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Abstract

This paper explores the development of students’ knowledge of mathematical procedures.
Students’ tendency to develop rote knowledge of procedures has been widely commented on.
An alternative, more flexible endpoint for the development of procedural knowledge is
explored here, where students choose to deviate from established solving patterns on particu-
lar problems for greater efficiency. Students with no prior knowledge of formal linear equation
solving techniques were taught the basic transformations of this domain. After instruction,
students engaged in problem-solving sessions in two conditions. Treatment students complet-
ed the “alternative ordering task,” where they were asked to re-solve a previously completed
problem but using a different ordering of transformations. Those completing alternative order-
ing tasks demonstrated greater flexibility.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For much of this century, mathematics educators have sought to address students’
tendency to view school mathematics as a series of procedures to be memorized.
Researchers in mathematics education concur that (a) procedures learned by rote

* Corresponding author. Fax: +1 517 353 6393.
E-mail address: jonstar@msu.edu (J.R. Star).

0361-476X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.cedpsych.2005.08.001


mailto:jonstar@msu.edu

J.R. Star, C. Seifert | Contemporary Educational Psychology 31 (2006) 280-300 281

are easily forgotten, error-prone, and resistant to transfer; and (b) the learning of
procedures must be connected with conceptual knowledge to foster the development
of understanding (e.g., Hiebert & Carpenter, 1992). The National Council of Teach-
ers of Mathematics has articulated this emphasis on conceptual learning by calling
for decreased attention to “memorizing rules and algorithms; practicing tedious pa-
per-and-pencil computations; memorizing procedures...without understanding”
(National Council of Teachers of Mathematics, 1989, p. 71), and “rote memoriza-
tion of facts and procedures” (National Council of Teachers of Mathematics,
1989, p. 129).

There is little doubt that the rote execution of memorized procedures does not
constitute mathematical understanding. However, there are other ways in which a
procedure can be executed other than by rote. Of particular interest in the present
paper is the development of flexibility in the use of mathematical procedures.

2. Defining flexibility

Colloquially, flexibility refers to the ability to change according to particular cir-
cumstances. A more formal definition of flexibility will be presented below; however,
it is useful to begin with a series of examples to illustrate what is meant by this con-
struct. Table 1 shows a set of example problems, with solutions emblematic of more
and less flexible solvers provided.

The following features can be seen in the solutions provided in Table 1. First,
although both solvers solve all three equations correctly, the solutions in Table 1
indicate that the more flexible solver completes all three example problems using
three different solution procedures, while the less flexible solver uses the same algo-
rithm on all problems. The algorithm that the less flexible solver uses on all three

Table 1
Example problems and solutions emblematic of more and less flexible solvers
Solutions emblematic of a Solutions emblematic of a
more flexible solver less flexible solver
4x+1)=8 4x+1)=8 4x+1)=8
x+1=2 4x+4=8
x=1 4x =4
x=1
4x+1D)+2(x+1)=12 4x+1D)+2(x+1)=12 4x+D)+2(x+1)=12
6(x+1)=12 4x+4+2x+2=12
x+1=2 6x+6=12
x=1 6x =16
x=1
4x+1)+3x+7=8+3x+7 4x+1)+3x+7=8+3x+7 4x+1)+3x+7=8+3x+7
4x+1)=8 4x+4+3x+7=3x+15
x+1=2 Ix+11=3x+15
x=1 4x =4

x=1
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problems will be referred to as the standard algorithm' for this domain. This stan-
dard algorithm has the following steps:

1. Use the distributive property to “expand” the parentheses (EXPAND?).

2. Transform the equation to a standard form (ax + b = cx + d) by combining all
the variable terms and constant terms on each side (COMBINE).

3. Get the variable terms to the left side and the constants to the right side (SUB-
TRACT FROM BOTH).

4. Divide by the coefficient of the variable term on the left side (DIVIDE).

It is certainly the case that successful solvers in a domain have knowledge of stan-
dard algorithms; at issue here is why some solvers choose to deviate from the stan-
dard algorithm under certain conditions, which will be considered as one indicator of
flexibility.

Second, note that the solutions of the more flexible solver are more efficient on all
three example problems, where a more efficient solution is one that requires the
application of fewer transformations to reach the solution. This increased efficiency
results from a more clever or innovative application of equation solving transforma-
tions in particular ways on certain problems. On the first problem, the more flexible
solver chooses to divide both sides by 4 as a first step, before distributing, despite the
fact that the standard algorithm calls for this transformation to be applied always as
a final step, after distributing. On the second problem, the more flexible solver tem-
porarily changes the variable, from x to (x+ 1), to combine the (x + 1) terms,
although the standard algorithm calls for distributing at this point in the solution.
And on the third problem, the more flexible solver recognizes the presence of com-
mon (3x + 7) terms on both sides of the equation and in essence ‘“‘cancels” this
expression from both sides as a first step, which is again a deviation from the stan-
dard algorithm that results in a more efficient solution.

As these examples are intended to illustrate, we define a flexible solver as one who
(a) has knowledge of multiple solution procedures, and (b) has the capacity to invent
or innovate to create new procedures. With respect to (a), it is perhaps obvious that a
flexible solver should have broad knowledge of procedures in a domain. An inflexible
solver must rely on a small set of procedures, because this is all that she knows how
to do. A flexible solver has more expertise in the domain and thus has a greater range
of problem-solving strategies from which to choose (Gick, 1986; Krutetskii, 1976;
Sweller, 1988; Sweller, Mawer, & Ward, 1983). Metaphorically, by having knowl-
edge of multiple solution procedures, flexible solvers have more “tools’ in their

! This solution procedure is “standard” in that it is commonly (and often explicitly) taught in US schools
as the best way to solve most linear equations.

