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Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined

the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of

the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral amygdala dis-

rupted reconsolidation of auditory fear memories. In contrast, manipulations of CREB in the amygdala did not modify ex-

tinction of fear. These findings suggest that the role of CREB in modulation of memory after retrieval is dynamic and that

CREB activity in the basolateral amygdala is involved in fear memory reconsolidation.

Reconsolidation, the process by which memories are restabilized
and maintained after retrieval (Przybyslawski and Sara 1997;
Nader et al. 2000), and extinction, the learning process by which
conditioned responses are repressed (Bouton 1993; Myers and
Davis 2002), are competing processes in the regulation of estab-
lished memories. It has previously been shown that brief re-
exposure to a conditioned stimulus (CS) triggers reconsolidation,
whereas long re-exposures preferentially induce extinction
(Pedreira and Maldonado 2003). Understanding the differential
mechanisms of reconsolidation and extinction, and the molecular
events that are involved in “switching” between these opposing
processes, is crucial for understanding the dynamic regulation of
established memory.

The cyclic AMP response element binding protein (CREB)
has long been known for its critical role in memory consolidation
(Dash et al. 1990; Bourtchuladze et al. 1994; Yin et al. 1994). Less
well understood is the role of endogenous repressors of CREB in-
cluding the inducible CREB early repressor (ICER). Activation of
CREB leads to transcription of ICER, completing a negative feed-
back loop. Overexpression of ICER leads to impaired fear memory,
and ICER knockout mice show enhanced fear memory (Mouravlev
et al. 2006; Kojima et al. 2008). Thus, CREB repressor proteins are
also critically important in regulating memory.

Previous studies using forebrain-deletion of CREB have dem-
onstrated its critical involvement in the reconsolidation of
hippocampal-dependent (Kida et al. 2002; Mamiya et al. 2009)
and cued fear memory (Kida et al. 2002). These findings demon-
strated a converging role of CREB in both consolidation and
reconsolidation of fear. However, in addition to the hippocampus,
CREB was also deleted after retrieval in other forebrain regions
such as regions of the prefrontal cortex, including anterior cingu-
late cortex. The anterior cingulate is also activated by presentation
of a fear-associated cue, and thus a potential contributor to recon-
solidation processes (Thomas et al. 2002). These limitations, to-
gether with the lack of dissociation from extinction, makes it

necessary to directly confirm the hypothesis that CREB in the
amygdala is required for memory reconsolidation. It is therefore
important to examine the specific role for CREB-regulated signal-
ing in amygdala-dependent in fear memory processes.

Here we directly assessed the specific role of amygdalar CREB
in memory reconsolidation and extinction. CREB is activated in
the amygdala after either short or long re-exposure to a condi-
tioned tone (Hall et al. 2001) or context (Mamiya et al. 2009). In
addition, the upstream kinases, extracellular signal regulated ki-
nase (ERK) (Duvarci et al. 2006) and protein kinase A (PKA)
(Tronson et al. 2006; Sanchez et al. 2010), in the amygdala are re-
quired for reconsolidation of either fear or drug-paired cues. No di-
rect evidence exists, however, for the role of CREB specifically in
the amygdala in memory reconsolidation, and no studies have
compared its role in reconsolidation with extinction in parallel.

The mechanisms of extinction are known to differ at a molec-
ular (Myers and Davis 2002) and systems (Santini et al. 2008) level
from those of consolidation. In extinction, evidence for the
requirement of amygdalar CREB during memory extinction re-
mains contradictory. Two studies demonstrate increased phos-
pho-CREB after long, extinction-inducing trials (Hall et al. 2001;
Mamiya et al. 2009) whereas other studies demonstrate a decrease
in CREB activity after extinction (Lin et al. 2003; Izumi et al.
2008). Furthermore, the extracellular signal-regulated kinase
(ERK), but not protein kinase A (PKA), is required for extinction
in the amygdala (Herry et al. 2006; Matsuda et al. 2010). Thus,
the role of amygdalar CREB in extinction of auditory fear is un-
known. Here, we used specific manipulations of the amygdala to
directly test the hypothesis that CREB within the basolateral
amygdala (BLA) is necessary for reconsolidation, but not extinc-
tion, of auditory fear memories.

