Recall the complex integral is defined by
\[I = \int_C f(z) \, dz, \]
where \(C \) is a given path of integration or contour. Let \(C \) be closed and denote the enclosed region by \(D \). Recall further that to evaluate \(\int_C f(z) \, dz \), consider
\[\int_C f(z) \, dz = \int_C (u + iv) \, d(x + iy) = \int_C (udx - vdy) + i \int_C (vdx + udy). \]

- If \(f \) is analytic in \(D \), then the Cauchy-Riemann equations give
 \[u_x = v_y, \quad v_x = -u_y. \]

- Recall the Green’s theorem
 \[\int_C (Pdx + Qdy) = \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right). \]

- \(\int_C f(z) \, dz = 0. \)
Cauchy’s Theorem

Theorem
If \(f(z) \) is analytic in a simply connected domain \(D \), then

\[
\int_C f(z)\,dz = 0
\]

for every piecewise smooth simple closed curve \(C \) in \(D \).
Example

Evaluate $\int_C \frac{1}{z^2 - 5z + 6} \, dz$, where C is a contour as shown in the following Figure.

Since $f(z) = \frac{1}{z^2 - 5z + 6} = \frac{1}{(z-2)(z-3)} = \frac{1}{z-3} - \frac{1}{z-2}$. Hence f is analytic in D. From Cauchy’s Theorem

$$\int_C \frac{1}{z^2 - 5z + 6} \, dz = 0.$$
Path independence

Theorem

If $f(z)$ is analytic in a simply connected domain D, P and Q are two given points in D. Let $C_j, j = 1, 2$ be any simple piecewise smooth path connecting P and Q. Then

$$\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.$$

This can be derived from Cauchy’s Theorem, since $C_1 + (-C_2)$ is a closed path in D and

$$\int_{C_1 + (-C_2)} f(z) \, dz = 0.$$
Corollary

Let $D_j, j = 1, 2$ be simply connected domain enclosed by $C_j, j = 1, 2$ and $D_2 \subset D_1$. Let the orientation of C_1 and C_2 be same, and $f(z)$ be analytic in $D_2 \setminus D_1$. Then

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.$$

This can be derived from Cauchy's Theorem,

$$\int_{C_1 + (-C_2)} f(z) dz = 0 \iff \int_{C_1 + (-C_2)} f(z) dz + \int_{C' + (-C')} f(z) dz = \int_{C_1 + C' + (-C_2) + (-C')} f(z) dz = 0$$
Example

Evaluate $\int_{C} (z - a)^n dz$, where C is a contour as shown in the following Figure.

From Cauchy’s Theorem and path independence,

$$\int_{C} (z - a)^n dz = \int_{C'} (z - a)^n dz.$$

When $n + 1 \neq 0$, the integral is simply zero,

$$\int_{C} (z - a)^n dz = 0.$$

When $n + 1 = 0$,

$$\int_{C} f(z) dz = 2\pi i.$$
Example
Evaluate $\int_C \frac{1}{z^2(z-2)(z-4)} \, dz$, where C is a contour as shown in the following Figure.

Since $\frac{1}{z^2(z-2)(z-4)} = -\frac{1}{8} \frac{1}{z-2} + \frac{1}{32} \frac{1}{z-4} + \frac{3}{32} \frac{1}{z} + \frac{1}{8} \frac{1}{z^2}$, then from Cauchy’s Theorem and path independence,

$$\int_C \frac{1}{z^2(z-2)(z-4)} \, dz = \int_C \left[-\frac{1}{8} \frac{1}{z-2} + \frac{3}{32} \frac{1}{z} + \frac{1}{8} \frac{1}{z^2} \right] \, dz$$

$$= -\frac{1}{8} (2\pi i) + \frac{3}{32} (2\pi i) = -\frac{1}{16} \pi i.$$
Let z_0 be a fixed point in a simply connected domain D, and $f(z)$ be analytic in D. Consider

$$\int_{z_0}^{z} f(\zeta) d\zeta,$$

which is well-defined (because of path independence) and interpreted as the integral of $f(z)$ along any path connecting z_0 and z. If we denote $G(z) = \int_{z_0}^{z} f(\zeta) d\zeta$, then the derivative of G is

$$G'(z) = f(z).$$

We call any function $F(z)$ such that $F'(z) = f(z)$ the primitive of f. Now let F be a primitive of f,

$$\int_{z_0}^{z} f(\zeta) d\zeta = \int_{z_0}^{z} F'(\zeta) d\zeta = F(z) - F(z_0).$$
Theorem (Fundamental theorem of complex integral calculus)

Let \(f(z) \) be analytic in a simply connected domain \(D \), and \(z_0 \) be a fixed point. Then

- \(G(z) = \int_{z_0}^{z} f(\zeta) d\zeta \) is analytic in \(D \) and \(G'(z) = f(z) \).
- If \(F \) is a primitive of \(f \), then

\[
\int_{z_0}^{z} f(\zeta) d\zeta = F(z) - F(z_0).
\]
Example
Evaluate $\int_C zdz$, where C is a contour as shown in the following Figure.

Since $f(z) = z$, then a primitive of f is $F(z) = \frac{1}{2}z^2$. This gives that

$$\int_C f(z)dz = \int_{2i}^{-2i} F'(z)dz = \frac{1}{2}z^2 \bigg|_{2i}^{-2i} = 0.$$