2 For the remainder of this paper, each type of equation solving transformation will be referred to with a
word or phrase written in all capital letters. The possible transformations are: use the distributive property
(EXPAND), combine like variable terms (COMBINE), combine like constant terms (COMPUTE), move
variable or constant terms to other side (SUBTRACT FROM BOTH), and multiply or divide to both
sides (DIVIDE).
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procedural “toolbox.” For assessment purposes, this aspect of flexibility can be seen
by looking at a collection of problems and determining whether a student uses sev-
eral, or only a few, solution procedures on these problems. Note that the collection
of problems on which knowledge of multiple solution procedures can be assessed
must exhibit some of the variation that exists in the domain to enable flexible solvers
to demonstrate their greater knowledge of solving strategies.

While knowledge of multiple solution procedures is clearly necessary, it does not
appear to be sufficient for flexibility. Not only does a flexible solver have knowledge
of multiple solution procedures, but she also has the capacity to invent new
procedures for solving unfamiliar problems or when seeking an optimal solution
for familiar problems. The capacity for invention of procedures has been widely
studied, particularly in arithmetic (Blote, Klein, & Beishuizen, 2000; Blote, Van
der Burg, & Klein, 2001; Carroll, 2000; Hiebert & Wearne, 1996; Resnick, 1980;
Resnick & Ford, 1981; Siegler, 1996; Siegler & Jenkins, 1989). Students frequently
invent their own procedures for solving arithmetic problems (Resnick, 1980; Resnick
& Ford, 1981), and those who invent have been found to be more flexible solvers and
to have greater conceptual understanding (Blote et al., 2001; Carpenter, Franke,
Jacobs, Fennema, & Empson, 1998; Carroll, 2000). At its core, invention in the
use of algebra procedures involves the use of transformations in unusual, atypical,
and innovative combinations. Metaphorically, being capable of invention means that
a flexible solver has the ability to use the “tools” in her toolbox in non-standard
ways that do a better job of performing certain kinds of tasks.

With respect to assessing the capacity for invention, two important clarifications
are relevant. First, the capacity for invention has been defined here at the transfor-
mation level, rather than at the whole procedure level. Referring back to Table 1, the
more flexible student’s atypical use of the COMBINE transformation in a particular
problem (combining (x + 1) terms before distributing) is considered an invention,
rather than the multi-step procedure which includes this atypical step. The decision
to define invention at the transformation level is made for two reasons. First, prior
work on flexibility in the use of algebra procedures (e.g., Lewis, 1981) suggests that
whole procedure invention is quite rare. Using a more fine-grained measure of flex-
ibility (at the transformation level) allows for a more careful investigation of the
development of this capacity. And second, whole procedure invention typically in-
volves the use of several transformations in atypical ways. Consider the more flexible
student’s work on the second problem in Table 1. Her solution is more efficient be-
cause she invents a new way to use the COMBINE transformation and because she
divides both sides by 6 as a next step (which is itself an invention; had she followed
the standard solution procedure from the step 6(x + 1) = 12 by expanding first, her
solution would not have been more efficient). By defining invention at the transfor-
mation level, it becomes more possible to capture the smaller steps that appear to
lead to the generation of complete, maximally efficient procedures.

Second, invention, as defined here, is not intended to capture the idiosyncratic,
inefficient, and sometimes strange solution methods that many students discover
and use. It has been frequently shown that students can come up with surprising
and unusual (but not particularly efficient or clever) solutions to a broad range of
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problems (Resnick & Ford, 1981). Rather, the capacity for invention is reserved for
those students who come up with ways of using transformations atypically that have
the potential to do a better job of solving certain kinds of problems.

3. The development of flexibility

How does flexibility in the use of algebra procedures develop? One hypothesis
comes from studies where participants were asked to solve a problem repeatedly
to observe changes in their solutions that emerged with practice. There is ample evi-
dence that solving a problem multiple times can lead to more rote execution (Anzai
& Simon, 1979; Bléte et al., 2000; Simon & Reed, 1976) and/or set effects (e.g.,
Luchins, 1942). However, there is also reason to hypothesize that, under certain
conditions, re-solving previously completed problems can lead to more flexible
solving behavior (Blote et al., 2000; Blote et al., 2001; Klein, 1998).

In the present study, this hypothesis is tested by utilizing a task referred to as the
“alternative ordering task™ (Star, 2001/2002). Participants are asked to re-solve
previously completed problems but using a different ordering of transformations.
In this task, students are not merely practicing the same solution over and over
again, but instead are generating, comparing, and evaluating the effectiveness and
efficiency of different solution procedures.’

There are at least two reasons to speculate that tasks such as the alternative order-
ing task may lead to greater flexibility. First, asking students to re-solve previously
completed problems has the effect of reducing the specificity of the problem-solving
goal: Rather than a specific goal of finding the particular solution to a problem, stu-
dents instead complete the more general task of completing the problem using one of
many different solution strategies. Sweller and colleagues (Mawer & Sweller, 1982;
Sweller, 1983; Sweller et al., 1983) have demonstrated that, by reducing the specific-
ity of the goal, novices can be guided toward more expert strategies.

Second, the alternative ordering task shares two key features with self-explanation
(defined as the process by which learners generate their own explanations to justify
the steps in a worked example), which have been found to facilitate learning and
transfer under certain conditions (Chi, 2000; Chi & Bassok, 1989; Chi, Bassok, Lew-
1s, Reimann, & Glaser, 1989; Chi, DeLeeuw, Chiu, & LaVancher, 1994; Chi & Van-
Lehn, 1991; Pirolli & Recker, 1994; Renkl, 1997; Renkl, Stark, Gruber, & Mandl,
1998). First, a self-explanation was found to be especially beneficial to learning when
it mentioned* a purpose or goal for a particular action (Chi et al., 1989; Renkl, 1997;
Renkl et al., 1998). Second, self-explanations that display anticipative reasoning are

3 The alternative ordering task is similar to what Klein has called the “flexibility-on-demand” task or
FDT (Klein, 1998). The FDT was used by Klein as a way to assess students’ flexibility (Blote et al., 2001;
Klein, 1998); arithmetic learners were asked to solve a problem two times in a row using two different
procedures. If a student produced two different solution procedures, this was taken as an indication of her
flexibility.

