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ABSTRACT: Biomolecular condensates are membraneless cellular
compartments generated by phase separation that regulate a broad
variety of cellular functions by enriching some biomolecules while
excluding others. Live-cell single particle tracking of individual
fluorophore-labeled condensate components has provided insights
into a condensate’s mesoscopic organization and biological functions,
such as revealing the recruitment, translation, and decay of RNAs within
ribonucleoprotein (RNP) granules. Specifically, during dual-color
tracking, one imaging channel provides a time series of individual
biomolecule locations, while the other channel monitors the location of
the condensate relative to these molecules. Therefore, an accurate
assessment of a condensate’s boundary is critical for combined live-cell
single particle-condensate tracking. Despite its importance, a quantitative benchmarking and objective comparison of the various
available boundary detection methods is missing due to the lack of an absolute ground truth for condensate images. Here, we use
synthetic data of defined ground truth to generate noise-overlaid images of condensates with realistic phase separation parameters to
benchmark the most commonly used methods for condensate boundary detection, including an emerging machine-learning method.
We find that it is critical to carefully choose an optimal boundary detection method for a given dataset to obtain accurate
measurements of single particle-condensate interactions. The criteria proposed in this study to guide the selection of an optimal
boundary detection method can be broadly applied to imaging-based studies of condensates.

■ INTRODUCTION
Biomolecular condensates are cellular membraneless compart-
ments (“organelles”) formed by macromolecular phase
separation accompanied by networking (gelation or percola-
tion) or other physical transitions (henceforth referred to as PS
++),1 which often leads to segregation of biochemical reactions
in cells for differential regulation.1,2 Starting from the discovery
of their dynamic, liquid-like behavior in 2009,3 biomolecular
condensates have been found to play important roles in both
physiology and pathology, mediating a broad range of cellular
processes from gene expression to cell signaling.1,4−7

Live-cell single particle tracking (SPT) of protein or RNA
molecules within condensates is a powerful approach to
dissecting the organizational and functional impact principles
of biomolecular condensates.8−10 In particular, dual-color
single particle tracking uses one channel to image micron-
sized biomolecular condensates, usually via a fluorescently
labeled marker protein, while using the other channel to follow
the (typically subpixel-resolution) positions of single RNA or
protein molecules over time to quantify their interactions with
the condensate. The first channel thus needs to provide both
the coordinates and the boundaries of each condensate to

determine whether or not the biomolecule of interest resides
within the condensate during a given movie frame. The time a
single molecule spends within the condensate or dwell time, as
well as the interaction kinetics between single molecules with
the condensate, can be extracted from such cotracking. In
addition, the series of locations of single molecules relative to
the condensate centroid or boundary reveals their spatiotem-
poral organization and/or stoichiometry within the con-
densate.
The addition of a condensate channel to the single molecule

channel is essential for interpreting the single molecule
trajectories. Single-color SPT in live cells can provide
information on the number of diffusion states of the labeled
molecular species and the transition rates between these
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states,11,12 which may correlate with changing molecular
interactions.13 However, a change in diffusion state or the
observation of anomalous diffusion alternatively can result
from the formation of higher-order macromolecular com-
plexes,14 the emergence of constrained diffusion within a
condensate environment,15 the binding to other cellular
components such as genomic DNA,16−19 or the physical
constraints imposed by surrounding intracellular membrane
structures such as the Golgi apparatus or the endoplasmic
reticulum.20,21 Without direct evidence of a single molecule
colocalizing with a condensate through a second imaging
channel, it is difficult to draw clear conclusions.
Dual-color SPT of RNAs in RNP condensates or granules,

termed processing bodies (PBs), has revealed both immobi-
lized (static) and diffusing RNA molecules,8 while similar
observations were made when performing SPT of RNA-
binding proteins (RBPs) in stress granules (SGs),22 suggesting
a partitioning of RNA and/or protein molecules and thus the
existence of multiple phases within condensates. The SPT of
RNAs in PB condensates additionally revealed distinct
transient and stable interaction modes, dependent on the
functional state of a given RNA.8 The SPT of mRNAs in SGs
further revealed that translation can occur within the
condensates,10 contradicting the long-standing assumption
that SGs are incompatible with translation. Three-color SPT
further revealed the interaction kinetics of RNAs with both
PBs and SGs.9,23 SPT approaches therefore should be able to
address the question of whether RNP granules have biological
functions or are simply “incidental condensates” emerging as
nonfunctional byproducts of biomolecular concentration
fluctuations in cells.24

An accurate measurement of single molecule dynamics
relative to condensates relies on a correct assignment of the
condensate’s physical boundaries. Condensate boundary
detection is especially challenging in dual-color SPT, because
the number of fluorophores observed in the condensate
channel is overwhelming compared to the SPT channel. The
imaging laser power for the condensate channel therefore must
be kept low to prevent bleed-through, reducing the signal-to-
noise ratio in the condensate channel. More importantly, tools
to quantitatively benchmark and compare the available
boundary detection methods are missing. In this work, we
first formulate the boundary detection challenge in dual-color
SPT and rationalize the biases it introduces into measurements
of single molecule-condensate interaction kinetics. We then
generate simulated condensate images grounded in the
physical model of phase separation to provide an absolute
ground truth for benchmarking commonly used condensate
boundary detection algorithms, similar to efforts applied to
other single molecule biophysics tools.25−28 A side-by-side
comparison of four boundary detection methods based on our
synthetic data across a wide physical parameter space yields
important guidelines for choosing an optimal boundary
detection algorithm for a given type of condensate. We
suggest that these guidelines might also extend beyond dual-
color SPT to provide guidance for other imaging-based
analyses of biomolecular condensates.

