Evidence for Egocentric Comparison in Social Judgment

David Dunning and Andrew F. Hayes
Cornell University

People often disagree in their judgments of the traits and the abilities of others. Three studies suggested that these differences arise because people activate and use their own particular behaviors as norms when evaluating the performances of others. In Study 1, 71% of participants reported comparing a target's behavior with their own behavior when providing judgments of that target. Participants also provided descriptions of their own behavior more quickly after judging another person's behavior, suggesting they had activated information about their own behavior when judging that of another (Studies 2 and 3). In all 3 studies, judgments of another's behavior tended to be egocentrically related to the participants' own behavior, particularly among those who displayed the strongest evidence of activation of self-information (Studies 1 and 2). Discussion centers on the generality of these findings and their implications for past and future research.

The self appears to play a pervasive role in people's judgments of others. People often assume that others will respond to situations as they would themselves (Mark & Miller, 1987; Ross, Greene, & House, 1977). They tend to use the same traits and categories to describe others as they do themselves (Lemon & Warren, 1976; Shrauger & Patterson, 1976). They make more extreme and confident evaluations of others on the traits they consider to be self-descriptive (Fong & Markus, 1982; Lambert & Wedell, 1991). They also imbue self-descriptive traits with more meaning, in that information about these characteristics is given more weight in judgments of others (Carpenter, 1988; Lewicki, 1983; Markus, Smith, & Moreland, 1985). Furthermore, people often define social traits and categories in self-serving ways, emphasizing those behaviors and characteristics that place themselves and their self-concepts in a favorable light (Dunning, 1993; Dunning, Leuenberger, & Sherman, 1995; Dunning & McElwee, 1995; Dunning, Meyerowitz, & Holzberg, 1989; Dunning, Perie, & Story, 1991). Together, these results provide ample support for the idea that the self plays a central role in the way information about the social world is perceived, organized, construed, and evaluated.

Although research has established that the self is related to people's perceptions and evaluations of others, the specific cognitive and motivational mechanisms linking self to social judgment are not as well understood (for extant explorations, see Lambert & Wedell, 1991; Lewicki, 1983, 1984; Markus et al., 1985). For many specific phenomena involving the self and social judgment, it is unclear whether the self plays a causal role in the judgments people make of others or whether the relation of self to social judgment is spurious. That is, people's self-concepts may be related to their judgments only because their self-concepts are correlated with some other factor responsible for individual differences in social judgment.

Consider the egocentric pattern of social judgment described by Dunning and Cohen (1992), who found that people's assessments of another person's performance along a behavioral dimension depended, in part, on their own performance. Dunning and Cohen asked college students to judge, for example, the athleticism of a character who played intramural basketball for "about 3 hours every week." Those students who reported spending several hours every week in athletic activity judged the character as less athletic than did those who reported performing virtually no athletic activity. Such correlations between self-behavior and social judgment were observed in a number of trait domains (e.g., being studious, well-read, and punctual) and across a number of studies.

However, Dunning and Cohen (1992) repeatedly failed to find data that could explain these negative correlations between self-behavior and judgments of another's behavior. As such, the role the self played in their data remains unclear. The self may have played a direct, causal role in judgments of others. However, the relation of self to social judgment may have been a spurious one, one prompted by some other factor.

The Self as a Norm in Social Judgment

In this article, we tested a mechanism that might account for the egocentric pattern of judgments described by Dunning and
Cohen (1992). When people judge another person's behavior, they do not do so in a social vacuum. According to classic treatments of social attribution (Kelley, 1967) and more recent descriptions of norm theory (Kahneman & Miller, 1986), people often must compute some norms against which to judge the behavior of another individual. Indeed, Higgins and colleagues argued that trait judgments are inherently comparative and as such require a norm or a standard with which to compare a person's behavior (Higgins & Lurie, 1983; Higgins & Stangor, 1988). To label a person as athletic, for example, is to say that the person displays athletic behaviors to a remarkable degree among people the individual knows, among people in general, or against some absolute criterion. Supporting these arguments, Higgins and colleagues showed how changes in contextual information and standards (such as how most people behave in a situation) influence how people map behaviors onto trait judgments.

In this article, we argue that people may fail to have standards in mind before making a social judgment. They may fail to have hard and fast rules about how some specific behavior (hours per week spent in athletics) is related to trait judgments (being athletic). However, they can construct them when judging the behaviors of others by activating and considering the behaviors of a few individuals or stereotypes they are familiar with.

We argue that these postcomputed standards or norms often include the habits and the achievements of the self and that it is this activation of self-information that produces the correlations between self-behavior and judgments of others. People compare the behavior of others to their own and accordingly judge it to be high or low along some trait dimension. Moreover, we argue that people activate this information about their own behavior on their own, without any specific instruction from any external agent that they should think about themselves. We also argue that the correlation between self-behavior and social judgment is dependent on this self-activation. The negative correlations between self-behavior and judgments of others occur to the extent that the individual has activated information about self-behavior.

In this regard, our contention is consistent with exemplar models of social judgment (Smith & Zarate, 1992). Like exemplar theorists, we propose that people access information about specific individuals, or exemplars, when they are called on to judge the traits and the abilities of a target individual. The behaviors and the characteristics of the target are compared with these exemplars, and the social judgment is reached. What we are arguing specifically is that the self is a commonly accessed exemplar when people make their assessments and evaluations of the traits of another.

Why does the self figure prominently in these postcomputed norms? Research on cognitive representations of the self suggests many answers. Representations of the self are likely to be among the most accessible representations of individuals that people possess. Self-knowledge is likely to be easily brought to mind. Conceptual representations become more accessible to the extent that they are activated with frequency (Higgins & Bargh, 1987; Higgins & King, 1981; Strull & Wyer, 1979), and one can assume that thoughts about the self are usually more frequent than are thoughts about any other individual. Because they are so frequently activated, their excitation level remains high, making them more prone to be activated in completing social–cognitive tasks (Higgins, 1989). Furthermore, representations of the self tend to be complex, filled with many attributes and links between them (Holyoak & Gordon, 1983; Prentice, 1990). They also contain information that is affectively important to the individual. Past work has shown that complex and differentiated representations, as well as those containing affectively tinged information, are more easily activated from memory than are simpler representations (Andersen, Klatzky, & Murray, 1990; Higgins & King, 1981; Klatzky & Andersen, 1988).

