This question is as much an exercise in understanding stereochemistry as it is a test of how to analysis and approach a complex question to see the Big Picture and break it apart into simpler components. In other words, there are ways to approach answering this question that are quite a bit easier than others. Thinking about that and talking it through with others can have a huge benefit to your own problem-solving abilities.
A: Cl/ring carbon
B: Cl/CH₃
C: Cl/ring carbon
D: ring carbon/ring carbon

E: Cl/Cl
F: Cl/CH₃
G: CH₃/ring carbon
H: ring carbon/ring carbon
(a) \[\text{OH} : +0.87 \quad \Delta G^\circ = +2.62 \text{ kcal/mol} \]
\[\text{CH}_2\text{CH}_3 : +1.75 \]

(b) \[\text{OH} : -0.87 \quad \Delta G^\circ = +0.88 \text{ kcal/mol} \]
\[\text{CH}_2\text{CH}_3 : +1.75 \]

(c) \[\text{Ph} : +3.0 \quad \Delta G^\circ = +1.73 \text{ kcal/mol} \]
\[\text{CH}_3 : -1.7 \]
\[\text{Br} : +0.43 \]

(d) \[\text{OCH}_3 : +0.67 \quad \Delta G^\circ = 0 \text{ kcal/mol} \]
\[\text{OCH}_3 : -0.67 \]

(e) \[\text{CN} : -0.17 \quad \Delta G^\circ = +1.64 \text{ kcal/mol} \]
\[\text{CH}_2\text{Ph} : +1.81 \]
(a)
\[\text{OH : +0.87} \]
\[\text{CH}_3 : -1.7 \]

+ 1 gauche OH/CH\text{\textsubscript{3}} destabilizing
+ 1 gauche OH/CH\text{\textsubscript{3}} destabilizing
no net effect

(b)
\[\text{OCH}_3 : -0.67 \]
\[\text{OCH}_3 : -0.67 \]

+ 1,3-diaxial OCH\text{\textsubscript{3}}/OCH\text{\textsubscript{3}} destabilizing
\[\Delta G^\circ \text{ more negative} \]

(c)
\[\text{Br : +0.43} \]
\[\text{Br : +0.43} \]
\[\text{CH}_3 : +1.7 \]
\[\text{CH}_3 : -1.7 \]

+ 1 gauche CH\text{\textsubscript{3}}/CH\text{\textsubscript{3}}, both destabilizing
+ 1 gauche CH\text{\textsubscript{3}}/Br both destabilizing
+ 1,3-diaxial CH\text{\textsubscript{3}}/Br both destabilizing
data needed for prediction

In case you were also thinking about the net effect:
06.14(d-f)

(d)

\[
\begin{align*}
\text{OH: } & -0.87 \\
\text{OCH}_3: & -0.67
\end{align*}
\]

\[\text{+ OH/OCH}_3 \text{ hydrogen bond stabilizing}\]

\[\Delta G^\circ \text{ more positive}\]

\[
\begin{align*}
\text{OH: } & -0.67 \\
\text{CH}_2\text{OH: } & -1.7 \text{ (est.)}
\end{align*}
\]

\[\text{+ OH/OH hydrogen bond stabilizing}\]

\[\Delta G^\circ \text{ more negative}\]

(f)

\[
\begin{align*}
\text{OCH}_3: & +0.67 \\
\text{CH}_3: & -1.7
\end{align*}
\]

\[\text{+ 1,3-diaxial CH}_3/\text{CH}_3\text{ predicted to be more destabilizing than the OCH}_3/\text{OCH}_3\]

\[\Delta G^\circ \text{ more positive}\]

\[
\begin{align*}
\text{OCH}_3: & +0.67 \\
\text{CH}_3: & -1.7
\end{align*}
\]

\[\text{+ 1,3-diaxial OCH}_3/\text{OCH}_3\text{ destabilizing}\]
(a)

less stable chair form

more stable chair form

(b)

\[\text{CH}_3 : -1.7 \]
\[\text{OH} : -0.87 \]
\[\text{CH(CH}_3)_2 : -2.15 \]
\[\Delta G^\circ \text{ (est.)} = -4.72 \text{ kcal/mol} \]

(c)

less stable chair form

more stable chair form

1,3-diaxial CH\(_3\)/OH

+ 1 gauche CH(CH\(_3\))\(_2\)/OH

Both effects are destabilizing, and so the inference is that they offset each other and the \(\Delta G^\circ \) determined from the A-values remains relatively unchanged.