■ METHODS
Live-Cell Dual-Color SPT. All examples of live-cell dual-

color single molecule fluorescence imaging in this work are
from SPT of a firefly luciferase (FL) messenger RNA (mRNA)
labeled with Alexa Flour 647 (AF647) in the red channel,

complemented with two types of Dcp1a-GFP condensates
visualized in the green channel. The first type is PBs for which
Dcp1a is a well-known marker,8,29,30 and the second type is
Dcp1a condensates formed via hyperosmotic phase separation
(HOPS).31,32

For imaging both types of condensates, we used a previously
characterized U2-OS cell line (hereafter referred to as UGD)
that stably expresses GFP-tagged Dcp1a at near-physiological
concentration so that a similar number and composition of
Dcp1a-containing foci forms as in unlabeled parent U2-OS
cells.8 UGD cells were cultured at 37 °C in McCoy’s 5A
medium (Thermo Fisher, #16600082) with 10% (v/v) FBS
(Fisher Scientific, #MT35016CV) and 20 U/mL Penicillin−
Streptomycin (Invitrogen, #15140122). The cells were bead-
loaded33 with AF647-labeled FL mRNA, allowed to recover in
culture medium for 1 h, and imaged in Leibovitz’s L-15
medium without phenol red (Thermo Fisher, #21083027) but
supplemented with 10% (v/v) FBS, all at 37 °C. Imaging in L-
15 medium was preferred to balance any pH fluctuations
caused by the cellular metabolism outside of a 5% CO2 cell
culture incubator, and the pH indicator phenol red was
omitted to minimize fluorescence background. The imaging of
PBs was performed under an isotonic condition, while Dcp1a
HOPS condensates were induced under hypertonic conditions
with the NaCl concentration raised from 150 to 300 mM. Both
PBs and Dcp1a HOPS condensates were imaged on an Oxford
Nanoimager at 5% power (∼0.1 mW) of the 488 nm laser,
with an exposure time of 100 ms. The limited laser power
prevents bleed-through of the green condensate channel into
the red single molecule channel, while the 100 ms exposure
time balances an adequate single-to-noise ratio against the
diffusion motion blurring.
AF647-labeled FL mRNA was generated following a

previous protocol.34 Briefly, the FL encoding sequence is
amplified by PCR from a pRL-CMV plasmid (Promega, Cat#
E2261) while adding a T7 promoter sequence (5′-
TAATACGACTCACTATAGGG-3′) in the upstream primer.
The Kozak sequence and a 50-nt window upstream of the
Kozak sequence were included to maximize translation
initiation efficiency and leave space for a start-site recognition
blind spot during the assembly of the human translation
initiation complex.35 RNA was transcribed from the PCR
product using T7 RNA polymerase, purified by denaturing 7 M
urea polyacrylamide gel electrophoresis, and subjected to a
capping reaction (NEB, #M2080S), a polyadenylation reaction
(Thermo Fisher, #74225Z25KU) first with 2′-azido-2′-dATP
(Jena Biosciences, #NU-976S) then with rATP, and a click-
chemistry labeling reaction with AF647 sDIBO alkyne
(Thermo Fisher, #C20022) to produce translation-active,
fluorophore-labeled FL mRNA. Labeling via click chemistry
between the gene body and poly(A) tail was found to be the
best strategy for generating functional in vitro transcribed
mRNAs with minimal impact of fluorophore labeling on
translation efficiency.34,36 For live-cell dual-color SPT, the FL
mRNA was imaged in the right channel of the Oxford
Nanoimager, simultaneously with the condensates in the left
channel at 8% power (∼2.0 mW) of the 640 nm laser and 100
ms exposure time. We used highly inclined optical light-sheet
(HILO)37 illumination to minimize out-of-focus fluorescence
background.38

Simulation of Condensate Images. The simulation of
condensate images follows a pipeline used previously in
generate synthetic fluorescent microscopy images.39 The
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absolute ground truth for each simulated image is an idealized
spherical condensate of radius R and with a partition
coefficient (PC) given by the ratio of a condensate marker’s
concentration inside versus outside the condensate. Both R
and PC are sampled by a low-discrepancy method called Sobol
sampling, which has shown to be efficient in sampling a
multidimensional parameter space.40,41 R ranges from 100 to
600 nm, covering the size of PBs,8,30 HOPS condensates,31,32

and common RNP granules found in mammalian cells.42 PC
ranges from 2 to 10, matching the experimentally determined
PC for common RNP granules.43 Sobol sampling then ensures
efficient sampling of the R−PC parameter space. The x and y
coordinates of the condensate center are generated following a
random distribution to place the condensate inside a 2 μm by 2
μm imaging field of view (FOV), with a padding of 600 nm to
ensure that the FOV captures an entire condensate. Assigning
a random location to the condensate minimizes bias from
different pixel binning during down-sampling. Taken together,
the absolute ground truth for each simulated condensate image
can be expressed as:

F x y R( , , , PC) (1)