4 Note that the act of self-explaining may or may not be spoken out loud (Chi, 2000).
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more strongly linked to learning (Reimann, Schult, & Wichmann, 1993; Renkl,
1997). Anticipative reasoning refers to the generating of solutions or answers to
problems or questions before such solutions are presented in the problem or text.
Self-explanations that include anticipatory reasoning show that a learner is thinking
and working ahead, providing the opportunity to compare the anticipated steps with
the ones presented subsequently in the problem or text.

These two features of self-explanations are also present in the alternative ordering
task. As students re-solve previously competed problems, they may come to know
the various goals that are applicable for a particular transformation on certain prob-
lems and may subsequently identify and repair gaps in their existing knowledge of
the domain, perhaps leading to greater flexibility. Furthermore, as students become
familiar with the alternative ordering task, they are aware that they will be asked to
re-solve the same equation again, using a different ordering of steps. As a result, it is
possible that students’ initial equation-solving strategies will be selected and imple-
mented with an eye toward how the same equation would be approached the second
time (e.g., anticipatory reasoning).

The goals of this study were to explore the development of flexibility in the use of
algebra procedures and to explore the instructional conditions that facilitate the
emergence of this outcome.

4. Method
4.1. Participants

The 36 sixth grade participants (20 female, 16 male) in this study were recruited
on a first-come, first-served basis using flyers that were distributed late in the school
year to all sixth grade students in the public school district of a medium-sized city in
the Midwestern United States. Participants were paid $50, in the form of a gift
certificate to a local bookstore, to participate in this research.

The participants attended schools with an integrated middle school mathematics
curriculum; symbolic algebra is not introduced in this curriculum until after the sixth
grade, and it is not covered at all in the K-5 curriculum. Thus, it is unlikely that, at
the time of the study, any of the participants had received any formal instruction in
the use of symbolic methods of equation solving. However, a pre-test was adminis-
tered to assess students’ prior knowledge on the first day of the study (see Table 2).
The problems on the pre-test were selected to determine whether students had any
knowledge of formal equation solving procedures.

4.2. Procedure

Participants attended 1-h experimental sessions for five consecutive days (Monday
to Friday), at the same time each day. Students met in groups of six. The first exper-
imental session on Monday was devoted to administering a pre-test, providing
instruction (described below), and administering a post-instruction test. The final
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Table 2

Equations attempted on the pre-test and post-test

# Problem

1 x+7=10

2 2x =18

3 4x+6=22

4 2(x+5)=22

5 4x +3x =21

6 6(x+4)=3x+4)+6

7 2x+4x=12+6

8 15x +10=>5x+20

9 2x+4+8=20

10 4(x+3)=16x

11 S(x+3)+ 10x =35+ 5x

12 3x+1)=6(x+1)

13 03x+02=1.1

14 S(x+ 1)+ 10(x+ 1)+ 5(x + 1) = 5x + 10x
15 3x+1)+6(x+1)+6x+9=6x+9
16 4x+2)+6x+10=2(x+2)+8(x+2)+6x+4x+38
17 4x+3x+5x+4=3x+5x+16

18 3(x +2)+9(x +2)=6(x+2)

19 2(x+3)+4x+8=4(x+2)+ 6x+2x

session on Friday was used to administer the post-test (which was the same as the
pre-test). During the three remaining sessions (Tuesday to Thursday), students
solved algebra equations for the entire hour (described in depth below). All sessions
took place in a seminar room on the campus of a local university.

In the first session, students were given a scripted, 30-min lesson on the transfor-
mations of equation solving. In this lesson, students were introduced to five basic
transformations used in solving linear equations: combining constants (COM-
PUTE), combining like variable terms (COMBINE), using the distribute property
(EXPAND), adding/subtracting a constant or variable term from both sides (SUB-
TRACT FROM BOTH), and multiplying/dividing to both sides (DIVIDE). In this
initial lesson, students were never given any strategic instruction as to how the trans-
formations could be used together to solve equations. The focus on instruction was
strictly on pattern recognition: identifying which transformation could be used for
particular patterns of symbols, and how that transformation was correctly applied.
The intent in this brief period of instruction was to provide novice algebra learners
with sufficient or prerequisite (Zhu & Simon, 1987) knowledge to enable them to be-
gin to solve very straightforward equations; no worked-out examples were presented
during instruction. Immediately following the lesson, students were given a post-in-
struction test, which was intended to evaluate whether they had learned the material
provided during instruction. The post-instruction test assessed whether students
could individually apply each of the five equation-solving transformations.