In all experiments Sprague-Dawley rats (Charles River
Laboratories, USA) were conditioned on tone-dependent fear con-
ditioning, consisting of a 5-min habituation in context A, fol-
lowed by single 30-sec tone coterminating with a 1-sec, 2-mA
footshock (as previously described in Tronson et al. 2006).
HSV-mCREB, HSV-ICER, HSV-CREB, or HSV-LacZ were infused
(1 mL/side at a rate of 0.25 mL/min) via cannulae (PlasticsOne)
previously implanted into the BLA (Co-ordinates: 23.0 mm
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posterior to bregma, +5.3 mm from the midline, and 28.0 mm
ventral to skull surface; (Paxinos and Watson 1986). Injection can-
nulae were left in place for 2 min following the infusion to allow
for diffusion. Viral titer was determined in prior studies from this
laboratory, which demonstrated significant expression of the en-
coded proteins between 3 and 7 d after injection (Carlezon et al.
1998; Pliakas et al. 2001; Green et al. 2006). To examine the role
of amygdala CREB in auditory fear memories, rats were given reac-
tivation session consisting of a single 30-sec tone presentation in a
novel context (context B) 72 h after viral vector injection, at the
peak of expression. Fear was measured by scoring freezing as pre-
viously described (Tronson et al. 2006).

In the first experiment, HSV-mCREB injected into the BLA
significantly reduced freezing during a test session 24 h after a re-
activation trial (Fig. 1A, F(1,16) ¼ 7.13, P , 0.05). Similarly, expres-
sion of HSV-ICER during reactivation disrupted freezing at a
subsequent test (Fig. 1C, Day × Vector interaction F(1,15) ¼ 6.61,
P , 0.05). “No Reactivation” control groups consisted of rats ex-
pressing HSV-mCREB, HSV-ICER, or HSV-LacZ in the BLA, and ex-
posed to the novel context without a reactivation trial (that is, no
re-exposure to the tone CS). Neither HSV-mCREB nor HSV-ICER
altered freezing in “No Reactivation” groups compared with
HSV-LacZ (mCREB: Fig. 1B; F(1,11) , 1; ICER “No Reactivation”;
Fig. 1D, F(1,15) ¼ 2.06, P . 0.05), demonstrating that the deficits
produced by inhibition of CREB activity or ICER overexpression
were specific to a memory made labile by retrieval. All groups dis-
played high levels of freezing specific to the tone during the reac-
tivation day, with low levels of nonspecific freezing to the context
(Fig. 1A,B; F(1,16) ¼ 106.38, P , 0.01; ICER Fig. 1C,D; all F(1,15) ,

1), hence, CREB activity in the BLA is not required for retrieval
of an auditory fear memory.

The disruption of fear memory reconsolidation by prevent-
ing amygdalar CREB activation is consistent with previous studies
demonstrating that reconsolidation of auditory fear memories is
dependent on ERK (Duvarci et al. 2005) and PKA (Tronson et al.
2006) in the amygdala, and that CREB throughout forebrain re-
gions (including the amygdala, hippocampus, cortex, and stria-
tum) is required for reconsolidation of contextual fear memories
(Kida et al. 2002; Mamiya et al. 2009). The present study extends

these findings and demonstrates, using two complementary ex-
perimental manipulations, that disruption of CREB specifically
within the BLA is sufficient to impair reconsolidation of auditory
fear memories.