The ground truth image is generated from the absolute
ground truth by factoring in other parameters arising from the
common optical setups used for live-cell dual-color SPT. To
simulate the image formation process, it is critical to perform a
3D convolution with an estimated point spread function
(PSF). Although a mathematical estimation of a HILO
illumination PSF is not available, it is well understood for a
confocal microscope.44 Live-cell dual-color SPT is commonly
performed on both HILO8,9,11,13,45,46 and spinning-disk
confocal microscopes,10,47−51 whereas confocal microscopes
are more commonly used for bulk fluorescence detection
requiring more homogeneous illumination across the FOV.50

We decided to adopt the Gaussian approximation of a 3D PSF
on the confocal microscope:44

= +G x y z e( , , ) x y z
,

/2 /2
xy z

xy z
2 2 2 2 2

(2)

=
k

2
NAxy

em (3)

= n
k
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NAz
em

2 (4)

=k 2
em

em (5)

where σxy is the standard deviation of the Gaussian on the x−y
plane, σz is the standard deviation of the Gaussian on the z-
axis, kem is the emission wavenumber, NA is the numerical
aperture, n is the refractive index, and λem is the emission
wavelength. For this work, we assume that NA = 1.5, n = 1.515,
and λem = 520 nm.
The condensate F(x,y,R,PC) was placed into a simulation

box with a voxel size of 10 nm, a width and length of 2 μm, and
a height of 2(R + σz). The z-coordinate of the condensate was
chosen as half the height of the simulation box. All voxels
outside the condensate were assigned a fluorescence intensity
of 1, with all voxels inside the condensate assigned a
fluorescence intensity of 1 × PC. The whole simulation box
was convolved with the Gaussian approximate of the 3D PSF
on a confocal microscope, as rationalized above. After the 3D

convolution, a z-slice with a thickness of 500 nm was taken
out, representing the depth of focus (DOF) of the microscope.
Any signal above or below the DOF slice of the PSF-convolved
3D box should not contribute to the image because it is out of
focus. The DOF slice was projected onto the x−y plane by
integrating all voxels above a pixel, resulting in a ground truth
image with a pixel size of 10 nm. The ground truth image was
then down-sampled to a noiseless synthetic image with a pixel
size of 100 nm, mimicking fluorescent microscope images with
a 100× objective. The down-sampling was done by averaging
10 by 10 pixels in the ground truth image. Finally, a mixture
model was used to add noise to the noiseless synthetic image.
The additive electronic noise was modeled by a Gaussian
distribution, with parameters estimated from the experimental
measurement of blank samples, and the shot noise from the
integrating detector of the Oxford Nanoimager’s sCMOS
camera was modeled by a Poisson distribution.52,53 A total of
4096 simulated images were generated. All python codes for
this work, the four boundary detection methods, and the
corresponding analyses and plots are found at https://github.
com/walterlab-um/Condensate_Simulator_and_Boundary_
Detector.
Boundary Detection by Algorithms Commonly Used

for Condensate Images. We selected four commonly used
boundary detection algorithms for benchmarking and compar-
ison in this study. Please refer to the main text for a discussion
of the published usage of each of the four methods.
Method #1 is thresholding after smoothing. The simulated

image was smoothed by a σ = 1 Gaussian filter to reduce noise
and then binarized by the Otsu thresholding algorithm.54

Contours of the binary mask were found by the f indContours
function in the OpenCV package55 and used as the detected
boundaries for Method #1.
Method #2 is Canny edge detection,56 which is a widely

used edge detector in computer vision. The noise reduction
step is the same as Method #1, but instead of applying simple
thresholding to the smoothed image, the Canny algorithm
performs hysteresis thresholding on the gradient of the
smoothed image. In this work, Canny edge detection was
done by calling the Canny function in OpenCV with the
gradient calculated by convolving a size 5 Sobel filter and with
low and high thresholds of 50 and 1000, respectively. The
f indContours function was then used to extract the detected
boundaries for Method #2.
Method #3 is Laplacian of Gaussian (LoG) blob detection

plus 2D Gaussian fitting. Method #3 is technically not a
boundary detection algorithm but is included here because
many biomolecular condensates in cells are small. The
motivation is that objects of a few pixels do not have well-
defined boundaries by traditional definition, which may cause
edge detectors to fail, whereas a blob detector with a size
estimator from Gaussian fitting may circumvent this obstacle.
All the blobs in an image were first found using the blob_log
function in the scikit-image package57 with a maximum sigma
value of 5. Briefly, the images were convolved by LoG kernels
at different sigma values, where a blob will give the strongest
response to LoG convolution when its size matches the size of
the LoG kernel.58 The center coordinates and sigma will then
be used as initial guesses for 2D Gaussian fitting over a 7 by 7
window cropped around the center of the blob. The
condensate boundaries of Method #3 were determined as
2.355 times the fitted sigma (i.e., the full width half maximum,
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FWHM, of a 2D Gaussian) away from the fitted center of the
Gaussian.
Method #4 is a pixel classification by a user-trained machine-

learning (ML) model. Condensates in an image were
segmented by pixel classification, and the contours of the
segmentation mask were used as the detected boundaries in
Method #4. Although most publications using ML models for
condensate images specify neither the training process nor the
size of training dataset, a recent work using the ML model
studied here, ilastik,59 needed a training dataset of only seven
images to achieve a reasonable recognition of the condensates.
We generated a larger training dataset of 16 simulated
condensate images and used Sobol sampling to ensure that
the training dataset was representative of the R−PC parameter
space. Seven independent researchers were first trained with a
standard protocol for the well-established interactive ML tool
ilastik59 and then were given the above dataset to train the ML
model to classify pixels into each a condensate and a
background class. Of note, the researchers were not given
the condensate ground truth and only used their naked eyes to
make individual judgments of which pixel belongs to which

class. This protocol was chosen to mimic the common practice
of using ilastik on condensate images.60 The trained model was
then used to predict a segmentation mask under ilastik’s
“simple segmentation” mode in the export settings. Finally, the
f indContours function was called to extract the detected
boundaries.
Metrics to Quantify the Goodness of Condensate