At the conclusion of the first instructional session, the groups of six in each study
were randomly assigned to either a control group or a treatment group for the
remainder of the week. Eight males and 10 females were randomly assigned to the
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control group, and the remaining 8 males and 10 females were assigned to the treat-
ment group. The treatment and control groups differed only in that the treatment
group completed alternative ordering tasks, while the control group did not. On
alternative ordering tasks, students were given problems that they had previously
solved and asked to re-solve them, but using a different ordering of transformations.
On problems where the treatment group was asked to provide an alternative solu-
tion, the control group completed a different but isomorphic problem. For example,
both treatment and control groups were asked to solve the problem,
4x 4+ 10 = 2x + 16. Students in the treatment group were given this same problem
again and were asked to solve it using a different ordering of transformations. The
students in the control group were given a structurally equivalent problem,
6x + 9 =3x + 12, instead. Treatment group students regularly engaged in the alter-
native ordering task; of the 45 problems that students could have attempted, treat-
ment students were asked to resolve a previously solved problem 18 times. In
other words, problems relating to the use of the alternative ordering task (including
both the first and second attempt at each problem) accounted for 36 of the 45 prob-
lems. (See Appendix A for a list of all problems solved by students during the prob-
lem-solving sessions.) Prior to completing the alternative ordering task for the first
time on Tuesday, treatment students were introduced to this task with an example.
The example involved telling a robot how to make a peanut butter and jelly sand-
wich, and then telling the robot how to make the same sandwich but using a different
ordering of steps.

During the three problem-solving sessions (Tuesday, Wednesday, and Thursday)
students worked individually on all problems. Students sat alone at tables and were
positioned far enough from each other so that it was impossible for any participant
to see the work of another. If a student became stuck while attempting a problem,
she/he raised his/her hand and was approached by a helper—either the experimenter
or a research assistant. The helper answered the student’s questions in a semi-stan-
dardized format. Specifically, the helper corrected the student’s arithmetic mistakes
(e.g., if the student multiplied 2 by 3 and got 5, the helper pointed out this error) or
reminded him/her of the six possible transformations and how each was used. Help-
ers never gave strategic advice to students, such as suggesting which transformation
to apply next or whether one method of solution was any better than another meth-
od. Students independently came up with their own choices for which transforma-
tions to apply. Also, students were encouraged to show all of their work by
writing out their steps on all problems.

4.3. Materials

There were a maximum of 45 problems that students solved during the three prob-
lem-solving sessions. Students who did not finish a particular day’s problems
returned the following session and began where they had left off. As students worked
at different paces, not all students had time to complete all 45 problems.

The session problems were carefully designed according to the following princi-
ples. Whenever possible, problems had integral coefficients and constants, to
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minimize any cognitive load issues and also to avoid biasing students, because of
load issues, toward choosing one strategy over another. In addition and for similar
reasons, all problems had integral solutions. The problems gradually increase in
complexity, although more straightforward problems are presented in all three ses-
sions to evaluate changes in students’ approaches to them.

In addition, the problems used in this study were designed to give students max-
imal opportunities to demonstrate certain kinds of invention in their solution strat-
egies. In particular, problems were created to give students the chance to invent new,
potentially better solution procedures in three ways: CHANGE IN VARIABLE®,
CANCEL TERMS, and DIVIDE BEFORE EXPANDING. The CHANGE IN
VARIABLE invention is the “change in variable” strategy that has been previously
discussed. It results from an atypical use of the COMBINE transformation (e.g.,
adding 4(x + 1) + 2(x + 1) to get 6(x + 1)) or the SUBTRACT FROM BOTH trans-
formation (e.g., subtracting 2(x + 2) from both sides of an equation). The CANCEL
TERMS invention, also discussed above, allows solvers to “cancel” terms as an ini-
tial solving step, and it results from an atypical use of the SUBTRACT FROM
BOTH transformation. The DIVIDE BEFORE EXPANDING invention gives stu-
dents the opportunity to divide an entire equation by a constant before expanding.
Each of these atypical uses of transformations has the potential to result in a more
efficient solution on some problems.®

Students took a post-test during the final session, which was identical to the pre-
test. Students were given 30 min to complete the post-test, and all students finished in
the allotted time.

5. Analysis

All study instruments were graded by two independent coders, who subsequently
met to resolve all disagreements. For each instrument, two scores were calculated:
one for the percentage of problems completed correctly (e.g., those on which the stu-
dents arrived at the correct numerical answer) and one for the percentage of prob-
lems completed without any errors in how transformations were applied, though
arithmetic errors were allowed.

5.1. Measures

Students’ solutions to post-test problems were coding for the presence of flexibil-
ity. Recall that flexibility was defined in terms of two subcomponents: knowledge of
multiple solution procedures, and ability to invent. Variables were created for each
of these capacities.

> Throughout this paper, inventions are indicated by bold and all capital text.

¢ A fourth invention involved multiplying the entire equation by 10 to “clear”” decimals. Only one post-
test problem gave students the opportunity to exhibit this invention, and no student came up with this
strategy. As a result, this invention was not considered in further analysis.
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Knowledge of multiple solution procedures was operationalized as follows. A
subset of post-test problems (the last six problems) were identified as meeting the fol-
lowing criteria: Each problem could be solved in a number of ways, and some of
these solution methods were at least as efficient, if not more efficient, than the stan-
dard algorithm. In other words, the final six post-test problems allowed students the
opportunity to use multiple solution procedures, if students judged that deviating
from the standard algorithm was a good idea. Looking only at these six post-test
problems, the number that each student attempted that were solved with unique
sequences of transformations were calculated. For example, if a student used the
standard algorithm on all six problems, he would earn a “1” on this variable, indi-
cating the presence of only one unique solution strategy on all six problems. If a stu-
dent used a different solution method on each of the six problems, she would earn a
“6” on this variable.

With respect to invention, a subset of 11 of the 19 post-test problems was identi-
fied as problems for which invention was possible. On some problems, students had
the opportunity to use only one invention; for example, on problem 10,
4(x + 3) = 16x, students were evaluated only as to whether they used the DIVIDE
BEFORE EXPANDING invention. On other problems, students had the chance
to use multiple inventions; for example, on problem 15, 3(x+ 1)+ 6(x+ 1)+
6x +9=6x+9, students could have used all three possible inventions (DIVIDE
BEFORE EXPANDING, CANCEL TERMS, and CHANGE IN VARIABLE).
Three variables were created to capture whether or not students invented—one for
each of the three types of inventions. Each variable indicated the number of inven-
tion opportunities each student took advantage of, for each invention type. For
example, students had the opportunity to use the CHANGE IN VARIABLE inven-
tion six times; a student who used this invention on only three of these problems
would earn a score of 3 for this variable. In addition, an overall variable for inven-
tion was also created, indicating the total number of invention opportunities a stu-
dent took advantage of on all 11 problems.