It is important to note that inhibiting CREB activity did not
disrupt retrieval of memory. Neither HSV-mCREB, nor HSV-ICER,
prevented retrieval or freezing to the CS during the reactivation
trial, nor did they affect freezing at test in animals in the “No
Reactivation” control groups. The requirement for amygdalar
CREB in reconsolidation of fear memories, together with the inde-
pendence of retrieval processes from CREB function, provide
strong support for the assertion that disruption of reconsolidation
are due to post-retrieval storage failures and not impaired retrieval
(Nader et al. 2000; Riccio et al. 2002; Alberini 2008; Hardt et al.
2009).

In addition, the use of viral vectors that continue to express
throughout reactivation and test sessions means that there is no
internal or perceptual context shift that would lead to impaired
retrieval at a subsequent test (Hinderliter et al. 1975; Riccio
et al. 2002). This procedural advantage means that disruption of
memory after retrieval by HSV-mCREB or HSV-ICER cannot be ex-
plained by context-dependent memory retrieval. Together, these
data strongly suggest that reconsolidation is a post-retrieval stor-
age and maintenance process, the disruption of which can result
in the permanent loss of a previously established memory. These
data are consistent with the finding, extensively discussed in the
literature, that although differences do occur, the molecular
mechanisms underlying reconsolidation significantly overlap
with those of consolidation (Tronson and Taylor 2007). The pres-
ent findings provide further evidence that, like consolidation
(e.g., Bourtchuladze et al. 1994; Han et al. 2007) amygdalar
CREB activity is required for reconsolidation of fear memories.

We next examined the role of CREB in the amygdala in
the extinction of auditory fear. Here, we used an extinction proto-
col previously demonstrated to induce extinction without recon-
solidation (Tronson et al. 2006). Briefly, long extinction sessions
(seven presentations of 30-sec tone, 2-min ITI) were presented

Figure 1. Amygdalar CREB is required for fear memory reconsolidation.
(A) mCREB overexpression in the BLA disrupts auditory fear memory after
retrieval (∗) P , 0.05; (B) fear memory retrieval is not disrupted without
prior reactivation. (C) ICER overexpression in the BLA disrupts memory
after retrieval (∗) P , 0.05; (D) fear memory retrieval is not disrupted
without prior reactivation; (A–D) open symbols represent baseline freez-
ing in Context B. Neither HSV-mCREB (A) nor HSV-ICER (W) altered base-
line freezing.

Figure 2. Amygdalar CREB is not required for extinction of auditory
fear. (A) Expression of mCREB or (B) overexpression of CREB during retriev-
al does not alter extinction of conditioned fear.
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on each of five consecutive days. The first extinction session began
3 d after injection of HSV-mCREB, HSV-CREB, or HSV-LacZ, as de-
scribed above. The long-reactivation sessions resulted in signifi-
cant extinction in both HSV-LacZ and HSV-mCREB groups (Fig.
2A; Main effect Day F(4,56) ¼ 21.77, P , 0.01), but no differences
between the experimental groups (Interaction Day × Vector
F(4,56) ¼ 1.32, P . 0.05). Similarly, overexpression of CREB, using
HSV-CREB, showed significant extinction with no difference com-
pared with HSV-LacZ controls in the rate of extinction across days
(Fig. 2B; Main effect Day F(4,64) ¼ 10.05; P , 0.05; Day × Vector
F(4,64) , 1. Viral vector expression shown in Fig. 3). Therefore, in
contrast to the requirement for CREB in memory reconsolidation,
extinction of fear was not altered by either disruption or overex-
pression of CREB.

This finding is consistent with previous data suggesting that
inhibition of neither PKA activity or protein synthesis within the
BLA disrupts extinction of auditory fear (Anglada-Figueroa and
Quirk 2005; Tronson et al. 2006). Together, these findings contrast
with studies showing activation of CREB after long extinction ses-
sions (Hall et al. 2001; Mamiya et al. 2009). These data support the
hypothesis that extinction of auditory fear is mediated at a circuit
level, where the medial prefrontal cortex plays a prominent role
(Quirk et al. 2006). Within this circuit, the amygdala may primar-
ily recruit a subset of neurons (Herry et al. 2006), and inhibitory
processes, including those mediated by GABA (Chhatwal et al.
2009; Lin et al. 2009), endocannabinoids, and Akt signaling path-
ways (Chhatwal et al. 2009; Lin et al. 2009), but not PKA/CREB
signaling.