Boundary Detection. The OpenCV package was used to
extract centroid coordinates, area, and intensity within
condensates, using in turn the boundary detected by each of
the four methods. The detected PC was calculated as the
average pixel intensity within the condensate boundary,
divided by the average pixel intensity outside the condensate
boundary. The deviation in condensate centers was derived as
the physical distance between the contour centroid and the
ground truth condensate center. The deviation in the
condensate area and PC was calculated in fold change, as
the difference between detected and ground truth values,
divided by the ground truth value. The closer the fold change
value is to one, the more accurate the measurement. The
deviation in condensate boundary detection was computed as

Figure 1. Accurate estimation of condensate boundaries is critical for dual-color single molecule tracking in biomolecular condensates. (A)
Representative experimental single RNA molecule trajectory close to a HOPS condensate in a live UGD cell, with the condensates pseudo-colored
in blue and the single molecule in red; the left half of the cell is an actual experimental image, the right half a schematic. The third row shows the
reconstructed trajectory of the RNA relative to the condensate, with the estimated boundary of the condensate dotted in blue. (B) The
performance of condensate boundary detection algorithms affects the single molecule-condensate interaction kinetics since it determines whether
the single molecule is counted as inside or outside the condensate. Bias emerges broadly but differently depending on the type of condensate, as
represented here by a large PB on the left and smaller Dcp1a HOPS condensates on the right. Methods #1−4 are the boundary detection
algorithms benchmarked in this work, as detailed in the Methods section and in Figure 3. Scale bar, 1 μm.
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the root mean squared displacement (RMSD) between the
detected and ground truth condensate boundaries. Each
detected boundary coordinate was first used to calculate its
distance to the ground truth condensate center. The distance
minus the ground truth radius of the condensate was defined as
a displacement to calculate the RMSD.
RMSD was chosen as the evaluation metric for condensate

boundary detection rather than those used in evaluating
segmentation algorithms,61 for two major reasons: (1) All
analyses for a dual-color SPT dataset, such as dwell kinetics
and diffusion dynamics, are dependent on the determination of
physical distances between single particle and condensate. The
evaluation metric is therefore best chosen as a physical distance
rather than a score without physical meaning. (2) Segmenta-
tion score functions are generally based on the comparison of a
binary segmentation mask against a binary ground truth mask
and thus have intrinsic pixel-level resolution. In contrast, the
single molecule channel in SPT has subpixel resolution, as does
the ground truth generated here by simulation, making RMSD
a more straightforward and useful metric for evaluating SPT
datasets.

■ RESULTS AND DISCUSSION
Boundary Detection Methods Generally Bias the

Measurement of Single Molecule-Condensate Interac-
tion Kinetics. Live-cell dual-color SPT aims to quantify the
interactions between a protein or RNA molecule and a
condensate over time. As illustrated in Figure 1A, the contour
coordinates of the condensate boundary and the center
coordinate of the single molecule will be extracted from each
frame of the dual-color SPT video. The contour coordinates of

the condensate boundary can be expressed in distinct ways,
depending on the algorithm used. If assuming condensates are
circles or ovals in the 2D image, the boundary coordinates are
derived from the condensate’s detected center coordinate and
radius (Figure 1A). Otherwise, the edge detector or pixel
classifier will directly yield boundary coordinates.
The resulting data can be used to reconstruct a single

molecule trajectory relative to a condensate of interest, yielding
rich information on the interactions between them. The third
row of Figure 1A shows experimental data of a single RNA
molecule that starts on the inside of a HOPS condensate in a
live UGD cell, dwells in certain regions of the condensate,
diffuses to another region to dwell there for a few seconds,
repeats this jumping a few times, leaves the condensate briefly,
and then comes back to enter the condensate. The regions of
slow single molecule diffusion may represent subdomains that
are more dense and viscous than other parts of the condensate,
such as the core structures in SGs22 or PBs.8

The relative locations of the RNA molecule and condensate
throughout the trajectory require an accurate assessment of the
condensate boundary. For the same condensate image from
our live-cell dual-color tracking data, the four boundary
detection algorithms most commonly used in the field yield
different boundary contours so that the same single molecule
in specific imaging frames may be counted as either inside or
outside the condensate (Figure 1B). This observation holds
broadly across different types of condensates, as represented
here by larger PBs and smaller Dcp1a HOPS condensates (left
and right segment, respectively, of Figure 1B). The bias across
the four methods is partly dependent on the type of
condensate, posing three significant questions for comparing

