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Over the past 100 years, deterministic rate equations have been successfully

used to infer enzyme-catalysed reaction mechanisms and to estimate rate

constants from reaction kinetics experiments conducted in vitro. In recent

years, sophisticated experimental techniques have been developed that

begin to allow the measurement of enzyme-catalysed and other biopoly-

mer-mediated reactions inside single cells at the single-molecule level.

Time-course data obtained using these methods are considerably noisy

because molecule numbers within cells are typically quite small. As a

consequence, the interpretation and analysis of single-cell data requires

stochastic methods, rather than deterministic rate equations. Here, we con-

cisely review both experimental and theoretical techniques that enable sin-

gle-molecule analysis, with particular emphasis on the major developments

in the field of theoretical stochastic enzyme kinetics, from its inception in

the mid-20th century to its modern-day status. We discuss the differences

between stochastic and deterministic rate equation models, how these

depend on enzyme molecule numbers and substrate inflow into the reaction

compartment, and how estimation of rate constants from single-cell data is

possible using recently developed stochastic approaches.

Introduction

For just over a century, enzymologists have endeav-

oured to infer the molecular mechanism and estimate

kinetics constants of enzyme-catalysed reactions using

four experimental approaches: initial rate, progress

curve, transient kinetics and relaxation experiments

[1,2]. The mechanistic basis of the simplest single-

enzyme, single-substrate reaction was proposed by Vic-

tor Henri in 1902 [3–5]. This reaction mechanism of

enzyme action consists of a reversible step between an

enzyme E and a substrate S, yielding the enzyme–
substrate complex C, which subsequently forms the

product P:

Sþ E �k1
k�1

C*
k2

Pþ E (1)

where k1, k�1 and k2 are the rate constants of the reac-

tion. Equation (1) is known as the Michaelis and Men-

ten reaction mechanism of enzyme action, because

Leonor Michaelis and Maud Leonora Menten showed

a century ago [6] that enzymes can be investigated by

measuring the initial rate of product formation under

certain experimental conditions [2,7]. The initial rate

of product formation (v0) is given by the Michaelis–
Menten equation:

Abbreviations

CME, chemical master equation; DRE, deterministic rate equation; EMRE, effective mesoscopic rate equation; SSA, stochastic simulation

algorithm.
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v0 ¼ dp

dt
¼ k2e0s

KM þ s
: (2)

In the above expression, k2 is the turnover number,

e0 is the initial enzyme concentration in the experi-

ment, KM = (k�1 + k2)/k1 is the Michaelis–Menten

constant and s is the initial substrate concentration. v0
is a rectangular hyperbolic function of s, which

increases rapidly until it reaches the saturating value

of the limiting rate, v = k2e0, at high s. The simple sat-

urating function of the Michaelis–Menten equation

has been a cornerstone of enzyme kinetics ever since,

because it allows estimation of the kinetic parameters

characterizing enzymatic catalysis, v and KM, from

measurements of the initial rate of product formation

under different substrate concentrations in quasi-

steady-state conditions (see Ref. [7] for a review). With

the advent of computers, kinetic parameters are gener-

ally estimated from time-course experiments by numer-

ically integrating the reaction rate expressions [8–10].
Michaelis and Menten’s lasting contribution to enzy-

mology has played a fundamental role in understand-

ing enzyme biochemistry in the test tube. The

Michaelis–Menten equation is a deterministic rate

equation (DRE), which implicitly assumes that the

number of enzyme and substrate molecules is macro-

scopically large [11,12]. This is a fundamentally limit-

ing assumption when one considers that the number of

molecules of many chemical species inside cells ranges

from tens to a few thousands [13,14], a number many

orders of magnitude smaller than that in typical test

tube experiments. Under low molecule number condi-

tions, time-course measurements are not smooth, but

are rather characterized by large fluctuations (see,

Fig. 1B). This intrinsic noise stems from the random

timing of biochemical reaction events. The randomness

has various sources of origin including the Brownian

motion of reactants [15]. The noise in the concentra-

tion of a given molecular species roughly scales as the

inverse square root of the total number of molecules

of the species [16]. This implies that stochastic fluctua-

tions are always present, but they are irrelevant in

bulk conditions. For this reason, DREs describe well

reaction dynamics when molecules are present in large

numbers. By the same reasoning, however, DREs like

the Michaelis–Menten equation cannot be used to

investigate noisy intracellular or single-molecule

enzyme-catalysed reactions.

During the last 20 years, the development of mathe-

matical and computational approaches to investigate

the inherent stochasticity of reactions inside the cell

has been propelled by advances in experimental tech-

niques that are capable of following reactions at the

single-molecule level using fluorescence microscopy

and related optical methods [14,17–24]. Here, we first

survey some of the improvements in single-molecule

analysis developed to investigate intracellular reac-

tions. Second, we present the major developments in

the field of theoretical stochastic enzyme kinetics –
from its inception in the mid-20th century to today –
that deal with the resulting data. Our aims are to: (a)

highlight the differences and similarities between sto-

chastic and deterministic rate equations; (b) discuss the

differences between stochastic models of enzyme kinet-

ics in a closed compartment and in a compartment

with substrate inflow; (c) clarify how the kinetic

parameters can be estimated from single-molecule data

and how the reliability of estimation depends on the

choice of modelling framework; and (d) stress that

only a small number of the theoretical predictions

have been verified by experiment and hence single-

molecule enzymology still presents many exciting

challenges.