Past Research on the Self and Social Judgment

The contention that people activate self-knowledge when making social judgments was also implicit in past work on the relation of self to social judgment. It has long been established that people's judgments of another individual's attitude depend on their own attitude (Sherif & Hovland, 1961). In the most commonly demonstrated phenomenon in this research, people's judgments of another person's attitude tend to be displaced away from their own—a contrast effect. People commonly see middle-of-the-road attitude statements as being biased against their own position. Three different traditions in this work implicitly share the assumption that these contrast effects are due to activation of self-knowledge, although they differ over the details of when these effects are most and least apparent. The adaptation-level perspective (Helson, 1964) holds that people's own typical behaviors and responses serve as a neutral point against which to judge the novel behaviors of others. The social judgment account (Sherif & Hovland, 1961) suggests that people's own responses serve as an anchor, or a reference point, against which to judge the behaviors of others. The variable perspective approach (Upshaw, 1969) proposes that if people's own attitudes are not represented among the attitude statements they are asked to judge, they will stretch the attitude rating scale to ensure that their own attitude will fit on it. Each of these traditions has found ample evidence for contrast effects in judgments of other people's attitudes, although the data supporting the nuances of each tradition's account tend to be mixed (for reviews, see Eiser, 1984, 1986).

Although the evidence of contrast effects in these experiments was voluminous and the researchers assumed that these contrast effects were induced by activation of self-knowledge, the researchers never searched for direct evidence of self-activation. Instead, the evidence they gathered was virtually all correlational. As such, this research shared the problems of interpretation common with all correlational studies. The contrast effects may have been due to activation of self-knowledge, but they also could have been due to some other factor that was not identified.

To be sure, there does exist some data suggesting more directly that activation of self-knowledge plays a causal role in people's judgments of others. For example, Ward (1965) manipulated the salience of people's attitudes before they were asked to judge the attitudes of others. People exhibited greater contrast effects in judgment after their attitudes were made salient to them. Dunning and Cohen (1992, Study 3) manipulated participants' performances on a social sensitivity test and
found that it influenced how they judged the performance of another.

Although these research findings showed that the self can play a causal role in social judgment, they did not provide conclusive evidence that the egocentric contrast effects found in other research were due to activation of self-knowledge. These findings showed only that self-knowledge, once activated, would influence judgments of others. They did not show that people activated self-knowledge, without prompting from any external source, when they made social judgments, whether in social psychological experiments or in everyday life. In short, although these studies showed that activation of self-knowledge was a sufficient cause of contrast effects in social judgment, they failed to show that it was also a necessary cause. To see if the self influences social judgment in day-to-day interaction, one must address this issue. One must see if people activate self-information on their own when they are judging other people.

Examining Whether Activation of Self-Information Occurs

What strategy should one adopt to establish that contrast effects are prompted by activation of self-knowledge? One could conduct additional correlational work by identifying as many third variables as possible that might produce spurious correlations between self and social judgment, controlling for them, and seeing if the contrast effect remains. However, one would never be in a position to know if the key third variable responsible for the effect had somehow eluded one's conceptual grasp. The superior strategy would be to search for direct evidence of necessary cause. That is, one would look to see if social judgment prompts people to activate self-information. More specifically, one would look to see if instances or individuals that produce the contrast effect also produce evidence of self-activation. That was the strategy used in the present studies.

First, we explored directly whether people activate information about their own behaviors and achievements as norms when judging the actions of others. In Study 1, we asked participants to judge the performances of another individual and then simply asked them how they had reached their judgments. We looked to see whether participants explicitly mentioned using their own actions and attributes as comparison points.

Studies 2 and 3 were designed to garner more unobtrusive evidence that people activate their own actions and habits as norms when they evaluate those of others. In these studies, we asked participants to judge the behaviors of others and then asked them about their own behaviors. If people activate self-information when providing social judgments, they should provide reports about their own behaviors more quickly after making social judgments. In Study 2, we explored the role of the self in social judgment by investigating whether activation of self-information moderates the relationship between self-behavior and social judgment. If activation of self-information plays a role in egocentric judgments of others, then we should observe the strongest correlations between self-behavior and social judgment among those participants who give the strongest evidence of self-activation. In Study 1, that should be participants who report that they thought about themselves when judging the actions of another individual. In Study 2, that should be participants who could judge their own behaviors with the greatest speed after judging another person. Thus, in these two studies we examined the degree of egocentric social judgment displayed by participants showing great versus little evidence for activation of self-information.

Fundamental and Evaluative Reactions and Egocentric Judgments

Finally, Study 1 allowed us to examine one last question about the factors producing egocentric contrast effects in social judgment. There is one rather well-known, well-studied factor that may serve as the third variable producing correlations between self-behavior and judgments of others, the individual's affective or evaluative reactions to the other person. Noting anomalies in past research and borrowing principles from Tajfel (1957; see also Tajfel & Wilkes, 1963), Eiser proposed an accentuation theory approach to the relationship of self to social judgment (Eiser & Stroebe, 1972; Eiser & van der Pligt, 1984). According to this approach, the self does not play a direct role in social judgment. Rather, it is the individual's affective or evaluative reactions to another person that influences his or her assessments of that person along descriptive dimensions (e.g., athletic, studious). Because evaluative reactions are related to the person's own behavior, these reactions are the factor producing the relation between self-behavior and social judgment. Eiser found a good deal of evidence for his analysis in a series of studies (Eiser & Mower White, 1974, 1975; Eiser & Osman, 1978). In addition, Judd and Harackiewicz (1980) discovered that people produced greater contrast effects when their affective reactions to the target stimulus were made salient to them. Evaluative reactions to target stimuli have also been implicated as being crucial in producing other egocentric phenomena, such as the false consensus effect (Sherman, Chassin, Presson, & Agostinelli, 1984) and polarized judgments of another person's behavior (Lambert & Wedell, 1991). In each case, the impact of self on social judgment was eliminated when evaluative reactions to the stimulus were held constant.