Figure 2. Physical origins of image properties of biomolecular condensates. The three major image properties of condensates, contrast,
morphology, and size, can be traced back to three aspects of the physical processes that form biomolecular condensates in cells, namely, the
thermodynamics, rheology, and coarsening kinetics of phase separation. Rheology and coarsening, relating to morphology and size in condensate
images, are correlated because a faster coalescence means a faster Brownian motion coarsening. Depicted are the physical properties of two different
condensates A and B together with their corresponding image properties. ρcondensed and ρdilute are the densities (i.e., concentrations) of the
fluorescently tagged protein in the condensed and dilute phases, respectively. A tie line connects the densities of the two phases at equilibrium at a
specific temperature. The aspect ratio is the ratio between the orthogonal short and long axes of a deformed condensate. τA and τB are the
rheological relaxation times, defined as the time it takes for two fusing condensates to relax back to one condensate of spherical shape, that is, the
recovery of an aspect ratio of ∼1.
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them: (1) How large is the detection error (i.e., deviation or
bias) in boundary detection? (2) How different are the
detected boundaries? (3) How do the physical properties of
condensates affect the detection error?
In the following sections, we first analyze the relationship

between the physical properties and image properties of
individual condensates. Second, we identify a lack of a ground
truth as the major obstacle for an objective comparison
between the four condensate boundary detection algorithms
and propose synthetic data as a way to overcome this obstacle.
Third, we discuss our findings and conclude with guidelines for
choosing the best boundary detection algorithm based on the
physical properties of a given type of condensate.
Image Properties of Condensates Originate from the

Physical Parameters Governing Phase Separation. The
formation of biomolecular condensates in cells is thought to be
driven by phase separation, a density transition, possibly
coupled with other changes such as in percolation behavior, a
connectivity transition.1,62 When taking an image or video of
condensates, such as in dual-color fluorescence SPT experi-
ments, the image properties of condensates can be traced back
to their origin in the physical processes that induce
condensates (Figure 2).
The image contrast of a condensate, defined as the ratio

between the integrated pixel intensities within and outside the
condensate, is determined by the concentration of fluoro-
phores in each phase. Most dual-color single molecule-
condensate tracking experiments use a condensate marker
protein fused to a fluorescent protein to visualize the
condensates so that the concentration of fluorophores equals
that of the marker protein molecules. The concentration of the
marker protein in each phase depends on its partition

coefficient or PC. PS++ in cells is typically a multicomponent
phase separation, although for simplicity we show a single-
component phase diagram in the left column of Figure 2. Such
a diagram is drawn with the x-axis representing an order
parameter, density ρ or protein concentration, whereas the y-
axis signifies a parameter affecting the enthalpic and entropic
terms of the system, such as temperature. For a fixed
temperature, if immiscibility occurs, the system at equilibrium
separates into a condensed phase of density ρcondensed and a
dilute phase of density ρdilute. In the phase diagram, these two
equilibrium densities are connected by a tie line (Figure 2, left
column). All the pairs of equilibrium densities adopted at
different temperatures make up a coexistence or binodal curve.
The system will then undergo phase separation if the
combination of its total protein concentration and temperature
lands within the region encircled by the binodal curve, with the
tie connecting the two immiscible phases and the relative
volumes of the two phases dictated by the distance of the
system composition from the bimodal curve. In multi-
component systems, the concentration of the marker protein
in the condensed and dilute phases is derived from the phase
diagram’s x-axis. The PC is then simply the ratio of these
concentrations, and the contrast of a condensate image
increases with the PC of the fluorescently tagged protein
marker, as derived from the phase diagram.
Once phase separation sets in, smaller condensates have a

tendency to fuse (i.e., coalesce) to form entropically favored
bigger condensates. The rheology of condensates will govern
how fast two touching condensates can coalesce and relax back
to the spherical shape that minimizes the new droplet’s surface
free energy.63 The characteristic time for the latter process is
termed relaxation time in rheology (τA and τB in Figure 2,

Figure 3. Common methods for condensate boundary detection and the obstacle for their objective comparison. The kernel for convolution is
depicted on the left side of the convolution sign ⊗. For simplicity, the application of the four algorithms is shown on the one-dimensional (1D)
cross-section of a condensate, whereas the analysis of real image data occurs in 2D. The Gaussian smoothing in Method #1 is sometimes
substituted by convolution with other kernels. Scale bar, 1 μm.
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middle column). If imaging takes place at a certain time point
after two condensates start to fuse, the condensate with a
shorter relaxation time (condensate A in Figure 2, middle
column) will adopt the more spherical shape. Therefore, the
morphology of condensates during imaging is derived from
their rheology.
The increase in condensate size after nucleation and growth

is termed coarsening, and it generally requires longer-range
transport of or between condensates (Figure 2, right
column).64 Such long-range transport can be achieved by
either Brownian motion of the condensates, termed Brownian
motion coalescence (BMC), or diffusion of molecules from
smaller to larger condensates, termed diffusion-limited
coarsening (DLC) or Ostwald ripening.64 The size of
condensates at the time of imaging therefore depends on
both the rheology, which determines the kinetics of
coalescence, and the coarsening kinetics. Assuming that
imaging takes place after the start of condensate assembly in
a cell, condensates with faster coarsening kinetics (condensate
B in Figure 2, right column) will be larger.
Taken together, the physical properties of biomolecular

condensates of interest will determine their image properties.
The contrast of condensates in the image will be determined
by the PC, derived from the phase diagram and thus the
thermodynamics. Condensate morphology or shape will be
determined by the rheology. Finally, condensate size will be
determined by the coarsening kinetics, which is affected by
rheology if the coarsening mechanism is dominated by BMC.
In the following sections, we will use condensate PC and size
as the two major physical parameters to test how different
condensates in an image are assessed by the various image
processing algorithms.
Four Commonly Used Detection Algorithms for

