Problem 2: Solve the Laplace equation using separation of variables

\[
\begin{align*}
 u_{xx} + u_{yy} &= 0, \quad 0 < x < 3, 0 < y < 2, \\
 u(0, y) &= u(x, 2) = u_x(3, y) = 0, u(x, 0) = 50H(x - 2),
\end{align*}
\]

where \(H(x) \) is the Heaviside function

\[
H(x) = \begin{cases}
 0, & x \leq 0 \\
 1, & x > 0.
\end{cases}
\]

Solution: Seek solutions in the form \(u(x, y) = X(x)Y(y) \). This gives

\[
X''Y + XY'' = 0.
\]

Since \(u(0, y) = u_x(3, y) = 0 \), we expect that The first equation gives

\[
\frac{X''}{X} = -\frac{Y''}{Y} = -\kappa^2 \text{(constant)},
\]

and this gives

\[
\begin{align*}
 X'' + \kappa^2 X &= 0, \\
 Y'' - \kappa^2 Y &= 0.
\end{align*}
\]

Now \(X \) and \(Y \) are solved as

\[
X = \begin{cases}
 A + Bx & \kappa = 0, \\
 C \cos \kappa x + D \sin \kappa x & \kappa \neq 0.
\end{cases}
\]

\[
Y = \begin{cases}
 E + Fy & \kappa = 0, \\
 G \cosh \kappa y + H \sinh \kappa y & \kappa \neq 0.
\end{cases}
\]
Now we have that
\[u(x, y) = (A + Bx)(E + Fy) + (C \cos \kappa x + D \sin \kappa x)(G \cosh \kappa y + H \sinh \kappa y). \]

Boundary condition \(u(0, y) = u_x(3, y) = 0 \) yields
\[
0 = (A)(E + Fy) + C(G \cosh \kappa y + H \sinh \kappa y),
\]
\[
0 = B(E + Fy) + (-C \kappa \sin 3 + D \kappa \cos 3)(G \cosh \kappa y + H \sinh \kappa y).
\]

To have a robust solution we have that \(A = 0, \ C = 0, \ B = 0, \ \cos 3\kappa = 0, \) and consequently \(\kappa = \frac{(2n-1)\pi}{6}, n = 1, 2, \cdots. \)

Now from superposition principle
\[
u(x, y) = \sum_{n=1}^{\infty} \sin \left(\frac{(2n-1)\pi x}{6} \right) \left(I_n \cosh \left(\frac{(2n-1)\pi y}{6} \right) + J_n \sinh \left(\frac{(2n-1)\pi y}{6} \right) \right).
\]

Boundary condition \(u(x, 2) = 0 \) yields
\[
0 = \sum_{n=1}^{\infty} \sin \left(\frac{(2n-1)\pi x}{6} \right) \left(I_n \cosh \left(\frac{(2n-1)\pi y}{6} \right) + J_n \sinh \left(\frac{(2n-1)\pi y}{6} \right) \right).
\]

Boundary condition \(u(x, 0) = 0 \) yields
\[
50H(x - 2) = \sum_{n=1}^{\infty} \sin \left(\frac{(2n-1)\pi x}{6} \right) I_n.
\]

From QRS expansion
\[
0 = I_n \cosh \left(\frac{(2n-1)\pi y}{6} \right) + J_n \sinh \left(\frac{(2n-1)\pi y}{6} \right),
\]
\[
I_n = \frac{2}{3} \int_{0}^{3} 50H(x - 2) \sin \left(\frac{(2n-1)\pi x}{6} \right) dx = \frac{100}{3} \frac{6}{\pi(2n-1)} \cos \frac{\pi(2n-1)}{3}.
\]
Solving the above linear system gives

\[I_n = \frac{100}{3} \frac{6}{\pi(2n-1)} \cos \frac{\pi(2n-1)}{3}, \]

\[J_n = -\frac{\cosh \frac{(2n-1)\pi}{3}}{\sinh \frac{(2n-1)\pi}{3}} I_n. \]

With the above formula for \(I_n \) and \(J_n \), the solution is

\[u(x, y) = \sum_{n=1}^{\infty} \sin \left(\frac{(2n-1)\pi x}{6} \right) \left(I_n \cosh \frac{(2n-1)\pi y}{6} + J_n \sinh \frac{(2n-1)\pi y}{6} \right). \]