In addition to coding for flexibility, students’ solutions were also coded for
whether or not they discovered and used the standard solution method. For many
problems, the standard method is the most efficient solution procedure; it was of
interest to determine whether students discovered this method on their own. Knowl-
edge of the standard solution method was assessed by looking for two features in stu-
dents’ solutions on the post-test. First, a solution was evaluated as to whether terms
on each side of the equation were combined first, rather than being moved individ-
ually from one side to the other side. This feature is referred to here as “combine
first,” and it indicates (in the most typical case) whether students were able to effi-
ciently transform an equation from its initial state to the form ax + b = cx + b. Stu-
dents were able to demonstrate knowledge of this feature on nine post-test problems.
The second feature, referred to as “move opposite”, indicates whether students were
able to efficiently transform an equation from the form ax + b = cx + d to the solu-
tion state; students were able to demonstrate knowledge of this feature on six prob-
lems. Three variables were created for these features, indicating the number of
eligible problems on which a student combined first, moved opposite, or both.
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6. Results

Four students (three females and one male) were omitted from the analysis. One
student withdrew from the study in the middle of the week and one student showed
knowledge of formal equation solving techniques on the pre-test. In addition, two
students who did not show knowledge of formal equation solving techniques on
the pre-test nevertheless did show such knowledge in the first problem-solving ses-
sion and were dropped.” Thus, of the 36 initially enrolled in this study, the work
of 32 students—15 in the control group (7 male and 8 female) and 17 in the treatment
group (8 male and 9 female)—was used in further analysis.

Unless otherwise indicated, treatment effects are explored with oneway ANOVAs,
with pre-test score entered as a covariate. Eta squared (5?) is used to report effect sizes,
which can be interpreted as the amount of variance accounted for by the target variable.

The results are shown in Table 3 and discussed below.

6.1. Pre-test

Students did poorly on the pre-test (M = 24%), indicating lack of prior knowledge
of formal equation solving techniques. The few problems that students were able
to complete correctly were the very straightforward ones from the beginning of
the pre-test. On these initial problems, correct solutions were arrived at using various
informal methods, including unwinding and guess-and-check. There were no
significant treatment effects on the pre-test, indicating that random assignment of
students to condition was done without bias.

6.2. Post-instruction test

Recall that students were given a short test immediately following instruction to
assess learning of the six equation solving transformations. Students did very well on
the post-instruction test (M = 88%), indicating that the short period of instruction
led to mastery of the equation solving transformations. There were also no signifi-
cant treatment effects on the post-instruction test, indicating that instruction was
given to both conditions without bias.

6.3. Problem-solving sessions

Students attempted an average of 36 problems during the three problem-solving
sessions.® However, there were significant differences in how many problems each

7 These two students revealed that they had received substantial tutoring from their parents in how to
solve equations between the pre-test administration and the first problem-solving session.

8 For the purposes of the analysis of students’ work during the problem-solving sessions, treatment
students’ second attempts on session problems are considered as if they are responses to different
problems. However, recall that treatment students’ second attempts are not considered in either measure of
flexibility.
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Table 3
Results
Variable All, Treatment, Control, p-Value
n=232 n=17 n=15
First session assessments
Pre-test (% correct) 24 26 22
Post-instruction test (% correct) 88 85 90
Session problems
Problems attempted 36 31 42 -
% of problems with correct answers 83 85 81
% of problems with no transformation errors 78 74 84 *
Post-test problems
Problems attempted 19 19 19
% of problems with correct answers 77 76 79
% of problems with no transformation errors 91 90 92
Flexibility: Knowledge of multiple procedures
# of problems with unique strategies (out of 6) 2.8 32 24 *
Flexibility: Capacity for invention
All Inventions (out of 19) 1.7 2.5 0.7 *
CHANGE IN VARIABLE (out of 6) 0.2 0.4 0.0
CANCEL TERMS (out of 3) 0.2 0.1 0.3
DIVIDE BEFORE EXPANDING (out of 10) 1.3 2.1 0.5 *
Knowledge of standard solution procedure
Combine first (out of 9) 5.4 5.5 5.3
Move opposite (out of 6) 1.7 1.2 23
Both combine first and move opposite (out of 5) 2.1 2.0 2.2
" p<.05.
7 p<.001.

group attempted. Over the three sessions, the control group solved approximately 11
more problems than did the treatment group: for the control group, M = 42, and for
the treatment group, M = 31, F(1,31) =20.262, p <.001, #*> = .34. Since the condi-
tions were otherwise identical, the most likely explanation for why the control group
worked so much faster is that it took treatment students more time to complete a
previously-solved problem using a different ordering of transformations, as the alter-
native ordering task requested, then it took the control group to solve an isomorphic
problem.

Students in this study were quite successful on equations that were solved in the
three problem-solving sessions. On average, students solved 78% of attempted prob-
lems without transformation errors and arrived at the correct solution on 83% of
attempted problems.” The fact that such a high percentage of attempted problems
were solved correctly is noteworthy, especially considering that students had no prior

° On occasion, students were able to arrive at the correct solution despite making transformation errors,
particularly by guessing on some of the equations in the first problem-solving session. This accounts for
why the percentage of session problems with correct answers is higher than the percentage with no
transformation errors.
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knowledge of formal solving procedures, did not receive any instruction in how to
chain together transformations to solve equations, and did not see any worked-
out examples.