Condensate Boundaries. The literature on dual-color single
molecule-condensate tracking and image-based analysis of
biomolecular condensates yields four representative computer
vision methods for the assessment of condensate boundaries
(Figure 3). The following nomenclature of Methods #1−4 is
used henceforth.
The most commonly used method is a direct thresholding of

a smoothed image (Figure 3, Method #1).9,10,65−68 Smoothing

can be performed by convolution with a Gaussian kernel10,23 as
shown in Figure 3, a median kernel,68 or a band-pass kernel.9,65

Thresholding can be achieved either manually65,66 or using an
automatic thresholding algorithm such as the Otsu method10,54

or the Yen method.23,69 No matter how the threshold is
picked, it should be considered arbitrary because it is derived
without knowledge of the absolute ground truth.
A classical boundary detection in computer vision is the

Canny edge detector (Figure 3, Method #2),56 where the
kernel used in convolution is the first derivative of a Gaussian
instead of the Gaussian of Method #1. It has also been applied
to condensate boundary detection.70

Method #3 assumes that condensates are blobs in the image
so that the kernel used for convolution is the second derivative
of a Gaussian (i.e., the Laplacian of Gaussian, LoG). The image
is convoluted with an LoG kernel, which peaks at each blob
that have the same size as the LoG kernel used.71 Convolving
the condensate image with a variety of LoG kernel sizes will
then find the pixel locations of condensates of different sizes.72

We note that peak picking relies on an arbitrary threshold set
by users in LoG space.66 2D Gaussian fitting is then applied to
find the subpixel locations and sizes of condensates,9,65 as
derived from the LoG blob detector (Figure 3, Method #3).
Lastly, pixel classifiers powered by machine-learning (ML)

models such as ilastik59 can be trained by a user-defined
subjective “ground truth” to yield a mask where every pixel in
the image is assigned to one of two categories, namely,
condensate or background (Figure 3, Method #4).60,73−79 The
training of pixel classifiers can be convenient and quick. For
example, ilastik is the most widely used interactive ML-based
bioimage processing software has been used on condensate
images, and it can work with as little as seven condensate
images in the training dataset.60

All four methods rely on some empirical parameters and
thresholds, and thus, the frame-to-frame changes in back-
ground texture or signal intensity can alter the overall
performance of each method throughout a live-cell video.
One solution this problem is using an automatic thresholding
algorithm, such as the Otsu method10,54 adopted in this paper,
to find the best thresholds for each individual frame.

Figure 4. Simulated condensate images recapitulate real condensate images. The condensate is generated in a simulation box at the center z with
only four parameters: the center coordinates x and y, size R, and the PC expressed as Ccondensed/Cdilute, while assuming that the dilute phase
concentration is fixed at a unitless 1. To simulate the image formation process, four steps are taken: (1) a 3D convolution with the PSF, (2) taking
out a slice in z to mimic the DOF of the objective, (3) down-sampling to a representative pixel size, and (4) adding common imaging noise. Scale
bar, 1 um.
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Simulation Generates Synthetic Condensate Images
that Define an Absolute Ground Truth. The biggest
hurdle to benchmarking the performance of condensate
boundary detection methods is the absence of a defined
absolute ground truth. Here, we use simulations to generate
synthetic condensate images based on two of the most
important physical properties of condensates, their size and PC
(Figure 4). These images lay the foundation for a quantitative
comparison between the four boundary detection methods
described above. Details of the simulations are found in the
Methods section.
Our simulated images capture the major characteristics of a

real condensate image (Figure 4). The remaining differences
are either intrinsic to the complex cellular environment or due
to the fact that the model has not yet considered the rheology
of biological phase separation by assuming a spherical shape of
the condensate. Condensate-prone proteins are known to form
clusters with different stoichiometries at or below the
saturation concentration80,81 in the dilute phase outside the
condensates, further increasing the heterogeneity of the image
background. Additionally, the liquid-to-solid transition of
condensates82 and the presence of cellular structures like the
cytoskeleton and membranes can deform a condensate to a
nonspherical shape, even after the phase separation process has
reached equilibrium. Future work could capture more complex
condensate shapes by using either an empirical model, such as
the parametric random shape-generating algorithm used in cell
shape simulation,83 or a simple physics model, such as the Ising
model,84 to simulate the phase separation process and to
obtain condensate shapes without assuming equilibrium.