However, by highlighting the potential role of affective reactions, these studies placed the role played by the self into some ambiguity. Some have argued that the data suggest that the self plays only an indirect role in social judgments. People activate self-information, which informs their evaluative or affective impression of an individual, which then influences their specific trait and attitudinal judgments (e.g., Lambert & Wedell, 1991). However, the data are also consistent with an interpretation that involves no activation of self-knowledge whatsoever. People have different evaluative reactions to others, which then pro-
mote differences in social judgment, but these evaluative reactions may involve no thoughts about self-behavior. An individual may just take a liking or disliking to another individual without thinking of his or her own behavior. Thus, although these different evaluative reactions may be correlated with self-behavior, they may not necessarily be caused by them. The relationship of self to social judgment would be spurious.

Thus, in Study 1 we assessed whether participants' evaluative reactions to other individuals mediated the correlation between self-behavior and social judgment. If it did, it would point to the possibility (although not conclusively) that the relationship between self-behavior and social judgment is spurious. If it did not, it would suggest that the relationship between self-behavior and social judgment is a direct one, one potentially produced by activation of self-information.

Study 1: Do Participants Report Engaging in Egocentric Comparison?

In Study 1 we asked participants to evaluate another individual along several personality dimensions and then asked them how they had reached their judgments. We first vaguely asked participants to describe their decision-making processes. We then asked them if they had compared the target individual with anyone or anything. By doing so, we could assess the degree to which people mention using their own behaviors as a norm when judging a target individual.

Along the way we also examined three other issues. The first was whether people's trait judgments of another person's behavior would correlate with their own behavior, as found in Dunning and Cohen's (1992) study. For example, when people were told that a target played "3 hours of basketball a week," would their assessments of the target's athleticism be related to their own behavior, with people rating the target as less athletic the more they themselves engaged in fitness activities?

The second issue was whether reports of activating self-information had any impact on the degree to which participants provided egocentric judgments of the target. We expected many, if not most, participants to give evidence of self-activation. That is, they would report that they had compared the target to themselves in the process of social judgment. We also expected that some participants would fail to report activating information about their own behaviors while they judged the target. If egocentric comparison produces the contrast effects observed by Dunning and Cohen (1992), the relationship between self-behavior and judgments of another should be stronger to the extent that participants reported thinking about themselves.

The third issue centered on the role played by evaluative reactions to the target. We asked participants for evaluative reactions to the target to see if these reactions mediated or explained any egocentric judgmental pattern. If they did not, we would have evidence that the relation of self to social judgment is potentially a direct one.

Method

Participants

Participants were 69 Cornell University students enrolled in intermediate-level psychology and human development courses. Extra credit toward their course grades was awarded for their participation. Data from 3 additional participants were excluded because they had previously participated in similar studies.

Procedure

Participants were run in groups ranging in size from 5 to 22. When they arrived at the laboratory, they were told that they would be completing a variety of questionnaires, were given a brief synopsis of each one, and filled out a consent form. They then began the social judgment questionnaire relevant to this study. This questionnaire consisted of a brief description of the target, Chris. Half of the participants were instructed that the target was male; half were instructed that Chris was female.

Chris, an undergraduate student at Cornell University, is in his [her] sophomore year and is planning on graduating in 1996. Hailing from Pendel, Pennsylvania, he [she] returns home every summer. He [She] came to Cornell with a 620 math SAT [Scholastic Aptitude Test] score, 630 verbal SAT, and is currently enjoying his [her] experience at the university. He [She] studies about 15 hours a week and is late to class about once every week. Outside the classroom, he [she] participates in many extracurricular activities. In regards to athletics, he [she] is involved in intramural basketball (which takes up about 3 hours of his [her] time weekly). He [She] also enjoys his [her] leisure time, and to relax he [she] listens to music and eats pizza. He [She] religiously watches Late Show With David Letterman.

Participants then rated Chris on 7-point scales along 13 personality dimensions (e.g., aloof-sociable). Of key interest were their ratings on 4 dimensions (unstudious-studious, unmathematical-mathematical, unathletic-athletic, and unpunctual-punctual) for which quantitative behavioral information about Chris was provided. Participants also responded to scales that tapped their general evaluative reactions to Chris's (warm-cold, pleasant-unpleasant, and likable-dislikable).

After completing the rating task, participants described their decision processes in the following open-ended format:

On some of the questions, we asked you to judge a person based on some sort of statistic (e.g., Chris got a 620 on the math SAT). When you were judging that person (e.g., are they mathematically skilled?), what was going through your head? What were you thinking about when making your judgments of these individuals?

Participants were given a blank page for their responses. After completing this question, participants were asked an explicit question about comparisons: "When thinking about and judging these people, were you comparing them to anything or anyone in particular? If so, whom or what?" Participants were given a blank page on which to provide their responses.

Participants then were asked to provide the experimenter with some personal information. They were asked to report (a) the number of hours each week they spent in athletic or fitness activities, (b) their score on the quantitative SAT, (c) the number of times per week they were late to class, and (d) the number of hours each week they typically studied. Participants also estimated how the "typical Cornell student" would respond to these four questions. Other information was requested as well (e.g., "what's your major?").

Participants then moved on to unrelated questionnaires. At the end of the experimental session, they were debriefed concerning the aims and the rationales of the study.

Coding of Open-Ended Responses

Responses provided by each participant to the open-ended questions were coded by two judges who were unaware of the hypothesis under
EGOCENTRIC COMPARISON IN SOCIAL JUDGMENT

Results and Discussion

Participant and target gender had no impact on any analyses and are mentioned no further.

Egocentric Judgments

Participants’ assessments of the target tended to be egocentric, in that their ratings of Chris correlated with reports of their own behavior. The greater the number of hours the participant reported spending in athletic pursuits, the less athletic he or she viewed Chris to be, $r(64) = - .31, p < .02$. To a nonsignificant extent, the fewer the number of times the participant reported being late to class, the less punctual he or she judged Chris to be, $r(67) = - .12, ns.1$ Combining the findings from all these trait domains through a meta-analysis, we found a strong association between self-behavior and assessments of the target ($Z = - 5.85, p < .0001$).2

Mentions of Self-Comparisons

Responses to the open-ended questions provided some clues as to why participants’ judgments tended to correlate with their own performances and habits. The percentages of participants who mentioned any of five comparisons for the decision-process and comparison questions are presented in Table 1.