While there were no significant treatment differences in the percentage of attempt-
ed problems solved correctly in the problem-solving sessions, there was a significant
treatment difference in terms of the frequency of transformation errors in the prob-
lem-solving sessions. The control group made fewer mistakes than the treatment
group: the treatment group solved only 74% of problems without transformation er-
ror, while the control group solved 84% without error, F(1,31) =4.278, p <.05,
n* = .13. Transformation use errors most likely emerged while treatment students
attempted to use transformations in a different way to complete previously solved
equations, as the alternative ordering tasks required.

6.4. Post-test

Students attempted an average of 18.7 of the 19 problems on the post-test. The rate
in which students correctly used transformations on the post-test (M = 91%) was
somewhat higher than during the problem solving sessions; however, students were
somewhat less likely to arrive at a correct answer on the post-test (M = 77%). There
were no significant treatment differences in the number of post-test problems attempt-
ed, the percentage of attempted problems solved without transformation error, or the
percentage of problems solved with a correct numerical answer (see Table 3).

Note that this result indicates that even though the alternative ordering condition
resulted in treatment students solving fewer problems (and with slightly more errors)
on the booklet problems, on the post-test treatment students’ performance (number
of problems solved correctly and frequency of error) was identically to the control
students.

6.5. Flexibility measures

6.5.1. Invention

Students used one of the three equation-solving inventions (CHANGE IN VAR-
IABLE, CANCEL TERMS, or DIVIDE BEFORE EXPANDING) on an average of
9% of invention opportunities (approximately 1.7 of the 19 invention chances).
While this may seem like a low rate for invention, it exceeds expectations as com-
pared to the results of prior research using populations of much more experienced
solvers. In particular, Lewis (1981) found that undergraduates were likely to invent
in their solutions in only 9-12% of invention opportunities, with professional math-
ematicians inventing only slightly more frequently (approximately 20% of invention
opportunities). It is reasonable to expect that sixth graders, as novices, would have
lower rate of invention than undergraduates and a much lower rate than mathema-
ticians. Considering the brief period of instruction (30 min) and practice (three 1-h
sessions), the lack of prior knowledge, and the age of the study participants, the fact
that solvers chose to invent new strategies on even 9% of invention opportunities is a
surprising finding.
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There were also significant treatment effects in how frequently students used
inventions. Students in the treatment group were more likely to invent in their solu-
tions on post-test problems, F(1,31) = 5.152, p < .05, n* = .14. Treatment students
took advantage of 2.5 of the 19 invention opportunities, while control group stu-
dents only took advantage of 0.7 invention opportunities. In terms of the three indi-
vidual inventions, the treatment and control groups differed only in the DIVIDE
BEFORE EXPANDING invention. Treatment students took advantage of 2.1 of
the 10 invention opportunities (as compared to 0.5 invention opportunities in the
control group); this difference was significant, F(1,31) =4.562, p < .05, n*> = .13.

6.5.2. Knowledge of multiple solution procedures

Recall that students’ knowledge of multiple solution procedures was assessed by
examining how often students used a unique sequence of transformations to solve
the final six problems on the post-test. On average, students used the unique sequenc-
es of transformations to solve 2.8 of the six problems. Treatment students were
somewhat more likely to complete these six problems using multiple solution proce-
dures; on average, treatment students completed 3.2 of the six problems with unique
solutions, as compared to 2.4 of the six problems in the control group, but this dif-
ference was not significant, p = .146. (The difference between treatment and control
students on this measure was 0.56 standard deviation units, so the failure of this test
to reach significance may be due to insufficient power.) To examine group differences
on this measure in a different way, the continuous variable for knowledge of multiple
solution procedures was recoded into a categorical variable, indicating whether stu-
dents solved at least half of the final six post-test problems with unique sequences of
transformations. Treatment students were significantly more likely to solve at least
half of the six post-test problems with unique transformation sequences, y*(1,
N =32)=4.394, p <.05; 13 of the 17 treatment students relied mostly on unique
step sequences, as compared to only 6 of 15 control group students.

6.6. Knowledge of standard solution procedure

Also of interest was whether students in this study discovered how to use the stan-
dard solution procedure. Recall that students were not provided any instruction on
the standard solution procedure; all who discovered this algorithm did so on their
own. Interestingly, most students did discover the standard solution procedure; 29
of the 32 participants used either the “combine first” or the ‘“move opposite” strat-
egies on at least one problem on the post-test.

Students on average used the “combine first”” component of the standard solution
procedure on 5.4 of nine possible problems and the “move opposite’ strategy on 1.7
of six possible problems. On the five post-test problems where it was possible to use
both the “combine first” and ““move opposite” strategies, students did so on an aver-
age of 2.1 problems. There were no treatment differences on any of the measures
assessing knowledge of the standard solution procedure. This indicates that treat-
ment students were no less likely to make this discovery, despite the fact that the
treatment group completed significantly fewer problems than the control group.
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7. Discussion

In this study, students with little prior knowledge of equation solving learned, via
minimal instruction and a few hours of practice, to be very successful solvers. In
addition, some students discovered how to invent in their solutions, meaning that
they showed the capacity to use solving transformations in atypical ways on some
problems. The number of students who developed the capacity to invent was surpris-
ingly large, considering performance of more mathematical experienced persons in
prior research. Students’ success and discovery of inventions is even more impressive
considering the absence of worked-out examples during instruction.

