Due date: 03/01. Please hand in your work at the beginning of the class.

Exercise 1: Find the Fourier cosine series of \(f(\theta) = \sin \theta, \ 0 < \theta < \pi \). Determine whether the Fourier cosine series converges to \(f \) or not.

Exercise 2: Apply the Abel’s or Dirichlet’s Test to show that the alternating harmonic series

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
\]

is convergent.

Exercise 3: Consider the heat equation that models the heat flow with insulated endpoints

\[
\begin{align*}
 u_t &= ku_{xx}, \quad 0 < x < \ell, \ t > 0 \\
 u_x(0, t) &= u_x(\ell, t) = 0, \ t > 0 \\
 u(x, 0) &= f(x), \quad 0 < x < \ell.
\end{align*}
\]

Apply separation of variables to find a Fourier series solution.

Exercise 4: Solve the following wave equation using separation of variables

\[
\begin{align*}
 c^2 y_{xx} &= y_{tt}, \quad 0 < x < \ell, \ t > 0 \\
 y(0, t) &= 0, \quad y(\ell, t) = 0, \ t > 0 \\
 y(x, 0) &= 0, \quad y_t(x, 0) = 3 \sin\left(\frac{\pi x}{\ell}\right) - 5 \sin\left(\frac{4\pi x}{\ell}\right), \quad 0 < x < \ell.
\end{align*}
\]

Exercise 5: Consider the heat equation

\[
k u_{xx} = u_t + F(x, t), \quad 0 < x < L, \ t > 0
\]

with boundary conditions

\[
u(0, t) = p(t), \quad u(L, t) = q(t), \ t > 0
\]

and initial condition

\[
u(x, 0) = f(x), \quad 0 < x < L.
\]
(a) To establish the uniqueness of the solution, suppose that $u_1(x,t)$ and $u_2(x,t)$ are two solutions, and define $w(x,t) = u_1(x,t) - u_2(x,t)$. Show that w satisfies the “homogenized” problem

$$kw_{xx} = w_t, \quad 0 < x < L, \ t > 0$$

with boundary conditions

$$w(0,t) = 0, \ w(L,t) = 0, \ t > 0$$

and initial condition

$$w(x,0) = 0, \ 0 < x < L.$$

(b) Define the energy $E(t) = \int_0^L |w(x,t)|^2 \, dx$. Show formally (assuming that you can differentiate E and the function w) that $\frac{dE}{dt} \leq 0$. From above inequality, show that $w(x,t) = 0$ for all x and t. Thus, it must be true that $u_1(x,t) = u_2(x,t)$ for any solutions u_1 and u_2, i.e. uniqueness follows.

Exercise Bonus: Verify the Fourier series solution to Exercise 3, if the initial temperature f is continuous and piecewise smooth.