(a) looking at the stability of the conjugate bases:

(i) phenol is deprotonated to give an oxygen anion that is delocalized
(ii) both of the other rings have electron-withdrawing group on them, which makes forming the anion easier, which means that deprotonation happens more readily (ie, more acidic, lower pK_a)

(b) there is a resonance contributor possible for the para-isomer, in which the negative charge from the conjugate base, is delocalized onto the oxygen atom of the C=O, and this is not possible to draw for the meta-isomer; this anion (conjugate base) is more stable, forms more readily, and results from a more acidic compound

(c) (i) closest model: pK_a 4.6

(ii) from above, the para C=O lowered the phenol (pK_a 10) by 2 pK_a units, so given that the directions say to take into account what else was learned on the page, the best selection would be 2.5 (which is, in fact, the value)
(a) 8
(b) trigonal planar
(c) 0
(d) trigonal planar
(e) 13
(f) bent

(g)

(h)

(h)

(a) \[
\begin{align*}
&\text{H} \quad \text{C} \quad \text{CH}_3 \\
&{\cdot} \quad {\cdot} \quad {\cdot} \\
\end{align*}
\]

(b)

<table>
<thead>
<tr>
<th></th>
<th>NaNH\textsubscript{2}</th>
<th>NaCl</th>
<th>NaOH</th>
<th>NaCN</th>
<th>NaCCl\textsubscript{3}</th>
<th>NaN\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textbf{X}</td>
<td></td>
<td></td>
<td></td>
<td>\textbf{X}</td>
<td></td>
</tr>
</tbody>
</table>

(c)

[Chemical structure image]
A.
(a) 18
(b) 20
(c) sp²
(d) bent
(e) trigonal planar

B.
(a) B1
(b) B2 (as drawn) is less significant than B1
(c) B3 (as drawn) is more significant than B1

(d)