Optimal Condensate Boundary Detection Depends
on Both Size and PC. The assessment of condensate
boundaries starts with recognizing the condensate in an image.
We first measured the failure rate of each method to pick up
the condensate in a simulated condensate image. Condensates
that are either small or of low PC were more likely to be
missed by all four methods (Figure 5A). The classical
computer vision Methods #1−3 nearly completely missed
condensates that are smallest (radius 150 nm, or 3 pixels width
in the simulated image) and have the lowest PC; however, the
ML-based pixel classifier still recognized 55% of them (45% fail
rate). Compared to the (nearly) perfect success rate (0% fail
rate) of all four methods for larger and higher PC condensates
(Figure 5A), the results call for caution when using any
boundary detection methods on comparably small and dim
condensates. An interesting observation is that the classical
computer vision Methods #1−3 never miss a big and high-PC
condensate, whereas the ML-based Method #4 has some finite
fail rate for all types of condensates, including large- and high-
contrast ones (Figure 5A). Notably, when a condensate is
small but has a high PC (bottom row in Figure 5A) or has a
low PC but is big (left-most column in Figure 5A), the ML-
based Method #4 generally outperforms the classical computer
vision Methods #1−3. Taken together, the ML-based Method
#4 outperforms Methods #1−3 in recognizing most types of
condensates, even if its fail rate is slightly higher for larger
condensates of high contrast, which should be considered
when an accurate counting of condensates matters.
To quantify the error in the condensate boundary detection,

we calculated the boundary deviation as the RMSD distance

Figure 5. The best boundary detection method of condensates depends on both R (size) and PC (contrast). (A) Fail rate of condensate detection,
defined as the likelihood of the method missing the condensate in an image. (B) Boundary deviation, defined as the RMSD distance between the
detected edge and the ground truth edge. The darker the color, the smaller the fail rate and edge detection error, and thus the better a detection
method performs in determining the condensate boundary.
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between the detected boundary and the known ground truth
(Figure 5B). For large condensates (radius > ∼400 nm), the
intensity thresholding Method #1 outperformed Methods #2−
4. Therefore, Method #1 should be used if the condensates of
interest in an experiment are large. In contrast, for very small
condensates (radius < ∼200 nm), Methods #3 and #4 both
displayed the highest boundary detection accuracies (Figure
5B). However, given the high fail rate of Method #3 (Figure
5A), Method #4 should preferably be employed if the
condensates of interest are small. Finally, for medium-sized
condensates (radius between ∼200 and ∼400 nm), the
performance of Methods #1, #2, and #4 was similar, and
when the PC of a condensate is less than ∼3.6, they all
achieved an error of ∼100 nm (Figure 5B).
In summary, it is recommended to use Method #1 for

condensates larger than ∼400 nm in radius and Method #4 for
smaller condensates, or if the distribution of condensate sizes is
broad, to achieve the most accurate condensate boundary
detection in live-cell dual-color fluorescence SPT experiments
that study the overall molecule-condensate interaction kinetics.
An LoG Detector with Gaussian Fitting Best

Describes Small but Uniform Condensates. In some
cases, the accurate assessment of a condensate’s center may be
more important than its boundary detection. For example, the
estimation of a condensate’s apparent diffusion coefficient
relies on an accurate tracking of its center. When an SPT

experiment is designed to measure single molecule interactions
specifically with the cores of condensates, such as those of
SGs,85 the accuracy of the single molecule-to-condensate
center distance will be more important than the single
molecule-to-condensate boundary distance, and thus, the
accuracy of condensate center assessment should be
prioritized.
We compared the condensate center assessment errors,

calculated as the deviation of the detected center from its
ground truth, and found that Method #3 outperforms all other
methods independent of condensate size and PC (Figure 6).
This finding can be rationalized in that the LoG detector and
Gaussian fitting are both designed to accurately locate blobs in
an image. Therefore, Method #3 should be used for
condensate center assessment in experiments where the single
molecule-to-condensate center distance is important.
Different Methods Differentially Bias Estimation of

Condensate Size. An accurate assessment of condensate size
can be important for single molecule-condensate tracking
because: (1) The distance between single molecule and
condensate center or boundary may need to be normalized by
the size of the condensate, especially if the condensates of
interest have a broad size distribution. (2) It is sometimes
necessary to normalize the single molecule-condensate
colocalization probability to the total area or volume of
condensates in the cell and relative to the total area or volume

Figure 6. The LoG detector with Gaussian fitting best describes condensate center location. The condensate center deviation was defined as the
distance between the detected condensate center and the ground truth center. The darker the color, the smaller the center detection error, and thus
the better a detection method performs in determining the condensate location.

Figure 7. Different methods differentially bias the assessment of condensate size. The ratio between the detected condensate size over the ground
truth condensate size quantifies how well a boundary detection method estimates the size of a condensate. The redder, the more an overestimation
on condensate size occurs, while the bluer, the more an underestimation.
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of the cell. The number of random single molecule-condensate
colocalization events will be higher when the condensates
occupy relatively more total area or volume of the cell, even if
there are no specific interactions. (3) The size distribution of
condensates itself can be a useful metric in quantifying the
biological phase separation in cells.
Therefore, we quantify the ratio between the detected and

ground truth condensate size using all four methods (Figure
7). Surprisingly, different methods will bias the assessment of
condensate size in distinct ways. The intensity thresholding
Method #1 yields a very faithful assessment of condensate size
when the condensates are large (radius >∼400 nm) but will
increasingly overestimate it with decreasing condensate size.
Similarly, the Canny edge detection Method #2 underestimates
condensate size when the ground truth size is large, while
overestimating it when small. In contrast, the LoG detector
plus Gaussian fitting Method #3 will generally underestimate
condensate size as much as by 62%. This likely is caused by the
fact that the shape of a large condensate in the ground truth
image (Figure 4) is no longer close to the shape of a 2D
Gaussian, which renders the fitting assumption increasingly
inadequate when the ground truth condensate size increases.
Finally, the overall performance of the ML-based Method #4 is
better than Methods #1−3 but still falls short if the ground
truth size and PC are small.
In summary, it would be best to use Method #1 for the size

assessment of condensates with a radius larger than ∼400 nm.