Single molecule
microscope

Glass surface

Experimental
result

Objective

Laser beam

Detector

Reaction

A

B

Fig. 1. A single-molecule fluorescence microscope can read out the

turnover of single immobilized enzyme molecules as they convert

fluorogenic substrate in solution into fluorescent product, often in

bursts of activity. (A) Schematic illustration of an objective-type total

internal reflection fluorescence (TIRF) microscope. (B) Real-time

single-molecule recordings of enzymatic turnovers as fluorogenic

substrate is converted into fluorescent product. Each emission

intensity peak corresponds to a burst of enzymatic turnovers.
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Single-molecule analysis in real-time

In 1959, Richard Feynman first predicted that ‘there’s

plenty of room at the bottom’ [25], and since then the

quest to detect and manipulate fewer and fewer mole-

cules in ever smaller volumes has begun to make rapid

strides [14]. Two main types of microscopy approaches

for directly observing the behaviour of single mole-

cules have emerged: optical detection, largely through

the measurement of a fluorescence signal, but also

through measurement of absorption or scattering; and

mechanical detection such as the topological mapping

by atomic force microscopy or the application of con-

trolled molecular scale forces [14,26]. For details, the

reader is referred to some of the many recent reviews

on the topic [14,17–24]. Briefly, single-molecule

approaches can detect classic enzymatic substrate turn-

over, but also other biopolymer-mediated reactions

such as binding and dissociation events and conforma-

tional changes. Often, the observation of multiple

events from a single enzyme or biopolymer (such as

RNA, DNA or a polysaccharide) lends increased sta-

tistical significance to the signal, improving the ability

to distinguish from spurious background events (such

as detection noise and nonspecific binding) at the rela-

tively low signal-to-noise ratios of single-molecule

detection. Fundamentally, if the molecule of interest

can be immobilized to be observed for an extended

period and/or act as prey to capture a diffusing ‘preda-

tor’ molecule (or substrate) [27–29], the likelihood of

observing multiple events and the signal-to-noise ratio

both increase, and the confidence in interpretation of

the data rises. For force-based techniques, immobiliza-

tion on a solid support is essential for providing a

topological map across the support matrix and for

applying a known force. However, certain sensitive flu-

orescence detection techniques can also be applied to

freely diffusing molecules, as long as averaging over

multiple molecules (rather than multiple events from a

single molecule) yields useful information such as the

intracellular diffusion constant in fluorescence correla-

tion spectroscopy [22,30]. Conversely, if only the num-

ber of molecules needs to be counted or their position

recorded, diffusion or photobleaching to remove those

already detected can be beneficial [14,20,24,29].

One of the major advantages of single-molecule flu-

orescence techniques in particular is that they can be

applied readily to measuring the relatively unperturbed

real-time behaviour of single molecules inside live cells.

Because the number of identical biopolymer molecules

in a single cell typically ranges from just 1 to ~ 1000

[14,31] or, in some cases like the ribosome, several

10 000s, and because the volume of the cell is small

(eukaryotes typically have a diameter of 10–100 lm,

and bacteria of 0.2–2 lm), microscopic detection of

those few single molecules becomes critical. Con-

versely, single-molecule fluorescence microscopy bene-

fits from low molecule numbers because each molecule

then appears as a signal (termed a point spread func-

tion) that is spatially resolved from others. In fact,

photo-activation and -switching are used as ‘tricks’ to

only turn on sparse numbers of molecules at each

detection time point to prevent excessive molecule

numbers and poorly resolved signals when imaging a

larger field of view in a wide-field microscope [14].

Additionally, the limited focal depth of ~ 500 nm of a

high numerical aperture microscope objective effec-

tively removes molecules outside the imaging plane

through defocused blurring. Alternatively, confocal

fluorescence microscopy (as in fluorescence correlation

spectroscopy) and spatial confinement techniques have

been developed to detect isolated single molecules

from small volume elements using a point detector

[22,30].

When applied to the cell interior, the main observ-

ables of these fluorescence microscopy techniques are

[14]:

� the location of the fluorophore-labelled molecule,

which is now determined routinely at ~ 10–20-fold
higher resolution than foreseen by the classical

Abbe law or Rayleigh resolution limit of ~ k/2
(where k is the wavelength of light used for imag-

ing, typically around 450–700 nm), based on either

software-fitting or optically shaping the point

spread function;

� the brightness of the fluorophore-labelled molecule,

which under certain circumstances can reveal the

stoichiometry of a multimolecule complex, either

through careful calibration or through counting of

stochastic, stepwise photobleaching events, where

each step corresponds to the loss of signal from

one fluorophore; and

� the spectral properties (colour) of the fluorophore

label – the spectral resolution when detecting single

molecules is limited due to the limited number of

photons emitted, but can, for example, resolve the

relative contribution of the red-shifted so-called

acceptor to the fluorescence signal of a donor-

acceptor doubly labelled molecule. This feature has

powerfully been used to measure the distance

between the attachment sites of a donor and accep-

tor that undergo distance-dependent FRET [32].