Problem 3: Consider a thin flat plate of radius \(b \), that is thermally insulated on its two flat faces. With a hacksaw we make a radial cut along \(\theta = 0 \), say, from \(r = b \) to \(r = 0 \). The small gap, due to the cut, may be approximated bas a thermal insulator, so that \(u_\theta = 0 \) on the edges \(\theta = 0 \) and \(\theta = 2\pi \). If the circumference of the plate is held at the temperature \(50(1 + \sin \theta) \) for a long time, the steady-state temperature field \(u(r, \theta) \) is governed by the boundary-value problem

\[\nabla^2 u = 0, \quad 0 < r < b, 0 < \theta < 2\pi, \]

\[u_\theta(r, 0) = u_\theta(r, 2\pi) = 0, \]

\[u(b, \theta) = 50(1 + \sin \theta), \]

\[u \text{ bounded.} \]

Solve for \(u(r, \theta) \).

Solution: The Laplace equation in Polar coordinates reads

\[\nabla^2 u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta}. \]

Suppose that \(u(r, \theta) = R(r)\Theta(\theta) \) solves the equation. Separation of variables give equations

\[r^2 R''(r) + r R'(r) - k^2 R(r) = 0 \]

\[\Theta''(\theta) + k^2 \Theta(\theta) = 0. \]
Solving for Θ gives

\[Θ(θ) = \begin{cases}
Iθ + J, & k = 0 \\
K \cos(kθ) + L \sin(kθ), & k \neq 0.
\end{cases} \]

Thus the boundary conditions for \(u \) give that

\[0 = Θ'(0) = Θ'(2\pi). \]

Thus we get that \(Θ(θ) = J \) is a constant when \(k = 0 \). When \(k \neq 0 \) we have that

\[0 = Lk \rightarrow L = 0, \]

\[0 = -Kk \sin(k2\pi) \rightarrow k = \frac{n}{2}, n = 1, 2, \cdots. \]

Now we have that

\[Θ(θ) = K_n \cos\left(\frac{n}{2}θ\right) \]

where \(n \) is a positive integer.

Since \(R(r) \) is bounded, we get (from the example that was covered in the class) that

\[R(r) = B_0(k = 0) \] or \(R(r) = B_n r^{n/2}(k \neq 0) \).

Hence from superposition of principle

\[u(r, θ) = D + \sum_{n=1}^{∞} A_n r^{n/2} \cos\left(\frac{n}{2}θ\right). \]

Since \(u(b, θ) = 50(1 + \sin θ) = f(θ) \), we now use the HRC extension of \(f(θ) \) (\(L = 2\pi \)):

\[f(θ) = a_0 + \sum_{n=1}^{∞} a_n \cos\left(\frac{nπ}{2\pi}θ\right), \]

where

\[a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} 50(1 + \sin θ)dθ = 50. \]
and, by integration by parts,

\[a_n = \frac{2}{2\pi} \int_0^{2\pi} 50(1 + \sin \theta) \cos \left(\frac{n}{2} \theta \right) d\theta = \frac{50}{\pi} \frac{1 - (-1)^n}{1 - (n/2)^2} = \begin{cases} 0, & n \text{ even} \\ \frac{100}{\pi} \frac{1}{1 - (n/2)^2}, & n \text{ odd} \end{cases} \]

Thus we have that \(D = a_0 \) and \(A_n b^{n/2} = a_n \) for \(n \) odd, and \(A_n = 0 \) for \(n \) even.

Finally we obtain that

\[u(r, \theta) = 50 + \sum_{n>0 \text{ odd}}^{\infty} \frac{100}{b^{n/2}\pi} \frac{1}{1 - (n/2)^2} r^{n/2} \cos \left(\frac{n}{2} \theta \right). \]

Problem * (extra 1/5 of this assignment set): Consider the Poisson equation

\[\nabla^2 u = f(x, y, z) \]

in some three-dimensional domain \(D \) with surface \(S \). Integrating the Poisson equation over \(D \), show that the following solvability condition holds

\[\int_S \frac{\partial u}{\partial n} dA = \int_D f dV, \]

where \(n \) is the unit outward normal on \(\partial D \). You may use Green’s identity.

Solution: From the Poisson equation and integration over \(D \)

\[\int_D f dV = \int_D \nabla^2 u dV. \]

From Green’s identity (or you may also use divergence Theorem)

\[\int_D \nabla^2 u dV = \int_S \frac{\partial u}{\partial n} 1 dA - \int_D \nabla u \cdot \nabla 1 dV = \int_S \frac{\partial u}{\partial n} dA. \]