The lack of effect on extinction here also clarifies the role of
decreased phospho-CREB after extinction of fear (Lin et al. 2003;
Izumi et al. 2008). If CREB dephosphorylation in the amygdala is
required for extinction, then expression of the dominant-negative
mCREB should enhance extinction. Thus, decreased CREB activity
might correlate with, but not causally relate to, extinction of fear
at the level of the amygdala. Finally, the lack of effect on extinc-
tion implies that the disruption of reconsolidation by ICER or
mCREB was not due to enhanced extinction. Thus, the differential
role of CREB in consolidation and reconsolidation vs. extinction
suggest that, although extinction is a form of learning, it relies
on fundamentally different processes in the mammalian brain.

Defining experimental protocols for selectively manipulat-
ing either reconsolidation or extinction has been a critical devel-
opment in the study of reconsolidation and extinction (Eisenberg
et al. 2003; Pedreira and Maldonado 2003; but, see also Duvarci

et al. 2006). Using these parameters, mechanistic studies have
demonstrated a different pattern of systems (Bahar et al. 2004)
and molecular mechanisms (Suzuki et al. 2004; Lee et al. 2006;
Tronson et al. 2006; Mamiya et al. 2009; Yamada et al. 2009) un-
derlying reconsolidation and extinction (for further review, c.f.
Tronson and Taylor 2007). The ability to experimentally deter-
mine whether reconsolidation or extinction after memory retriev-
al is the dominant process simply by changing the length of
re-exposure to the conditioned stimulus suggests that there is
one pathway, or multiple parallel processes (de la Fuente et al.
2011) that act as a “switch,” allowing for one process to take
over from the other. These data presented here, together with pre-
vious evidence for the role of ICER in decreasing CREB after sus-
tained activity (Sassone-Corsi 1995), suggest that regulation of
CREB may contribute to the switch between reconsolidation
and extinction. Induction of ICER may, under normal circum-
stances, act to suppress CREB, thereby reducing reconsolidation,
and allowing extinction to proceed as the dominant process.
This may be especially true after long reactivation sessions
(Pedreira and Maldonado 2003) where CREB is first activated in
a sustained manner (Hall et al. 2001; Mamiya et al. 2009), trigger-
ing transcription of CREB regulatory proteins including ICER (De
Cesare and Sassone-Corsi 2000) and resulting in inhibition of
CREB activity (Lin et al. 2003; Izumi et al. 2008).

Our results provide the first direct evidence using two com-
plementary strategies that CREB activity in the BLA alone is re-
quired for reconsolidation of auditory memories, but is not
required for retrieval or extinction of fear. Notably, the direct
comparison of extinction and reconsolidation in rats with inhib-
ited amygdalar CREB effectively rules out enhanced extinction as
an explanation for disrupted memory after retrieval. Furthermore,
these findings suggest that dysregulation of ICER/CREB in the
amygdala may prevent the switch from reconsolidation to extinc-
tion, resulting in the maintenance of excessive fear states. Given
that the amygdala and related circuitry have been implicated in
pathological states associated with both fear and addiction, these
mechanisms may similarly be involved in cue-induced mainte-
nance of addiction.

Defining the differential molecular mechanisms of extinc-
tion and reconsolidation allows for the possibilityof separately tar-
geting both of these processes to reduce persistent memories and
maladaptive behavioral responses. Together, enhancing extinc-
tion and disrupting reconsolidation might lead to effective treat-
ments in anxiety disorders, including phobias and PTSD (Davis
et al. 2006; Schiller et al. 2010) and drug addiction (Tronson and
Taylor 2007; Taylor et al. 2009; Milton and Everitt 2010) thereby
rapidly and persistently reducing invasive memories and subse-
quent relapse to anxiety, flashbacks, and drug-seeking.
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