More interestingly, differences emerged as a result of students’ completion of
alternative ordering tasks. The treatment and control groups did not differ in
the accuracy of their solutions, both at the beginning of the study and at the con-
clusion of the study. However, those who were asked to solve previously completed
equations using a different ordering of transformations were more likely to demon-
strate the capacity to invent and to demonstrate knowledge of multiple solution
procedures than those in the control group. These results suggest that the alterna-
tive ordering tasks were powerful in pushing treatment students to be more flexible
solvers. Being asked to complete a problem again, using a different ordering of
transformations, led (for many students) to the discovery of different, atypical ways
in which transformations could be used, some of which turned out to be inven-
tions. Treatment students’ gains in flexibility came despite having completed signif-
icantly fewer problems than the control group during practice sessions. In addition,
the gains in flexibility came without any cost to solution efficiency for the treat-
ment group; despite having completed significantly fewer problems during the
practice sessions, the treatment group was no less likely to discover the standard
solution method.

This finding, that students can learn from a task such as the alternative ordering
task, has not previously been reported in the literature on algebra learning. At the
elementary school level, reform documents have long advocated the use of multiple
and invented algorithms for solving arithmetic problems (National Council of
Teachers of Mathematics, 1989, 2000). It has been suspected that allowing children
to work with invented arithmetic algorithms, rather than being drilled in the use of
standard algorithms, is beneficial toward their understanding of number (e.g., Car-
penter et al., 1998; Carroll, 2000; e.g., Fuson et al., 1997). However, adapting these
methods for post-arithmetic, symbolic mathematics has not been considered. The
present study suggests that there are significant benefits to having students invent
their own symbolic methods of solving equations and subsequently attempt to mod-
ify and refine these methods. As almost all students discovered the standard solution
procedure on their own anyway, there was little cost in efficiency to allowing for dis-
covery as opposed to explicitly teaching the most efficient solution strategy.

One possible critique of the present study is that its results are trivial; according to
this viewpoint, the fact that students invented new strategies for problem solving is
not surprising, given that the treatment specifically asked students to invent new
strategies. In response to this critique, we note that the literature on mathematical
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problem solving offers ample reason to doubt that the alternative ordering task
would have any effect at all.

First, this literature predicts that when a student discovers a solution method that
enables her to solve a problem successfully, she will persist in using this solution
method (e.g., Lewis, 1981, 1988; Schoenfeld, 1985). With continued practice, she will
be even more likely to stick with her method that works, as using it will become more
automatic and thus easier and faster to execute (Anderson, 1982; Anderson, 1992).
Thus, participating in the alternative ordering treatment might be predicted to have
no effect on students’ strategy development; a treatment student may go through the
motions and attempt to come up with another, different strategy, but she would only
view this task as an exercise, not as a means toward learning a new approach. For
such a student, there is no need to learn a new strategy; she already knows one that
works and can be executed quickly and easily. In surprising contrast to this predic-
tion, treatment students in the present study did learn from their second attempt;
they modified their already-successful strategies based on what they observed from
solving the same problem a second time.

Second, there is evidence from the problem solving literature that students, par-
ticularly novices, do not hold expert conceptions of what it means for a strategy
to be better than another—that generating a more innovative solution method
and recognizing it as better are quite distinct. Several studies have found that stu-
dents hold idiosyncratic perceptions of what it means for one strategy to better than
another, including subjective criteria such as personal like/dislike or the neatness and
organization of the written strategy (Franke & Carey, 1997; McClain & Cobb, 2001;
Star & Madnani, 2004). If a student’s second attempt contained (what an expert
would view as) innovative methods, it is not at all clear that she would recognize this
and make use of these method in future attempts. (Furthermore, the task of deter-
mining which strategy was better was also complicated by the fact that students
did not receive any feedback on their solution attempts in terms of right/wrong an-
swers. So in addition to not being able to tell which solution method was better, stu-
dents also may not have known whether one solution method was more likely to lead
to the correct answer.)

In sum, the treatment students in this study were asked to solve an equation, and
they typically generated a way that worked in their first attempt. Upon being asked
to generate another strategy for the same problem, they generated a method that
they perceived as different and that may have been better (although this may not
have been apparent to the students). Nevertheless, on post-test measures, treatment
students were more likely to use multiple solution strategies and also were more
likely to invent in their solution. We find this to be quite striking, relative to what
the literature might predict.

It is also important to emphasize that, given the absence of a delayed post-test,
this study did not provide direct evidence that the treatment led to flexible problem
solving in the long-term; only short-term gains were found. (Furthermore, there were
some start-up costs associated with gains in short-term flexibility: Treatment stu-
dents attempted fewer booklet problems and tended to make more errors during
learning.) However, there is convincing evidence in the literature that short-term
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gains in flexibility have clear benefits for learning and performance in the long-term.
For example, learners with knowledge of multiple strategies at pretest are more likely
to learn from instructional interventions in both the short- and the long-term (Ali-
bali, 1999; Siegler, 1995). More generally, the presence and benefits of multiple strat-
egies has been linked to long-term gains in flexibility in a large range of domains,
including locomotion (Adolph, Eppier, & Gibson, 1993), drawing (Karmiloff-Smith,
1990), serial recall (Siegler, 1989), spelling (Rittle-Johnson & Siegler, 1999), time-tell-
ing (Siegler & McGilly, 1989), and various kinds of elementary school mathematics
problems (Alibali, 1999; Carpenter et al., 1998; Carroll, 2000; Fuson et al., 1997; Re-
snick, 1980; Resnick & Ford, 1981; Siegler, 1996; Siegler & Chen, 1998; Siegler &
Jenkins, 1989; Siegler & Shrager, 1984). The present intervention reliably led to
short-term gains in flexibility, and such gains have been linked in prior research to
long-term benefits for learning.