For the decision-process question, the most commonly cited comparison other was the self. A full 39% of participants mentioned comparing the target to themselves while providing their judgments. The next most common reference point mentioned was population norms (19%), followed by acquaintances (16%). Responses on the comparison questions were similar. The most commonly mentioned comparison norm by far was the self (70%), followed by acquaintances (38%) and population norms (19%). Looking at the percentage of participants who mentioned a specific norm on either one or both of the questions, we again saw that the self was the most commonly cited reference point. The self was mentioned by 71% of participants, followed by acquaintances (42%) and population norms (26%).

Role of Self-Activation in Egocentric Judgments

Is activating self-information associated with egocentric judgments? To answer this question, we divided participants

1 In the trait domain of punctuality, a higher score on the behavioral metric (i.e., how many times per week the participant was late to class) indicated that the individual exhibited less of the trait, unlike the other trait domains we examined. As a consequence, we reversed participants’ scores on this behavioral metric in all studies to make them comparable to their responses in other trait domains. After this reversal, the predicted direction of the correlation between self-behavior and judgments of punctuality was negative, just as it was for all other trait domains. In all studies, degrees of freedom varied slightly because of missing data.

2 A careful reader may worry that this correlation between one’s own performance and judgments of others may have arisen only because we asked participants for both statistics in the same experimental session. Dunning and Cohen (1992), however, observed correlations of roughly this magnitude in six different samples where data about self-behavior were collected weeks, even months, before participants were asked to provide social judgments. In addition, a careful reader may be concerned about the appropriateness of our meta-analysis. Such procedures assume that the results being combined are independent, but our correlations all came from the same sample of participants. In this article, we report meta-analyses that assume independence. To be conservative, we also calculated the same meta-analyses correcting for the non-independence of our results, using a method similar to one outlined by Strube (1985). Correcting for nonindependence failed to influence any results. In many cases, the procedure even increased the statistical significance of our findings. A manuscript (Hayes, 1995) describing and evaluating this method is available from us.
into two groups on the basis of whether they had activated self-information even when we did not explicitly ask them about comparison processes. That is, we compared the responses of the 27 participants mentioning the self on the decision-process question with the 42 participants failing to mention the self on this question. The two groups did not differ in means or variances of the trait behavior they reported. For each group, we examined the degree to which judgments of the target were related to participants' own behavior. The results of those regressions are given in Table 2.

As seen in Table 2, the relationship between self-behavior and target judgments tended to be stronger for the group that mentioned the self on the decision-process question. To statistically test these trends, we ran a multiple regression within each trait domain that included (a) self-behavior in the trait domain, (b) whether the participant had mentioned the self on the decision-process question, and (c) the interaction between these two variables. These regression analyses revealed significant Self-Behavior × Self-Mention interactions in the domains of athleticism (β = −.35, p < .005) and studiousness (β = −.27, p < .01), indicating that the relationship between self-behavior and social judgment was stronger among those who mentioned thinking about themselves on the decision-process question. The interaction effect was nonsignificant but similar for mathematics (β = −.06) and nonsignificantly reversed for punctuality (β = .17). Combining these results through a meta-analysis across the four trait domains, we found a significant tendency for the relationship between self-behavior and judgments of the target to be stronger for participants who mentioned the self as opposed to those who did not (Z = −2.52, p < .02).3

Table 1

<table>
<thead>
<tr>
<th>Norm category</th>
<th>Decision processes</th>
<th>Comparisons</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>39</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td>Acquaintances</td>
<td>16</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>Population norms</td>
<td>19</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Person similar to target</td>
<td>6</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Person who exemplified</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>No comparison</td>
<td>−b</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Note. N = 69. Percentages do not add to 100% because participants could mention more than one norm.

What role did evaluative reactions to the target individual play? Did they mediate the relationship between self-behavior and social judgment? To answer these questions, we averaged participants’ responses to the three items assessing their evaluative reactions to the target (α = .77). Participants’ responses to these items were related to their judgments of the target in the specific trait domains we focused on. To the extent that participants positively evaluated Chris, they saw him or her as more athletic (r = .27, p < .03) and punctual (r = .31, p < .02). Nonsignificant but positive correlations were observed between evaluative reactions and judgments of mathematical ability (r = .15) and studiousness (r = .03).

However, evaluative reactions to Chris failed to mediate the correlations between self-behavior and judgments of specific traits. First, to be a mediator, evaluative reactions would have to be correlated with participants’ behavior in the four trait domains (Baron & Kenny, 1986). They were not (rs = .02, −.11, −.09, and .12 for athletics, mathematics, punctuality, and studiousness, respectively). Second, to be a mediator, controlling for evaluative reactions would have to reduce or eliminate the

Table 2

<table>
<thead>
<tr>
<th>Trait domain</th>
<th>Mentioned self</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletics</td>
<td>r −.66***</td>
<td>−.09</td>
<td>SE(b) .03</td>
</tr>
<tr>
<td>Mathematics</td>
<td>r −.31</td>
<td>−.30*</td>
<td>SE(b) .005</td>
</tr>
<tr>
<td>Punctuality</td>
<td>r .11</td>
<td>−.25</td>
<td>SE(b) .112</td>
</tr>
<tr>
<td>Studiousness</td>
<td>r −.70***</td>
<td>−.37**</td>
<td>SE(b) .093</td>
</tr>
</tbody>
</table>

Note. b = Unstandardized regression slope. SE(b) = Standard error of the unstandardized regression slope.