What makes intracellular fluorescence microscopy

particularly powerful is that it offers spatiotemporal
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resolution, that is, changes in any of the observables

can be monitored in real-time coupled with location

information (Fig. 1). This resolution directly yields

kinetic information, for example, when measuring: (a)

temporal changes in molecule location to assess diffu-

sion coefficients [33]; (b) assembly stoichiometry or flu-

orogenic substrate turnover through stepwise changes

in brightness that may systematically vary with time as

observed through time-lapse experiments [33]; or (c)

temporal changes in molecule conformation or config-

uration when observing changes in FRET between a

judiciously placed donor–acceptor pair [32,34]. These

kinetic data may additionally reflect intracellular reac-

tions such as binding and dissociation (e.g. when two

molecules begin and cease, respectively, to diffuse or

localize together) or substrate turnover by an enzyme

(e.g. when such a turnover is associated with the

appearance or disappearance of a fluorescence signal

or a change in FRET). Intracellular single-molecule

fluorescence techniques in particular have therefore

fuelled the need for analysing (and further developing)

stochastic reaction kinetics as detailed in the next

sections.

Physicochemical theory of stochastic
reaction kinetics

To understand how to model stochastic chemical reac-

tions, let us consider a hypothetical setup consisting of

a large number of independent samples of the same

chemical reaction, each with identical initial condi-

tions. Because of the inherent stochasticity of chemical

interactions, the number of molecules at a given fixed

time varies from sample to sample. This variation is

captured by the fraction (or probability) of samples at

time t, P(n1, n2, …, t), containing n1 number of mole-

cules of species 1, n2 number of molecules of species 2,

etc. The stochastic description of the reaction kinetics

then is given by a differential equation for this proba-

bility; this is in contrast to DREs, which are differen-

tial equations for the mean concentrations. Over the

years, this probabilistic approach has been developed

to model any set of elementary reaction steps. It is

known nowadays as the chemical master equation

(CME). The CME can be derived from simple laws of

probability and microscopic physics [35]. Its micro-

scopic validity has also been tested and verified by

molecular dynamics [36,37] for dilute chemical systems

and using Brownian dynamics simulations [38] for

nondilute crowded systems. The major assumption

underlying the CME is that reactions are occurring in

well-mixed environments, which is also an assumption

intrinsic to DRE models. Typically, the well-mixed

reaction environment assumption is satisfied in submi-

cron intracellular compartments because normal diffu-

sion creates homogeneity of molecular species over

small volumes.

DREs can be obtained from the CMEs in the macro-

scopic limit, i.e. the limit of large volumes at constant

concentration (which implies the limit of large molecule

numbers) [16,39]. Thus the CME approach is more fun-

damental then the DRE approach. The two approaches

will generally lead to different predictions for the mean

concentrations [11,40] and hence one should interpret

results obtained using DREs with caution, relying on

them only when the molecule numbers are quite large.

To estimate the mean concentrations of the CME

model, we need to study the first moments of the proba-

bility distribution of the CME. Higher-order moments

of the CME probability distribution present information

about fluctuations that are not available in DREs. The

second-order moment is an illustrative example: it

describes the variance of fluctuations about the mean

concentrations, providing a measurement of the vari-

ability between independent experimental realizations of

the chemical reaction under study. Recent work suggests

that accurate estimates of rate constants can be obtained

by making use of both first and second moment infor-

mation [41]. Such higher-order information could also

be used to distinguish between rival mechanistic models,

such as the Michaelis–Menten and Nuisance-Complex

reaction mechanisms of enzyme action [5,42].

The primary reason that has limited the exploitation

of the CME approach is the lack of exact solutions.

Hence, much of the literature to date has focused on

identifying cases in which exact solutions of the CME

are possible and, more generally, on obtaining approxi-

mate solutions to the moments of the CME using

sophisticated mathematical approaches. In what fol-

lows, we review some of the major advances made in

these directions, in particular, focusing on the differ-

ences between stochastic kinetics in a closed compart-

ment and in a compartment with substrate inflow

(Fig. 2).

Stochastic analysis of the Michaelis–
Menten reaction mechanism

The CME for the single-enzyme, single-substrate Micha-

elis–Menten reaction mechanism (1) was first derived

and studied by Anthony F. Bartholomay in 1962 [15].

He introduced a time-evolution equation for the proba-

bility P(nS, nE, nC, nP, t) where nS, nE, nC and nP are

the molecule numbers of substrate, enzyme, enzyme–
substrate complex and product, respectively, at time t in

a closed compartment. Bartholomay’s equation is:
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where the terms on the three lines describe three steps:

the association of enzyme and substrate, the breakdown

of complex into substrate and enzyme, and the break-

down of complex into enzyme and product, respectively.

