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1 Data Description

Polygenic scores (PGS) summarize an individual’s genetic liability of a trait. In the simplest

setting, PGS are calculated as the weighted sum of the number of trait associated alleles observed in the

individual with weights chosen from GWAS effect size estimates. PGS have many possible applications in

research including cohort stratification1,2, identifying shared genetic background between traits3,

Mendelian randomization4, and testing for gene–environment interactions5.

In this release, we offer PGS constructed for 6 binary phenotypes represented in the Global

Biobank Meta-analysis Initiative (GBMI) PGS analysis, each with SNP-based heritability at the liability

scale > ≈ 5%6. The traits are primary open angle glaucoma (POAG), thyroid cancer (ThC), abdominal

aortic aneurysm (AAA), gout, chronic obstructive pulmonary disease (COPD), and asthma6. These PGS are

constructed based on prediction models trained on the leave-MGI-out summary statistics available from

the GBMI and are available for 70,266 MGI participants included with the release of Freeze 5 (Table 1).

Phenotype

European

(n=60,959)

African

(n=4,436)

West Asian

(n=1,883)

East Asian

(n=1,426)

Central/South

Asian

(n=963)

Native

American

(n=599)

POAG 366 69 16 12 4 3

ThC 1,119 52 58 27 9 12

AAA 1,335 66 35 7 2 3

gout 2,915 285 94 58 25 15

COPD 6,142 410 110 21 22 26

asthma 11,149 1,127 340 206 141 103
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Table 1. Cohort properties. The total sample sizes (in parentheses) and the numbers of cases for each

ancestry group and phenotype. We inferred genetic ancestry European, African, West Asian, East Asian,

Central/South Asian and Native American using ADMIXTURE and the Human Genome Diversity Panel

samples and super-population labels as reference. POAG: primary open angle glaucoma; ThC: thyroid

cancer; AAA: abdominal aortic aneurysm; COPD: chronic obstructive pulmonary disease.

2 Data Evaluation

Significant ancestry signals have been described in PGS generated elsewhere for schizophrenia,

thus we sought to evaluate the ancestry component contained within PGS generated in MGI7. We

evaluated the distribution of PGS across the majority genetic ancestry groups inferred in MGI. The

difference between the mean PGS of the ancestry groups was significant with p < 2 x 10-16 for each of the

6 phenotypes (Figure 1). Considering the limited sample sizes in MGI for Central/South Asian, East Asian,

Native American, and West Asian ancestries, we focused our subsequent evaluations on the European

and African ancestries only. We recommend users exercise caution using PGS from the unevaluated

ancestry groups as clear ancestry differences exist and the evaluations of Europeans and Africans may

not be a reflection of or informative for the data quality in other ancestry groups.

Figure 1. Polygenic score distributions by ancestry. We inferred genetic ancestry European, African,

West Asian, East Asian, Central/South Asian and Native American using ADMIXTURE and the Human

Genome Diversity Panel samples and super-population labels as reference. Outliers beyond 1.5 times the

interquartile range are plotted as single points. POAG: primary open angle glaucoma; ThC: thyroid

cancer; AAA: abdominal aortic aneurysm; COPD: chronic obstructive pulmonary disease.
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We summarized the predictive accuracy of each PGS by measuring R2on the liability scale (R2
liability

) which ranged from 0.0144 (AAA) - 0.0543 (POAG) in Europeans and 0.000201 (AAA) - 0.0220 (POAG) in

Africans. Despite the small R2
liability values, all phenotypes except abdominal aortic aneurysm in Africans

had significant (p < 0.05) predictive accuracy in MGI (Figure 2).

Figure 2. R2on the liability scale. 95% confidence intervals (CI) are derived from bootstrapping with 1000

replicates. POAG: primary open angle glaucoma; ThC: thyroid cancer; AAA: abdominal aortic aneurysm;

COPD: chronic obstructive pulmonary disease. Closed circles denote Nagelkerke's R2 p < .05.

We compared odds ratios (OR) for each PGS decile to the lowest decile. In Europeans, the largest

significant OR was 5.58 for thyroid cancer (p= 3.37 x 10-24) and each phenotype showed a clear trend of

increasing OR with PGS decile. In Africans, the largest significant OR was for gout (2.39, p=3.63 x 10- 3)

and the OR of the 10th decile was consistently higher than the 1st but the differences between these

deciles were consistently smaller compared to that observed in Europeans. (Figure 3).
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Figure 3. Odds ratio by PGS decile. 95% confidence intervals (CI) are derived from bootstrapping with

1000 replicates. The dashed black lines indicate an odds ratio of 1. POAG: primary open angle glaucoma;

ThC: thyroid cancer; AAA: abdominal aortic aneurysm; COPD: chronic obstructive pulmonary disease.