7.1. Implications

The results of this study contribute to the growing literature on procedural flex-
ibility in a number of ways. First, this work shifts emphasis from the description
of flexibility, which has been the predominant focus in prior work, to the identifica-
tion and evaluation of instructional techniques that may contribute to the develop-
ment of flexibility. It has been found that experts are very flexible in their use of
strategies (Dowker, 1992; Dowker, Flood, Griffiths, Harriss, & Hook, 1996); in addi-
tion, with increasing problem-solving experience, even young children become quite
adaptive in their choices among strategies (Shrager & Siegler, 1998; Siegler, 1996;
Siegler & Jenkins, 1989; Siegler & Shrager, 1984). Less is known about the kinds
of tasks that may facilitate the development of flexibility. The results of this study,
that the generation and comparison of multiple solution procedures can lead to in-
creased flexibility, are a step in this direction. The present results are also consistent
with recent work by Blote et al. (2001), who found that a curriculum that focused on
having students create and discuss their solution procedures and relate procedural
problems to real-life contexts reliably led to increased procedural flexibility. Addi-
tional work is needed to identify and evaluate tasks and curricula that can foster
the development of flexibility.

Second, this study broadens the domain in which flexibility is explored from arith-
metic, which has been the almost exclusive focus in the field, to algebra. The process-
es by which flexibility develops in arithmetic and algebra may be quite different, for
several reasons. Students’ knowledge of arithmetic strategies is highly influenced by
informal, out-of-school experiences, which is typically not the case with algebra. The
procedures of algebra are longer and more intricate, meaning that the generation and
comparison of multiple strategies imposes greater demands on cognitive resources.
In addition, because older students typically are more capable of dealing with the
abstraction inherent in algebra, it may be that the comparison and generation of
multiple solution strategies is not as necessary in older students. The present results
indicate that algebra learners can benefit from considering multiple solution proce-
dures, in much the same way the elementary students do.
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Furthermore, one concern about the use of tasks such as the alternative ordering
task in algebra is that the discovery, comparison, and generation of alternative pro-
cedures will not necessarily lead students to discover the standard or modal way of
solving problems. Standard algorithms are extremely powerful in algebra; students
who fail to learn them may be at a disadvantage in later mathematics courses. This
study found that almost all students at least partially discovered how to use the stan-
dard algorithm on their own, despite no direct instruction on this algorithm, minimal
feedback, and only several hours of problem solving.
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Appendix A. Equations attempted during problem-solving sessions

# Treatment problem Control problem
1.1 3x=3+12 Same as treatment
1.2 4x+2=10 Same as treatment
1.3 4x =2x+12 Same as treatment
1.4 10x — 5x =20 Same as treatment
1.5 4x+10=2x+ 16 Same as treatment
1.6" 4x+10=2x+16 6x+9=3x+12
2.1 6x+8=2x+16 I5x+ 10 =5x+20
22" Same as 2.1 Same as treatment
2.3 3(x+1)=15 2(x+3)=10

247 Same as 2.3 Same as treatment
2.5 Same as 2.3 5(x+2)=20

2.6 4(x+3)=8x Same as treatment
2.7 3(x+2)+9x=3x+15 2(x+5)+4x=4+8x
2.8 Same as 2.7 Same as treatment
2.9 Same as 2.7 5(x +3) + 10x = 35 + 5x
2.10 2(x +4)+ 6x =8x + 4x Same as treatment
2.11 4x+3)=2(x+3) 3(x+2)=6(x+2)
2.12° Same as 2.11 Same as treatment
2.13 Ix+2)+3(x+2)+3=6x+9 Same as treatment
3.1 2x+3)+4(x+3)+8x=8x+6 Same as treatment
32 6(x+2)+3(x+2)+6x=9+6x Same as treatment
33 2x+1)=14 Same as treatment
34" Same as 3.3 3(x+2)=21

3.5" Same as 3.3 5(x+3)=25

3.6 2x+ 1)+ 6(x+1)=4(x+1) Same as treatment

(continued on next page)
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Appendix A (continued)

# Treatment problem Control problem
3.7 2x+ D) +o6(x+1)+4x+1) Same as treatment
= 10x + 8x
3.8 Same as 3.7 3(x+2)+6(x+2)+9(x+2)
=3x+ 6x
39"  Same as 3.7 S5x+ 1)+ 10(x+ 1)+ 5(x+ 1)
=5x+ 10x
3.10 2x+6=14 Same as treatment
3.11 2x+1)+4(x+1)+6x+8 Same as treatment
=6(x+1)+8x+2
3.12°  Same as 3.11 3(x+2)+6(x+2)+3+9x
=9(x+2)+6+6x
3.13 2Azx+35)=4(x+5) Same as treatment
4.1 2(x+3) +4x Same as treatment
=4x+ 6x+2
42" Same as 4.1 3(x+2)+6x+9x =18+ 6x
4.3 3(x+1)+6(x+1)+6x+9 Same as treatment
=6x+9
4.4 0.1x+ 0.8 =0.2x + 0.3x Same as treatment
45" Same as 4.4 0.2x+0.4x=0.9+0.3x
4.6°  Same as 4.4 0.5x + 0.3x =0.6x + 0.8
4.7 4x+2)+6x+10 6(x+1)+9x+1)+9+ 6x
=2(x+2)+8(x+2) =12(x+1)+9x+6x+6
+6x+4x+8
48" Same as 4.7 Same as treatment
49" Same as 4.7 S(x+ 1)+ 15(x+ 1)+ 30+ 15x
=10(x + 1)+ 15x + 20 + 20x
4.10 2ax+3)+4x+8=4(x+2)+6x+2x Same as treatment
4.11 0.5x+0.2=0.3(x+2) Same as treatment
412" Same as 4.11 0.3(x+5)+0.1x=0.3
4.13 03(x+1)+0.I(x+1) Same as treatment

=02(x+ 1)+ 0.4x+ 0.4

* Indicates problems on which treatment students engaged in the alternative ordering task.
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