The parameter Ω is the volume of the compartment in

which the reaction occurs. Note that the contribution of

the three steps to the overall dynamics is regulated by

the constants k1/Ω, k�1 and k2 that are the inverse

timescales associated with each of the aforementioned

steps. We note that the rate constants k1, k�1 and k2 are

precisely the same constants that appear in the DRE

formulation of kinetics. A detailed explanation of the

construction of CMEs is beyond the scope of this

review; the reader is referred to more specialized reviews

and books on this topic [12,16,43].

Bartholomay demonstrated that the CME of the

Michaelis–Menten reaction mechanism (1) reduces to

the DREs in the macroscopic limit of large molecule

numbers. In particular, the DREs are obtained from the

CME by assuming that the covariance of fluctuations in

the numbers of enzyme and substrate molecules is zero;

this condition is only true in the limit of large molecule

numbers because the size of fluctuations decreases with

increasing molecule numbers [12]. In 1964, Jachimowski

et al. [44] derived a CME model for the Michaelis–Men-

ten reaction mechanism with competitive inhibition and

for an enzyme with two alternative substrates. They also

showed that the CMEs are equivalent to their DRE

counterparts in the macroscopic limit.

In general, single-molecule biophysicists and chem-

ists investigating enzyme-catalysed and other biopoly-

mer-mediated reactions are interested in the case

where the molecule numbers are not very large. The

question then is whether the CME can be solved

exactly analytically for reactions characterized by a

small number of molecules. This is the topic of the

next section.

Analysis of the Michaelis–Menten reaction

catalysed by few enzyme molecules

Aranyi and Toth [45] were the first to systematically

study the CME introduced by Bartholomay. They

considered the special case in which there is only one

enzyme molecule with several substrate molecules in a

closed compartment (Fig. 2A) and showed that the

CME can then be solved exactly. The exact solution

consists of the probability distribution of the state of

the system at any time point. This is remarkable

when one considers that it is impossible to solve the

DREs without imposing restrictions on the reaction

conditions such as pseudo-first-order kinetics [46],

or applying an approximation [47] such as the

quasi-steady-state assumption [48], rapid-equilibrium

assumption [49] or reactant stationary assumption

[50].

From the exact solution of the probability distribu-

tion, Aranyi and Toth derived exact expressions for

the time course of the mean substrate and enzyme con-

centrations and compared them with those obtained

by numerical integration of the DREs. Interestingly,

they [45] found differences of 20–30% between the

average substrate concentrations calculated using the

DREs and the CME for the same set of rate constants

and for the case of one enzyme reacting with one

dPðnS; nE; nC; nP; tÞ
dt

¼ k1
X
½ðnS þ 1ÞðnE þ 1ÞPðnS þ 1; nE þ 1; nC � 1; nP; tÞ � nSnEPðnS; nE; nC; nP; tÞ�

þ k�1½ðnC þ 1ÞPðnS � 1; nE � 1; nC þ 1; nP; tÞ � nCPðnS; nE; nC; nP; tÞ�
þ k2½ðnC þ 1ÞPðnS; nE � 1; nC þ 1; nP � 1; tÞ � nCPðnS; nE; nC; nP; tÞ�;

(3)

S

S

S

S

S

A B

Fig. 2. Schematic illustration of the two

cases primarily treated in this review. (A)

The Michaelis–Menten reaction with one

enzyme molecule (E) with substrate (S) in

a closed compartment. (B) The Michaelis–

Menten reaction with one enzyme

molecule and with substrate inflow. The

latter might, for example, model

unidirectional active transport of substrate

to a compartment or else the production

of substrate by an upstream process.
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substrate molecule (see Fig. 3A). If the initial number

of substrate molecules is increased to five whilst keep-

ing the same rate constants, then one notices that the

difference between the DRE and CME results becomes

negligibly small (Fig. 3B). In general, it can be shown

that the discrepancy between the two approaches stems

from the fact that the mean concentrations, in chemi-

cal systems involving second-order reactions, are

dependent on the size of the fluctuations in a CME

description and independent in a DRE description

[51]. The discrepancies become smaller for larger num-

bers of substrate molecules because fluctuations

roughly scale as the inverse square of the molecule

numbers [12]. This important contribution by Aranyi

and Toth went largely unnoticed at the time, because

experimental approaches did not have the resolution

for measuring single-enzyme-catalysed experiments to

test the theoretical results.

With the advent of single-molecule experiments, the

differences between deterministic and stochastic

enzyme kinetics have begun to be explored in the last

decade. In this context, the inverse mean time between

successive product formation events is equivalent to

the mean rate of product formation; one can then ask

what the dependence of this quantity is on the mean

substrate concentration in a single-enzyme experiment.

By assuming that the substrate is much more abundant

than the enzyme, Kou et al. [52] and Qian [53] simpli-

fied the CME governing the Michaelis–Menten reac-

tion because the association of enzyme and substrate is

effectively pseudo-first-order during the initial transient

of the reaction. They found that the relationship

between the initial mean rate of product formation

and the initial substrate concentration is given by the

Michaelis–Menten equation (Eqn 2). Their relationship

is frequently termed the single-molecule Michaelis–
Menten equation. The theoretical predictions were

confirmed using single-molecule experiments monitor-

ing long time traces of enzymatic turnovers for indi-

vidual b-galactosidase molecules by detecting one

fluorescent product at a time [29].