3 We also did a similar analysis comparing responses of all participants who mentioned the self (n = 49) on either question with those who did not (n = 20). In this analysis, we again found a tendency for the correlation between self-behavior and target judgment to be more strongly negative among participants who mentioned the self as opposed to those who did not, although the tendency was far from attaining statistical significance (Z = −.69). We view this analysis as informative but not as informative as the one described in the text. First, one group in this analysis contained only 20 participants; therefore, the correlations observed in this group were rather unreliable, as indexed by large standard error. Second, the "purer" measure of whether participants had considered their own behavior is the one in which we did not prompt them at all to think of comparisons. That is the analysis described in the text.
relationship between self and social judgment. It did not. In separate multiple regressions, we controlled for evaluative reactions before examining the relationship of self-behavior to trait judgments. The relationship between self and social judgments remained unchanged for athletics, mathematics, and studiousness (partial rs = -.38, -.34, and -.49, respectively, ps < .005). The correlation for punctuality remained nonsignificant but in the right direction (partial r = -.08). In sum, the association between self-behavior and social judgment was not mediated by general evaluative reactions to the target individual.²

Summary

In sum, Study 1 provided evidence that the relationship between one's own behavior and one's judgment of another person's behavior is a direct one. Indeed, the data suggest that the relationship is prompted by people's activation of information about their own behavior during the process of social judgment. Many participants reported thinking about their own behavior when judging the traits and the abilities of the target individual. The self was the most commonly mentioned comparison point in participants' responses. In addition, participants who reported self-comparisons with the least prompting were also the ones who showed the most egocentrism in their assessments of the target. Providing more evidence that the relation of self to social judgment is a direct one, the contrast effects we observed failed to be mediated by general evaluative or affective responses to the target individual.

Study 2: Do Participants Provide Unobtrusive Evidence of Egocentric Comparison?

Although Study 1 provided evidence that people engage in self-comparison when they judge others, this evidence has to be considered preliminary. People's descriptions of their decision processes can often be informative (Ericsson & Simon, 1980), but people are not always aware of (or at least cannot report) the factors influencing their decisions (Nisbett & Wilson, 1977).

Wary of the accuracy of self-reports about decision processes, we conducted a second study to garner more unobtrusive "on-line" evidence that people activate information about their own actions when judging those of others. In Study 2, we asked participants to judge a target individual along a number of trait dimensions. A few minutes later, we asked participants to describe their own behavior in those same trait domains. If people activate information about their own behavior while they judge others, this evidence has to be unobtrusive. As such, the core design of the study was a 2 (judged target on traits: yes or no) x 2 (traits judged: athletics-mathematics or punctuality-studiousness) analysis of variance (ANOVA). The first variable was a within-subjects variable; the last two were between-subjects variables.

Method

The design of Study 2 focused the participants on two tasks. The first was a social judgment task. Participants judged a target individual on two traits, either athletics and mathematics or punctuality and studiousness. A few minutes later, they completed the second task in which they were asked to describe their own behavior in all four trait domains. The order of the trait domains in which they described their own behavior was counterbalanced. They reported either on their athletics and mathematics behavior first or on their punctuality and studiousness behavior first. As such, the core design of the study was a 2 (judged target on traits: yes or no) x 2 (traits judged: athletics-mathematics or punctuality-studiousness) analysis of variance (ANOVA). The first variable was a within-subjects variable; the last two were between-subjects variables.

Participants

Participants were 176 Cornell University undergraduates recruited from intermediate-level psychology and human development courses. They received extra credit toward their course grades for their participation.

Procedure

Participants were run in groups of up to 3 members. When they arrived at the lab, they were told that they were to complete a number of tasks. The first task would consist of social judgment. They would read a description of a person and report their impression of him or her. Participants were then sent to separate cubicles, each containing a Macintosh Plus computer. After a few introductory instructions, the
computer presented the following description for approximately half of the participants (n = 84):

Christine, a sophomore here at Cornell, hails originally from Pendedel, Pennsylvania. She lived this year in a dorm on west campus and has enjoyed her experience here at the university so far. She came to Cornell with a 620 math SAT and a 640 verbal SAT. In regards to athletics, she participates in intramural basketball, which takes about 2 and a half hours of her time weekly. She enjoys her leisure time, and to relax she listens to music and eats pizza. She religiously watches Late Night With David Letterman.

Christine’s gender was varied to coincide with the gender of the participant. For male participants, Christine was replaced with Chris, and all pronouns were modified accordingly.

The computer then instructed participants to indicate their perceptions of Christine along five personality dimensions on a 7-point scale ranging from 1 (“doesn’t describe Christine”) to 7 (“describes Christine very well”). The description remained on the screen while participants made their judgments. Participants were asked to enter their responses on the computer keyboard. The first three traits were filler items (pleasant, fun-loving, and dominant), whereas the latter two traits were relevant to the study. Participants rated Christine on the traits athletic and mathematical.

The remainder of the participants (n = 92) completed the same task. However, the description of Christine’s SAT scores and athletic habits was eliminated and replaced with the following sentence: “She studies about 14 hours every week and is late to class about twice per week.” After reading about Christine, these participants also rated Christine on the same three filler traits but then rated her on the traits punctual and studious instead of athletic and mathematical.

For the next part of the experiment, participants were asked to describe their own behavior across a wide variety of domains. Specifically, participants were requested to indicate whether their own behavior, habits, and performances were above or below a specific value. The computer presented participants with the following instructions:

We would like to ask you some follow-up questions about yourself, your habits, and your activities. For example, we may ask you: Is your hometown LESS THAN or MORE THAN 50 miles from Ithaca? Put your left index finger over the "<" key and your right index finger over the ">") key at the top of the keyboard. If your answer to the question is LESS THAN, hit the "<" key. If your answer to the question is MORE THAN, hit the ">" key. If your answer is EQUAL TO, hit the "=" key.

The computer then presented four practice questions to familiarize the participants with the procedure (e.g., “Do you read less than or more than two books a year for pleasure?”). Participants then responded to four questions about their own behavior: “Do you spend less than or more than 2.5 hours a week engaging in athletic activity?” “Did you score less than or more than 620 on the math SAT?” “Are you a college student?” “Are you late to class less than or more than two times per week?” As can be seen in these questions, participants were being asked whether their performances were higher or lower than those exhibited by the target (Chris or Christine). Unknown to participants, the computer recorded their response latencies as they responded to these questions. After participants answered each question, the screen was erased, and a new question was presented after a 2-s delay. The presentation order of the questions was counterbalanced. Half the participants described their own behavior on athletics and mathematics first, followed by questions concerning their punctuality and studiousness. Half the participants answered the questions in the reverse order.

After completing this procedure, participants were told that the computer component of the experiment was completed and were handed a few follow-up questionnaires. To establish again whether judgments of the target were related to participants’ self-behaviors, we asked participants to judge their own behavior in the four trait domains of interest (e.g., “How many hours a week do you spend doing athletics or athletic activity?”). Participants were then debriefed and dismissed.

