples. Using the same
approach that was applied to the full MGI cohort, a second set of principal components were generated
for only those samples with inferred majority European ancestry (46,301 unrelated & 6,753 related
samples, Figure 5).
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Figure 4: Imputation quality across frequency bins. Summary of imputation quality metrics for
the data sets imputed with the HRC or TOPMed reference panels. 383,181 sites that were genotyped
on the arrays and well-imputed (Rsq ≥ 0.3 and MAF ≥ 0.01%) across both reference panels were used
to evaluate: (A.) the estimated correlation between imputed and expected genotypes (Rsq) and (B.)
the Pearson correlation coefficient of known and imputed genotypes (EmpRsq). Rsq is summarized
for all well-imputed single nucleotide variants (SNVs) or indels that were imputed by using either the
(C.) TOPMed reference panel (48,973,140 SNVs, 3,754,433 indels) or (D.) the HRC reference panel
(32,308,248 SNVs). The given minor allele frequency bins are based on the frequency of variants as
reported by the arrays.
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Figure 5: Principal component plots for full sample and European subsample. Plots of the
first and second principal components for (A.) all 60,215 samples in the MGI cohort of Data Freeze
4 and (B.) 53,054 samples with inferred majority European ancestry by the software ADMIXTURE.
For both cohorts, samples inferred to be related to the 2nd degree or closer were projected onto the
principal components of unrelated samples.
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6 Supplementary Tables and Figures

Figure S1: Genetic admixture of MGI participants. Genetic ancestry was inferred for MGI
participants using the ADMIXTURE software with Human Genome Diversity Panel genotypes and
continental population labels used as reference. Majority ancestry for each participant was defined as
the continental population label with the largest reported Q value (ancestry fraction) from ADMIX-
TURE. Each inset is a stacked barplot of Q values for each participant belonging to the respective
majority ancestry population.
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Figure S2: Inferred genetic relationships of MGI participants. (A.) The number of other
MGI participants that each MGI participant is inferred to be related to. Relationships up to the 3rd
degree are considered. (B.) Examples of unique family configurations in MGI that incorporate PO
and FS relationships. PO, Parent-offspring; FS, full-sibling; 2nd (second-degree); 3rd (third-degree).

# Variants (All) # Well-imputed Variants
Reference Panel SNV Indel SNV & Indel SNV Indel SNV & Indel
HRC 40,494,480 - 40,494,480 32,401,123 - 32,401,123
TOPMed 285,879,432 22,016,845 307,896,277 48,986,377 3,754,433 52,740,810

Table S1: Numbers of SNVs and indels. The number of single nucleotide variants (SNVs) and
short insertion deletions (indels) in Data Freeze 4 after imputation with the TOPMed or HRC panel.
Well-imputed variants are defined as sites with Rsq ≥ 0.3 and MAF ≥ 0.01%.

Reference Panel
MAF bin [%] HRC TOPMed
[0.01,0.05] 10,276,791 25,678,109
(0.05,0.1] 4,171,074 5,615,451
(0.1,0.5] 7,480,389 9,185,142
(0.5,1] 1,960,904 2,391,243
(1,5] 2,787,123 3,326,925
(5,10] 1,190,491 1,364,528
(10,20] 1,510,313 1,718,258
(20,30] 1,129,268 1,291,277
(30,40] 979,160 1,120,307
(40,50] 915,610 1,049,570

Table S2: Distribution of well-imputed variants by frequency. The number of well-imputed
variants in Data Freeze 4 after imputation with the TOPMed or HRC panel. Well-imputed variants
are defined as sites with Rsq ≥ 0.3 and MAF ≥ 0.01%.
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# Failing Variants GRCh37 # Failing Variants GRCh38
Variant QC Flag CE v1.0 CE v1.1 CE v1.3 CE v1.0 CE v1.1 CE v1.3

HWE 3,405 2,888 432 3,380 2,865 423
LOW CALLRATE 17,922 4,157 1,767 17,871 4,100 1,743
LOW CLUSTER SEP 2,410 1,534 590 2,395 1,513 577
LOW GENTRAIN 37 1,553 69 36 1,510 69
FET 2,708 2,708 2,708 2,683 2,683 2,683
HWE MERGED 58 58 58 57 57 57
MONOMORPHIC 36,680 36,680 36,680 36,588 36,588 36,588

Total Unique Failing Variants 60,497 46,740 41,579 60,311 46,539 41,431

Table S3: All variant QC. The number of well-mapping sites that fail any QC flag. Counts are given
for versions of Data Freeze 4 mapped to the coordinates of GRCh37 or GRCh38. CE, CoreExome-24;
HWE, Hardy-Weinberg equilibrium test p < 10-4 before array merge; LOW CALLRATE, call-rate <
99%; LOW CLUSTER SEP, Cluster Sep. score < 0.3; LOW GENTRAIN, GenTrain score < 0.15;
FET, Fisher’s exact test p-value < 10-3; HWE MERGED, Hardy-Weinberg equilibrium test p < 10-6

after array merge; MONOMORPHIC; minor allele frequency = 0 after array merge.
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