The discovery of the single-molecule Michaelis–
Menten equation is an interesting result. From the per-

spective of the DRE approach, this can be seen as an

obvious finding because the single enzyme–many sub-

strate molecule setup is the ultimate realization of a

particular condition (not the general condition) under

which the deterministic Michaelis–Menten equation is

valid, namely that the initial substrate concentration

greatly exceeds that of the initial enzyme concentration

[7,47]. However, note that this line of thinking does

presume the correctness of the DRE approach even

for small molecule numbers, which is clearly not the

case generally. Hence, from the latter perspective, the

derivation of a single-molecule Michaelis–Menten

equation is surprising.

Interestingly, Kou et al. [52] showed that if the

states of the enzyme interchange between a number of
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Fig. 3. Differences between the DRE and CME predictions of the mean concentrations of enzyme and substrate for the Michaelis–Menten

reaction catalysed by a single enzyme molecule. The CME is sampled exactly using the SSA [43]. (A) Reproduces a case first studied in Aranyi

& Toth [45] in which initially there is a single molecule of substrate and the parameters are k1/Ω = 10, k�1 = 2, k2 = 1. (B) Parameters are kept

as in the previous case, but the initial number of substrate molecules is increased to five. Note that the discrepancies observed between the

CME and the DRE approaches are only significant for very low numbers of substrate molecules. Time is in nondimensional units.
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interconverting conformations (dynamic disorder),

then one obtains a slightly more complicated equation

than the single-molecule Michaelis–Menten equation

(see Eqn 22 in Ref. [52] for the case of two conforma-

tions). Use of this equation to understand single-mol-

ecule data is warranted whenever one suspects

dynamic disorder to be at play, namely when the dis-

tribution of times between successive product forma-

tion steps is multiexponential [29]. Nonetheless, it

should be kept in mind that the deviations from the

Michaelis–Menten equation are small for several

cases of dynamic disorder, for example, when fluctua-

tions between conformer forms of the enzyme and

enzyme–substrate intermediates occur on a much

longer timescale than the turnover time [52], and

hence the presence of dynamic disorder does not

necessarily preclude the use of the single-molecule

Michaelis–Menten equation.

In summary, taking together the results of Aranyi

and Toth [45], Kou et al. [52] and Qian [53], we have

an emerging theoretical picture of the differences

between the DRE and CME descriptions for the

Michaelis–Menten-type reaction catalysed by a single-

enzyme molecule. The DRE and CME approaches

give virtually indistinguishable results for the temporal

evolution of the mean substrate concentrations and for

the initial rates of product formation whenever the ini-

tial number of substrate molecules is larger than a few

molecules. These predictions have been confirmed by

recent single-molecule experiments; however, the pre-

dicted discrepancies between CME and DRE

approaches for the interaction of a single molecule of

substrate and of enzyme still await experimental con-

firmation.

Of course generally, it is unlikely that there is one

single-enzyme molecule inside a subcellular compart-

ment or an experimental setup. However, the single-

enzyme case is useful because it allows us to esti-

mate the maximum deviations one would expect in

typical scenarios. To date, it has not been possible

to obtain an exact analytical expression for the prob-

ability distribution solution of the CME of the

Michaelis–Menten reaction catalysed by many

enzyme molecules. For small numbers of enzyme

molecules one can solve the CME numerically using

the finite state projection algorithm [54]. However,

the most common method of probing the CME is

the stochastic simulation algorithm (SSA), which is a

Monte Carlo technique generating sample paths of

the stochastic process described by the CME [43].

Using the SSA, it has been shown that the differ-

ences between the mean concentrations predicted by

DREs and the CME for enzyme molecules greater

than a few tens and characterized by the condition

k2 � k�1 in the Michaelis–Menten reaction mecha-

nism (Eqn 1) are very small and hence can typically

be ignored [55–57].

Stochastic analysis of the Michaelis–
Menten reaction mechanism with
substrate inflow

Thus far, we have considered the Michaelis–Menten

reaction mechanism (Eqn 1) in a closed compartment

(Fig. 2A). This mechanism ignores the fact that under

physiological conditions substrate is synthesized by

upstream processes and then flows into the reaction

compartment, which leads to nonequilibrium steady-

state conditions. Hence we now present a Michaelis–
Menten reaction mechanism with continuous substrate

inflow into a compartment (Fig. 2B). The scheme

describing this reaction mechanism is:

/*
kin S

Sþ E �k1
k�1

C*
k2

Pþ E
(4)

where kin is the substrate inflow (or production) rate.