Results and Discussion

Participant gender had no impact on the results reported below. Order of describing one’s own behavior (athletics–mathematics first or punctuality–studiousness first) also had no impact. Thus, neither variable is discussed further. Also, because of a clerical error on the part of an experimenter, we were unable to match the behavioral reports of 16 participants to either their response latency data or their judgments of the target. Thus, in analyses dealing with self-behavior, results were based on the 160 remaining participants.

Egocentric Judgments

Again, judgments of the target correlated with the participants’ own behavior. Evaluations of the target’s athleticism correlated with the amount of time participants reported engaging in athletic activities, r(76) = −.35, p < .005. Assessments of the target’s mathematical skill were related to participants’ own performance on the math SAT, r(75) = −.30, p < .01. Judgments of the target’s punctuality correlated marginally with participants’ reports of how often they were late to class, r(80) = −.20, p < .07. Assessments of the target’s studiousness were associated with participants’ own study habits, r(80) = −.50, p < .0001. In sum, Study 2 revealed the same egocentric judgmental pattern found in Study 1 (Z = −6.29, p < .0001).

Effect of Judging Target on Response Latencies for Reporting on Self-Behavior

Were these egocentric judgments prompted by activation of information about the self? One answer to this question lies in the speed with which participants reported on their own behavior. If self-activation underlies egocentric social judgment, judging another person should facilitate the speed with which participants describe their own behavior. Thus, for each participant, we averaged his or her response latencies when judging self-behavior for athleticism and mathematics and did the same for punctuality and studiousness. Because these average response latencies tended to be positively skewed, we performed a natural log transformation for each.

These log-transformed latencies were then subjected to a 2 (judged target on traits: yes or no) × 2 (traits judged: athletics–mathematics or punctuality–studiousness) ANOVA, with the first variable serving as a within-subjects variable. Table 3 displays the log-transformed response latencies associated with

5 We asked participants to use the same key to indicate less than and equal to responses because we wanted participants to use only two keys, as is traditional in studies of response latency. In Study 3, however, we decided to allow participants to use a different key to indicate equal to performances. This reduced a rather minor level of confusion and produced results similar to those of Study 2.
this analysis, as well as the raw response latencies. As seen in Table 3, judging another person facilitated the speed with which participants judged their own behavior. Participants were approximately 735 ms (±11 in log units) quicker in judging their own behavior in those trait domains in which they had judged the target than in those domains in which they had not, F(1, 174) = 6.86, p < .01. No other effects achieved statistical significance. In sum, judging another person facilitated the speed with which people described their own behavior, providing evidence of activation of self-information.

Role of Self-Activation in Egocentric Judgments

The data of Study 2 allowed for a more fine-grained analysis of whether activation of self-information underlies egocentric social judgment. Egocentric social judgment should have been strongest for those participants who displayed the most evidence of self-activation—those quickest to describe their own behavior after judging the target. In contrast, those participants who showed the least evidence of self-activation—those who were relatively slow to describe their own behavior—should have displayed the least egocentrism. This logic suggests that a person’s judgment of the target should be predicted by a Self-Behavior × Response Latency interaction. Thus, for each trait domain, we conducted a multiple regression analysis to see if participants’ judgments of the target were predicted by the interaction between self-behavior and response latencies.

However, before doing so, we submitted participants’ response latencies to an adjustment. Preliminary analyses revealed that response latencies in judging one’s own behavior (after log transformations) were significantly associated in a curvilinear fashion with what that behavior was. That is, participants more quickly described their own behavior when it was either much higher or much lower than the target’s behavior. For example, in the domain of mathematics, participants much more quickly described their own math SAT score when it was much higher or much lower than 620 (the target’s performance) but were relatively slow when their own score was around 620. Polynomial regressions were significant in all trait domains (Rs > .20, ps < .03), with the squared component of self-behavior receiving a significant weight in three of the four regressions. Thus, for each trait, we adjusted response latencies (log transformed) by removing any relationship between these latencies and self-behavior in the conditions in which participants had judged the target on that trait. These adjusted response latencies thus indicate whether a participant judged his or her behavior quickly for an individual reporting that specific level of behavior for that trait.

For each trait domain, we then submitted judgments of the target to a multiple regression analysis in which we entered (a) participant’s self-behavior, (b) adjusted response latencies, and (c) an interaction term in the prediction equation. These analyses

Table 3

<table>
<thead>
<tr>
<th>Judged target on</th>
<th>Judged target on trait</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Athletics–mathematics (n = 84)</td>
<td>4.467</td>
<td>5.650</td>
</tr>
<tr>
<td>Log-transformed response latency</td>
<td>8.34</td>
<td>8.46</td>
</tr>
<tr>
<td>Raw response latency (ms)</td>
<td>8.43</td>
<td>8.54</td>
</tr>
<tr>
<td>Punctuality–studiousness (n = 92)</td>
<td>5.335</td>
<td>5.659</td>
</tr>
<tr>
<td>Log-transformed response latency</td>
<td>4.940</td>
<td>5.655</td>
</tr>
<tr>
<td>Raw response latency (ms)</td>
<td>8.39</td>
<td>8.50</td>
</tr>
</tbody>
</table>

6 Comparisons between individual means largely supported our predictions. Within-subjects analyses revealed that participants who judged the target on athletics and mathematics reported their behavior significantly faster in those domains than they did their behavior in the domains of punctuality and studiousness, t(83) = -2.56, p < .05. Participants who judged the target on punctuality and studiousness showed the opposite pattern in reports of self-behavior, t(91) = 2.68, p < .05. Between-subjects analyses gave supportive, but more mixed, results. Participants who judged the target on athletics and mathematics reported their behavior more quickly in those domains than did participants who did not judge the target in these domains, t(174) = -3.37, p < .01. However, participants judging the punctuality and the studiousness of the target did not report their own behavior more quickly in these two domains than did participants who did not judge the target in these two domains, t(174) = -0.35, ns.

7 In the domain of punctuality, we omitted data from one outlier, a participant who claimed to be late to class 14 times per week (7.0 SDs from the grand mean).