For smaller condensates, Method #2 or #4 is relatively better
than the other two, but different biases can occur (Figure 7).
Imaging-Based Analysis Intrinsically Underestimates

PC.We also quantify the error in the assessment of PC (Figure
8A). Unexpectedly, all four methods severely underestimate
the PC regardless of the ground truth condensate size and PC,
suggesting that the bias is intrinsically independent of the
boundary detection process. One advantage of using synthetic
data is that the entire image formation process can be broken
down into individual steps, enabling us to understand the
origin of the PC estimation bias. We found that the PSF of
fluorescence microscopy skews the image-based estimation of
condensate PC, independent of both the down-sampling to
real pixel size and the background noise addition (Figure 8B).
Therefore, any imaging-based estimation of PC using
fluorescence microscopy image analysis will intrinsically
underestimate the PC, which is significant for the field given
that fluorescence microscopy is widely used to estimate the
PC.
Annotator Bias of the Machine-Learning Model.

Annotator bias refers to the tendency of human annotators
to introduce subjective bias into training data, which has been
a well-known and widely discussed problem in the ML field.
However, it is rarely discussed when ML-based boundary
detection tools like ilastik are used in biomolecular condensate
research. Therefore, we compared the ML model trained by
seven researchers given the same training dataset and
instructions. We found that the distribution of the boundary

Figure 8. The PSF of fluorescence microscopy skews the image-based estimation of condensate PC. (A) All four methods severely underestimate
PC. The ratio between the detected PC over the ground truth PC quantifies how well a boundary detection method estimates the PC of a
condensate. The bluer, the more the PC is underestimated. (B) The bias of PC estimation originates from the PSF. Both images and cross-section
curves are shown before down-sampling and background noise addition. The cross-section is taken from the dotted black line, cutting through the
condensate in each image. The detected PC is expressed as the ratio between intensity within and outside the condensate. The ground truth
boundary in gray is used to remove any impact of the boundary detection method used. The deep blue curve is the detected PC calculated by
dividing intensity of each pixel by the average intensity outside the condensate, while the light blue curve is the detected PC averaged among all
pixels inside the condensate, divided by the average intensity outside the condensate. The detected PC drops significantly after performing a
convolution to mimic the PSF blurring intrinsic to fluorescence microscopy.
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detection is distinct among models trained by different
researchers (Figure 9). Therefore, annotator bias also exists
for the condensate boundary detection using ML-based
methods and should be noted and properly addressed. For
example, only experienced researchers should serve as
annotators for condensate images, and experimental results
could be cross-validated using ML models trained by different
annotators.

■ CONCLUSIONS
Live-cell dual-color SPT of condensates is a powerful
biophysical tool that (1) reveals the internal organization
principles of condensates, with the single molecules serving as
probes, and (2) elucidate the impact of condensates on the
molecular functions of the RNA or protein. The single
molecule-condensate tracking analysis relies on an accurate
assessment of the condensate boundary.
Here, we analyzed the physical origins of image properties

obtained during the image analysis of fluorescent condensates
and used simulated condensate images as ground truth to
subjectively benchmark four common condensate boundary
detection methods: #1, intensity thresholding after smoothing;
#2, Canny edge detection; #3, LoG blob detection plus 2D
Gaussian fitting; #4, ML-based pixel classifier in ilastik. Based
on the results, for the most accurate condensate boundary
detection, we recommend to use Method #1 for condensates
larger than ∼400 nm in radius and Method #4 for condensates
smaller than ∼400 nm or when the condensate size has a broad
distribution.
In some use cases, the assessment of the condensate center

may be more important than the boundary. For example, some
condensates may have a core−shell structure so that single

molecule-condensate center distances may be more useful for
the study of single molecule-condensate core interactions than
the condensate boundary. Similarly, given that boundary
detection is increasingly error prone for smaller condensates,
it may be more accurate to use the single molecule-condensate
center distance instead of the single molecule-condensate
boundary distance for small condensates. In such cases, we
suggest to Method #3 because it outperforms other methods in
condensate center assessment across all sizes and PCs of
condensates.
Both single molecule-condensate center distance and single

molecule-condensate boundary distance can be normalized by
the condensate size, since the condensate size distribution itself
is a critical metric for biological phase separation. In this case,
it would be best to use Method #1 for the size assessment of
large condensates with a radius larger than ∼400 nm, whereas
for smaller condensates, Methods #2 and #4 perform better
than the other two, although different biases can occur
depending on the choice of assessment method.
Finally, we note that any estimation of PC based on

fluorescence microscopy images will underestimate the PC due
to the physical nature of PSF blurring. In addition, the
annotator bias inherent to ML models should be addressed
properly when adopting Method #4.
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(25) Ulman, V.; Masǩa, M.; Magnusson, K. E. G.; Ronneberger, O.;
Haubold, C.; Harder, N.; Matula, P.; Matula, P.; Svoboda, D.;
Radojevic, M.; et al. An objective comparison of cell-tracking
algorithms. Nat. Methods 2017, 14, 1141−1152.
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