This reaction achieves steady-state when kin is less

than the limiting rate of the reaction, k2e0. At steady-

state, the DREs can be solved, exactly leading to an

expression analogous to the Michaelis–Menten equa-

tion [58]:

dp

dt
¼ kin ¼ k2e0s

KM þ s
: (5)

In this case, the Michaelis–Menten equation pro-

vides a relationship between the steady-state rate of

product formation, which equals kin, and the steady-

state substrate concentration. This result is mathemati-

cally the same as the Michaelis–Menten equation

(Eqn 2). The only difference is as follows. For the

Michaelis–Menten reaction mechanism (Eqn 1), the

measurement of the Michaelis–Menten constant and

the turnover number are estimated from initial rate

experiments in quasi-steady-state conditions. However,

for the Michaelis–Menten reaction mechanism with

substrate inflow (Eqn 4), the kinetic constants are esti-

mated from rate experiments in nonequilibrium

steady-state conditions. We note that Eqn (5) assumes

that fluctuations are negligible, which is not typically

the case in single-molecule experiments. In general,

fluctuations in chemical systems that are in a quasi-

steady-state differ from those in a nonequilibrium

steady-state [59]; this is the case for enzyme-catalysed

reactions as well, as we shall see next.
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Analysis of the Michaelis–Menten reaction

mechanism with substrate inflow catalysed by

few enzyme molecules

Now we relax the condition of small fluctuations. Stefa-

nini et al. [60] analysed the Michaelis–Menten reaction

mechanism with substrate inflow (Eqn 4) catalysed by

one enzyme molecule (Fig. 2B) in a compartment, and

found an exact analytical solution for the CME

approach. They discovered that the relationship

between the mean steady-state rate of product forma-

tion is not given by the Michaelis–Menten equation

(Eqn 2) but by a more complex expression. By explic-

itly showing the dependence of the propensities in the

CME on the compartmental volume Ω, the mean rate

of product formation is (see Eqn (70) in [60]):

d/P

dt
¼ kin ¼ k2

KM þ /S

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4/0

S

XKMð1þ /0
SÞ2

s
� 1

 !

(6)

Note that φS is the substrate concentration for the

CME, which is typically different from s, the substrate

concentration for the DREs. The same notation is used

for the product concentration. The notation φS
0 refers

to the nondimensionalized concentration φS
0 = φS/KM.

Equation (6) is to be contrasted with Eqn (5), which

considered the same reaction mechanism (Eqn 4), but

neglecting fluctuations. Hence it is clear that if one tried

to estimate the Michaelis–Menten constant and the turn-

over number from single-molecule experimental mea-

surements of the rate of product formation and steady-

state substrate concentration using Eqn (5), then one

could obtain misleading results for these constants. By

contrast, use of Eqn (6) would lead to accurate results.

By an inspection of Eqn (6) it follows that in the limit

KMΩ ≫ 1, Eqn (6) reduces to the Michaelis–Menten

equation (2) with p = φP, s = φS and e0 = 1/Ω. Given

the definition of KM and the fact that k�1 + k2 repre-

sents the frequency with which complex dissociates and

k1/Ω is the frequency with which a substrate and an

enzyme molecule associate, it follows that KMΩ ≫ 1

implies the condition wherein bimolecular binding

occurs relatively rarely compared with complex break-

down. Hence fluctuations in the substrate concentration

are small and the bimolecular nature of the reaction is

diminished, i.e. the two key ingredients that are neces-

sary to obtain discrepancies between the CME and

DRE predictions for the mean concentrations [51] are

missing. This reasoning explains why the stochastic

model leads to the deterministic Michaelis–Menten

equation in the limit of large KMΩ. This result as well is
consistent with the derivation of a single-molecule

Michaelis–Menten equation by Kou et al. [52] and Qian

[53] under the assumption of a constant nonfluctuating

number of substrate molecules. In the current example,

deviations from the Michaelis–Menten equation are due

to substrate fluctuations; deviations are similarly possi-

ble due to a fluctuating KM, which models enzyme con-

formational dynamics [61]. Deviations from the DRE

predictions of the reversible Michaelis–Menten reaction

mechanism with one enzyme molecule and in a non-

equilibrium steady-state have also been investigated by

Darvey and Staff [62] and by Qian and Elson [63].

Conversely, deviations from the Michaelis–Menten

equation due to substrate fluctuations become significant

for single enzymes confined in small volumes. For exam-

ple, for a single enzyme with a KM between 1 and 104 lM
(a range reported for physiological conditions [64]), the

critical volumes below which deviations are important

are Ω = KM
�1 = 10�25–10�21 m3 which roughly corre-

sponds to a cubic compartment with a side length in the

range 5–100 nm. Hence the fluctuation-induced devia-

tions from the Michaelis–Menten equation, as described

by Eqn (6), are important for single-enzyme molecules

in small compartments with diameter of ~ 100 nm, such

as carboxysomes [65] and bacterial microcompartments

[66]. However, the deviations would be insignificant for

a single enzyme in a nucleus because the latter is typically

micron sized or larger.

Thus far, we have discussed the case of a single

enzyme molecule in a compartment. As previously

remarked, this is useful as a means to estimate the max-

imum deviations expected from the predictions of the

deterministic approach. The predictions from this sin-

gle-molecule approach are reflective of the multienzyme

case whenever conditions are such that different enzyme

molecules carry out catalysis independent of each other.