8 Without this adjustment, the multiple regression we report would be inappropriate. It is crucial in a multiple regression to remove all relationships that exist between predictor variables. Because the relationship between self-behavior and response latency tended to be curvilinear, a “normal” multiple regression would fail to remove the association between these two variables. (It would if the relationship were linear.) In addition, because small response latencies were associated with extremely high or low behaviors, we expected stronger correlations between self-behavior and judgments of the target for artifactual reasons. “Fast” responders consisted of those participants with very high or very low behaviors, a large range, and “slow” responders consisted of participants in the middle, a restricted range. Large ranges tend to produce stronger correlations than do restricted ranges.

9 In the regression regarding athletics, we omitted data from 1 participant whose interaction term was 6.0 standard deviations from the grand mean. In the domain of punctuality, we omitted data from 1 par-
yses included only those participants who judged the target on the relevant trait. The interaction proved to be significant in the domains of mathematics ($\beta = .26, p < .05$) and punctuality ($\beta = .30, p < .01$) and in the right direction, albeit nonsignificant, in the domains of athletics ($\beta = .16$) and studiousness ($\beta = .11$). Combining these results through a meta-analysis, we found significant evidence that the Self-Behavior \times Adjusted Response Latencies interaction predicted judgments of the target ($Z = 3.41, p < .001$).

To examine whether the interactions observed in the aforementioned analysis corresponded to our predictions about the relationship between self-behavior, adjusted response latencies, and judgments of the target, we split participants at the median on the basis of their adjusted response latencies. We then calculated the correlation between self-behavior and judgments of the target for participants who were the fastest in judging their own behavior (i.e., their adjusted response latencies were below the median). We calculated the same correlations for slow participants (i.e., their adjusted response latencies were above the median). Consistent with our analysis, the fast group displayed stronger correlations between self-behavior and social judgment than did the slow group ($rs = -.14, -.06, .10,$ and $-.42$ for athletics, mathematics, punctuality, and studiousness, respectively). Indeed, all four correlations for the fast group were significantly negative ($ps < .02$), whereas only one correlation for the slow group achieved statistical significance (for studiousness, $p < .02$).

Summary

In sum, Study 2 provided evidence that egocentric social judgments are prompted by activation of self-information. Judging another person caused participants to describe their own habits and achievements more quickly. Participants who provided the greatest evidence of self-activation (they reported on their own behaviors in a trait domain rather quickly) were also the ones who showed the greatest egocentrism in their judgments. Their judgments of the target tended to correlate highly with their own behavior in the trait domain. Participants who showed the least evidence of self-activation (they described their own behaviors relatively slowly) revealed the least egocentrism in their judgments of the target.

Study 3: Egocentric Comparison or Priming Effect?

Although Study 2 provided evidence of egocentric comparison in social judgment, some findings of Study 2 are open to alternative explanations. In particular, the interpretation of the effect of judging the target on response latencies is problematic. Judging another person in a particular domain may have
speeded people's responses about themselves simply because it
had primed information within that domain (Higgins, Rholes,
& Jones, 1977; Srull & Wyer, 1979). That is, thinking about
information semantically related to those trait domains. As
such, any judgment related to those traits would be completed
more efficiently.

Study 3 was designed to assess this priming explanation.
Roughly half of the participants took part in a conceptual
replication of Study 2. Embedded in a long series of tasks, they
were presented with four critical sentences. For two of these sen-
tences, they were asked to judge the target along some trait di-

mension. For the other two, they were merely asked if the sen-
tence was grammatically correct. After completing either of
these two tasks, they were then asked to describe their own be-

havior in the trait domain. Consistent with Study 2, we pre-
dicted that participants would answer this question about their
own behavior more quickly after judging the target as opposed
to assessing the grammar of the sentence.

In contrast, the remaining participants dealt with the same
social judgment and grammar questions but were not subse-
quently asked to describe their own behavior. Instead, they were
asked about the behaviors and the attaintments of a distant ac-
quaintance. If the response latency effects observed in Study 2
were due to priming of semantic and procedural knowledge,
then these participants should be more quick to describe the
behavior of an acquaintance after judging the target than when
dealing with questions involving grammar. However, to the ex-
tent that the facilitation effect in Study 2 was due to specific
thoughts about the self when judging others, such a facilitation
effect should not occur for reports about an acquaintance.

Method

At its core, Study 3 asked participants to make judgments that oc-
curred in pairs. The first judgment in each pair asked participants either
(a) to make a judgment of a target individual or (b) to judge the gram-
mar of a sentence. All participants judged targets in two trait domains
(e.g., athletics and mathematics) and judged the grammar of sentences
in two other trait domains (e.g., punctuality and studiousness). The
specific trait domains that participants dealt with for each task were
counterbalanced. The second judgment in each pair asked participants
either (a) to describe their own behavior or (b) to describe the behavior
of an acquaintance. This task occurred between subjects. Approxi-
mately half of the participants described their own behavior, and half
described the behavior of an acquaintance. As such, the design of
the study was a 2 (initial task: social judgment or grammar) X 2 (trait do-
mains involved in social judgment task) X 2 (subsequently describe self or acquaintance behavior). The first variable was a within-subjects
variable (all participants completed both judgment and grammar
tasks); the last two were between-subjects variables (e.g., only half of
the participants were asked to describe their own behavior).

Participants

Participants were 85 Cornell University undergraduates from human
development and psychology classes. They received extra credit toward
their course grades for participation. Data from 3 other participants
were discarded: 3 had previously participated in similar studies, 1 pro-
duced response latencies that were 4 standard deviations higher than the
average of others in her group, and 1 made an error that prevented her
from reading the instructions presented on the computer.

Procedure

Participants were run individually or in groups of up to 7 members.
They were greeted by an experimenter who informed them that the
study centered on social judgment. They were to read brief descriptions
of a person's behavior and then to offer their opinions about that person,
his or her behavior, or the sentence containing the information. They
were told that they would be making a wide range of judgments, from
judging the ability of other people, to assessing the similarity of words,
to examining the grammatical correctness of sentences. After partici-
pants indicated they understood, they signed consent forms and were
seated in front of Apple Macintosh LCIII personal computers.