Closed circles denote odds ratio p < .05.

We inspected the distribution of disease prevalence across select age bins and PGS strata. The

largest differences in disease prevalence between PGS strata within a single age bin was 0.199 (bottom

10%) vs 0.369 (top 10%) for asthma in Africans aged 50-70 years and 0.125 (bottom 10%) vs 0.369 (top

10%) for asthma in Europeans aged 30-50 years (Figure 4). We note a trend toward reduced asthma

prevalence among aged European participants, which has been described in a European population

elsewhere8.

Figure 4. Disease prevalence by age and PGS group. Age calculated as of January 1st 2022 for living

participants and at date of death for now-deceased participants. Participants aged > 89 years are masked

as 89. POAG: primary open angle glaucoma; ThC: thyroid cancer; AAA: abdominal aortic aneurysm;

COPD: chronic obstructive pulmonary disease.

3 Methods

3.1 PGS Construction

Genotyping, quality control, imputation, and ancestry inference for the MGI sample is described

elsewhere9. We constructed PGS using multi-ancestry leave-MGI-out summary statistics available from

the Global Biobank Meta-analysis Initiative (GBMI) as reference (Table S1)10. We removed variants

flagged by the GBMI as having strand flip or different allele frequency compared to gnomAD before

4

https://www.zotero.org/google-docs/?HZ0INz
https://www.zotero.org/google-docs/?5VLSAK
https://www.zotero.org/google-docs/?W3BGFh


estimating posterior SNP effect sizes using PRS-CS v1.0.0 (auto model)11,12. We used the effective sample

size of the GBMI genome-wide association study and LD reference panels constructed from UK Biobank

data available from the PRS-CS github repository as PRS-CS arguments. We computed posterior SNP

effect sizes separately for each ancestry group using an ancestry matched LD reference panel with the

exception of using the East Asian LD panel for Central/South Asians and the European LD panel for West

Asians. We filtered hard call autosomal genotypes imputed in MGI from the TOPMed reference panel to

exclude variants with minor allele frequency < 1% or imputation Rsq < 0.3 before computing PGS using

the “–score” function of plink v1.913.

3.2 PGS Evaluation

We inferred phenotypes for MGI participants using the createPhenotypes function of the R

PheWAS package (v0.99.5-5) using International Classification of Diseases (ICD) 9 and 10 diagnosis

codes14. We tested the significance of differences in mean PGS between majority genetic ancestry groups

using a one-way ANOVA. For each phenotype we tested for association with the PGS by first calculating

Cox and Snell R2 by comparing a base model fit with the phenotype as outcome and covariates for: array

+ recruiting study + sex + age + first 10 genetic principal components and a full model fit including a

covariate for the PGS15. We then performed Nagelkerke's modification to Cox and Snell R2 to calculate

the proportion of variance explained by the PGS on the liability scale16,17. We calculated p values for

Nagelkerke's R2 based on the difference between the deviance of the base and full model and 95%

confidence intervals based on bootstrapping with 1000 replicates. We compared odds ratios between

each PGS decile and the bottom decile as reference. We performed all PGS evaluations on a set of

participants unrelated to the 2nd degree or closer (KING v2.2.7)18.

4 Supplementary Information

Phenotype Ancestry Composition Cases Controls # Training SNPs

POAG EAS:18%,AFR:1.9%,AMR:0.8%,EUR:79%,SAS:0.3% 45,549 2,433,237 905,804

ThC EAS:18.2%,EUR:80.5%,AMR:0.7%,AFR:0.6% 9,285 2,616,100 905,845

AAA EAS:14.9%,AFR:0.3%,EUR:84.4%,AMR:0.4% 14,223 2,324,198 905,792

Gout EAS:23.7%,AFR:2.2%,EUR:71.5%,AMR:1.2%,SAS:1.5% 55,786 2,490,276 904,645

COPD EAS:23.2%,AFR:2.2%,EUR:71.8%,AMR:1%,SAS:1.8% 134,499 2,297,115 904,587

Asthma EAS:20.5%,AFR:2%,EUR:74.1%,AMR:1.1%,SAS:2.2%,MID:0.1% 243,978 2,624,009 904,489

Table S1. PGS training data. Sample size and ancestry composition of the leave-MGI-out summary

statistics from the Global Biobank Meta-analysis Initiative (GBMI). Data are adapted from Wang et al.6 #

Training SNPs represents the number of sites that overlap the GBMI summary statistics and the MGI

imputation that were used to derive posterior SNP effect sizes.POAG: primary open angle glaucoma;

ThC: thyroid cancer; AAA: abdominal aortic aneurysm; COPD: chronic obstructive pulmonary disease;
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EUR, European; AMR, admixed American; MID, Middle Eastern; CSA, Central and South Asian; EAS, East

Asian; AFR, African.
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