Such conditions naturally follow when the substrate is

consumed slowly, in which case both the single and

multienzyme dynamics follow the Michaelis–Menten

equation. However, it has not been possible to obtain

an exact analytical expression for the probability distri-

bution solution of the CME of the Michaelis–Menten

reaction mechanism with substrate inflow (Eqn 4) catal-

ysed by many enzyme molecules for general rate con-

stant values. Stochastic simulations of reaction

mechanism (4) with enzyme molecule numbers in the

range of 10–100 and with physiologically realistic

parameters show that whenever the criterion KMΩ � 1

is satisfied, the Michaelis–Menten equation (Eqn 5)

does not accurately describe the relationship between

the rate of product formation and the mean substrate

concentration [58].

It has been recently shown [58] that, to a good degree

of approximation, the aforementioned relationship
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is quantitatively well described by the following

equation:

aþ 1� /S

KM þ /S

� �
a2

X KM þ e0 1� að Þ2
� �

¼ 1� /S

KM þ /S

(7)

where a is the mean rate of product formation normal-

ized by the limiting rate: kin/k2e0. Equation (7) has been

derived using a novel type of rate equation called effec-

tive mesoscopic rate equation (EMRE) [40], which

approximates the mean concentrations predicted by the

CME and reduces to the DREs in the limit of large

molecule numbers. Whereas DREs are derived from

the CME by assuming zero fluctuations, the EMREs

are derived by assuming small but nonzero fluctuations.

This implies that the DRE predictions do not take into

account the coupling between the mean concentrations

and the covariance of fluctuations inherent in the CME

approach, whereas EMREs do preserve such coupling,

albeit in an approximate sense. Hence the EMRE

approach presents a more accurate means of predicting

mean concentrations; indeed, EMREs have been shown

to closely match the CME for molecule numbers

greater than a few tens (see next section). Equation (7)

thus provides an accurate means to estimate the Micha-

elis–Menten constant and turnover number from

single-cell measurements of the mean substrate concen-

tration and the mean rate of product formation for

reaction mechanism (4).

Stochastic analysis of a Michaelis–
Menten reaction mechanism coupled
to complex substrate inflow

In the previous section, we considered the Michaelis–
Menten reaction mechanism with substrate inflow.

This model captures the basic phenomenon of sub-

strate input but lacks biochemical detail. Now we con-

sider a more complex reaction mechanism of substrate

inflow, which has been recently used to model the

transcription, translation and degradation of a sub-

strate in Escherichia coli [67]:

G*
k0

GþM

M *
kdM /

M*
ks
Mþ S

Sþ E �k1
k�1

C*
k2

Pþ E

(8)

In the above reaction mechanism, G can be consid-

ered a gene coding for the substrate and M is its

mRNA. k0 is the transcription rate and kS is the trans-

lation rate. It is assumed that the gene G has only one

copy in the cell. The translated protein S is then con-

verted by an enzyme E to a final product P via a single

complex intermediate C. A simple ubiquitous example

of this reaction mechanism is the degradation of a

translated protein S into a nonactive form P. The

kinetics of such a process has been shown to follow

Michaelis–Menten kinetics [68], and hence the use of

the Michaelis–Menten reaction mechanism is a very

simple model of the intricate underlying degradation

machinery. Our reaction scheme (Eqn 8) can be seen

as a refinement of the standard model of gene expres-

sion in E. coli [69,70] in which substrate degradation is

modelled via a first-order reaction.

The DRE model for the reaction mechanism

(Eqn 8) in nonequilibrium steady-state conditions can

be described with an analogous expression to the

Michaelis–Menten equation:

dp

dt
¼ ksk0g

kdM
¼ k2e0s

KM þ s
(9)

Note that the quantity g is the gene concentration.

Thus, deterministically, i.e. in the absence of fluctua-

tions, we again have a Michaelis–Menten relationship

between the rate of product formation and the mean

substrate concentration, as previously found for the

simpler model in the previous section. The single and

many enzyme copy number versions of this model can-

not be solved analytically. In Fig. 4 we compare the

numerical predictions of the two approaches for

parameters k0 g = 0.024 min�1, kdM = 0.2 min�1,

kS = 1.5 min�1, k�1 = k2 = 2 min�1 and k1 = 400

(lM�min�1). The enzyme copy numbers were fixed to

60 in a volume equal to the average volume of an

E. coli cell. Note that the relative percentage difference

between the CME’s and the DRE’s prediction of the

mean substrate concentration in steady-state condi-

tions is close to 100%. This is considerable, which

highlights the breakdown of the DRE approach to

modelling enzyme-catalysed reactions with low mole-

cule numbers.

The difference between reaction mechanisms (4) and

(8) stems from the breakdown of the input reaction

from one reaction step in Eqn (4) to two reaction steps

in Eqn (8). Hence the inclusion of the intermediate

mRNA production step could be the culprit for the

unexpectedly large deviations from the Michaelis–
Menten equation. Now, it is known that under certain

conditions the mRNA step leads to substrate mole-

cules being produced in large bursts at random times.

These conditions occur when the lifetime of mRNA is

much shorter than that of the corresponding protein,
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which is typical in bacteria and yeast [71] (and in vivo

measurements of protein expression verify that protein

expression can occur in sharp bursts [72,73]). What

this means is that for short periods after a burst

occurs, there can be much more substrate than the

enzyme can consume, even if working at maximum

speed. Consequently, substrate accumulates. The CME

captures these random bursts whereas the DRE does

not, which explains why the DRE underestimates the

substrate concentrations in Fig. 4. Generally it has

been shown that for the Michaelis–Menten reaction

mechanism with substrate inflow occurring in bursts at

a given KMΩ, the deviations from the deterministic

Michaelis–Menten equation will be larger than those

for the Michaelis–Menten reaction mechanism with

substrate inflow (no bursts) at the same KMΩ [58].

As we illustrate in Fig. 4, the CME and the DREs

predict numerically different time courses for the same

set of parameters. This implies that the estimation of

rate constants from time-course data of single cells

would also lead to different numerical estimates

between the CME and the DREs. In Fig. 4, we also

illustrate the closeness of the EMRE prediction to that

of the CME for the reaction mechanism (Eqn 8). It is

a considerable improvement over the DRE approach.

Hence we expect that parameter estimation could be

carried out effectively using EMREs instead of DREs

for enzyme-catalysed and other biopolymer-mediated

reactions in stochastic conditions.

Conclusions

We have briefly summarized the state of the field of

stochastic enzyme kinetics for the single-substrate, sin-

gle-enzyme Michaelis–Menten reaction mechanism.

While the foundations of the field were laid over

50 years ago, many significant theoretical challenges

have only been surmounted in the last decade. These

developments were spurred in large part by technologi-

cal advances enabling us to probe the kinetics of sin-

gle-molecule reactions on nm length scales that are

relevant to understanding kinetics at the cellular level

and inside artificial nanoscale compartments [74] and

biomimetic reactors [75]. We note that, although

recent experiments have validated some of the theoreti-

cal results for single molecules with no substrate

inflow, thus far, experimental validation of theoretical

results for enzyme systems with substrate inflow has

been lacking; hence this field still presents many chal-

lenges to be solved.
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Fig. 4. Theoretical discrepancy between the stochastic and deterministic approaches in a gene expression model involving enzyme

catalysis. The model considers gene expression of substrate and its subsequent catalysis into product via the Michaelis–Menten reaction

mechanism according to Eqn (8). The cell volume is 1 fL, which is within the range of the volume of an E. coli bacterium. The total number

of enzyme molecules is 60 (see text for the rest of the parameters). The initial conditions are such that there are no substrate, mRNA and

product, and that the free enzyme concentration equals the total enzyme concentration. The CME is sampled by the SSA [43]. (A) The

deterministic rate equation (DRE, dashed line) severely underestimates the mean concentration prediction of the stochastic simulation

algorithm (SSA, red line) while the effective mesoscopic rate equation (EMRE, black line) provides a much better approximation to the

latter. (B) Whereas the DRE approach assumes a probability distribution of substrate molecules that is very sharp, i.e. with no fluctuations,

in contrast the actual probability distribution of substrate molecules (in steady-state conditions), as obtained using the SSA, has a very

slowly decaying tail. The vertical dashed lines show the mean concentration predictions of the DRE, EMRE and SSA. The mean

concentration predicted by the DRE is closer to the mode of the distribution than to its average (see [78] for a detailed discussion of this

phenomenon).
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In this review, we present two take-home messages:

� The CME (stochastic) and DRE (deterministic)

approaches may predict different numerical values

for the mean substrate, enzyme and complex con-

centrations in time, as well as different steady-state

concentrations for a given set of rate constants.

These differences are typically small for the Micha-

elis–Menten reaction mechanism, but significant for

the Michaelis–Menten reaction mechanism with

substrate inflow. The differences increase with

decreasing KMΩ and are particularly conspicuous

when substrate inflow occurs in bursts.

� Besides providing accurate predictions of the mean

concentrations, the CME approach also provides

additional information regarding the fluctuations

about these concentrations and in particular the

probability distribution of the waiting time between

successive product turnover events. The latter could

be used to distinguish between rival models of

enzyme action.

Point (a) has important implications for the estima-

tion of rate constants of enzyme-catalysed and other

biopolymer-mediated reactions. Estimated rate con-

stants can differ significantly depending on the

approach (CME or DREs) adopted to model the

reaction. The CME is superior because it is valid for

both reactions occurring with large or small molecule

numbers. Unfortunately, the estimation of rate con-

stants from stochastic simulations of the CME is

highly time consuming and has only started to be

tackled quite recently [76]. The EMRE approach may

present a way around this challenge because parame-

ter estimation methods are well developed for rate

equations [77]. These approaches have thus far been

exclusively used with DREs but can also be used

with EMREs because the latter are also a type of

rate equation.

Point (b) has important implications for the develop-

ment of novel experimental approaches, which can probe

fluctuations in single-molecule events at fine temporal

resolution [29]. The CME can then be used with these

data to infer a wealth of information about the reaction

dynamics, which cannot be accessed through DREs.

The future of stochastic enzyme kinetics lies in the

development of experimental techniques to access real-

time enzyme-catalysed and other biopolymer-mediated

reactions at the single-molecule level inside living cells.

In parallel, it is also essential to develop novel theoret-

ical toolkits so that we can infer reaction mechanisms

and estimate rate constants from the emerging single-

cell high-resolution data.
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