The computer first presented participants with more specific instruc-
tions that described the concrete nature of the tasks they would en-
counter. They were told that they would respond to a series of tasks that
always took place in pairs. The initial task in each pair would present
participants with a single sentence (e.g., "Murray ignored an acquain-
tance who passed him on the street"). Participants would be asked ei-
ther (a) to offer a judgment of the person described in the sentence
(e.g., "How aloof would you describe Murray to be?") or (b) to assess
whether the sentence was grammatically correct. For either question,
participants would be asked to respond on a 3-point scale. For the social
judgment task, participants could answer 1 (e.g., not at all aloof), 2
(e.g., somewhat aloof), or 3 (e.g., very aloof). For the grammar task,
participants could respond 1 (no), 2 (I am unsure), or 3 (yes).

Next, participants were instructed that the second task for each pair
could present three different types of questions: (a) to judge whether a
given behavior or characteristic was good or bad (e.g., "Is it good or bad
to have a logical mind?"); (b) to determine whether one word was sim-
ilar in meaning to another word (e.g., "Is being aloof the same as being
conceited?"); or (c) to judge some information about themselves or an
acquaintance. Participants were to respond to these queries using 3-
point scales.

They were then given an example question. They were asked, "Is be-
ing tall the same thing as being big?" Participants were asked to do
the numerical keypad to punch in their response. Their responses
could be 1 (no), 2 (can't say), or 3 (yes). They were further told that all
responses to the computer program would be given using these three
keys. Next, they were asked to provide the name of a specific acquaint-
ance, someone they "once knew very well but have lost daily contact
with." Participants typed in the initial of that person's first name.

10 A better control task would have been to include one that involved
some semantic or meaning-based judgment. However, we discovered
during pilot testing that all the meaning-based tasks we asked partici-
pants to do prompted them to think about themselves and their own
behavior. As a consequence, we turned to the grammar task described
in the text.

11 This specific choice of target represents a compromise. We wanted
to make sure that participants in the acquaintance condition reported
the behavior of a real-life, college-aged individual with whom they were
familiar, as they did in the self-condition. This condition mandated that
participants respond about an acquaintance. However, we knew from
Study 1 that participants occasionally reported considering the behav-
iors of their acquaintances when rendering social judgments. As such,
the social judgment task used in the study might prompt participants to
think about this "control" character. To avoid this possibility, we de-
cided to ask participants to consider an individual with whom they had
little current contact. We presumed that this would be an acquaintance
whom participants would be unlikely to consider when providing social
judgments.
They were instructed that they should judge the current behaviors of that acquaintance, as opposed to what he or she had done in the past.

Participants then began the main body of the computer program. In all, the computer presented participants with 12 pairs of judgment tasks, each presenting questions in a different trait domain (e.g., intelligence, aloofness, creativity, or extraversion). Six of them started with questions about grammar and 6 with social judgment questions. The grammar and social judgment tasks were each paired twice with the judgments required in the second half of the pair: the same-different, good-bad, and behavioral judgment tasks. For each pairing, the computer presented a 2-s delay with a blank computer screen before presenting participants with the initial task in each pairing. When participants provided their responses for these tasks, the screen would go blank for 1 s, and then the computer presented participants with the second task of the pair.

Of key interest were the four pairs that asked for behavioral judgments in the second task. These occurred in the trait domains of athleticism, mathematics, punctuality, and studiousness. In these pairings, participants were initially presented with quantitative information about a target: "Mike, a junior at Cornell, plays intramural basketball for about 3 hours every week." "Anne got a 620 on the math section of the SAT." "Alice, a student here at Cornell, tends to be late to class about two times each week." and "Clarence, a college sophomore at Cornell, tends to study around 15 hours per week." They were asked either to judge the individual portrayed in the sentence or to assess the sentence’s grammar. They were then asked to describe their own behavior or that of an acquaintance. For example, in the domain of athletics, they were asked “Do you spend more than, less than, or about 3 hours a week in athletic activity?” Participants could respond 1 (less than), 2 (about 3 hours) or 3 (more than). These critical pairings always occurred somewhere in positions 5 through 12 of the session, with their specific order determined at random.

Under this setup, 43 participants took part in a conceptual replication of Study 2. Approximately half of them (n = 21) were asked to judge targets on their athleticism and mathematical ability before providing descriptions of their own behavior. When confronted with sentences dealing with punctuality and studiousness, they were asked to assess the grammar of the sentence. The remaining participants (n = 22) judged targets on punctuality and studiousness before describing their own behavior. They faced the grammar task in the domains of athletics and mathematics.

The remaining 42 participants followed the same general procedure but were asked to describe the behavior of an acquaintance as opposed to their own behavior in the second task of the pair. Half the participants (n = 21) judged targets on athletics and mathematics before providing descriptions of their acquaintance’s behavior. The other half (n = 21) judged targets on punctuality and studiousness before describing the behavior of their acquaintance.

After participants completed the program, they were probed for suspicion and asked to describe their own behavior and that of the typical Cornell student in a variety of domains (e.g., "How many hours a week do you typically study?"). After that, they were debriefed and thanked.

Results and Discussion

Participant gender again had no impact and receives no further mention.

Egocentric Judgments

Judgments of the target again correlated with participants’ own behavior. Assessments of the target’s mathematical skill were related to participants’ own performance on the math SAT, r(38) = −.55, p < .0005. Judgments of the target’s punctuality correlated with participants’ reports of how often they were late to class every week, r(41) = −.43, p < .005. Assessments of the target’s studiousness were associated with participants’ own study habits, r(41) = −.49, p < .001. However, evaluations of the target’s athleticism failed to correlate significantly with the amount of time participants reported engaging in athletic activities per week, r(39) = −.03, n.s. In sum, Study 3 largely revealed the same egocentric judgmental pattern found previously (Z = −5.10, p < .0001).

Effect of Judging Target on Response Latencies for Describing Self-Behavior and Acquaintance Behavior

Did judging another person prompt participants to describe their own behavior more quickly? Did providing social judgments facilitate the speed with which they reported on the behavior of an acquaintance? To answer these questions, we averaged participants’ response latencies for behavioral descriptions in the domains of athletics and mathematics and did the same for their responses to punctuality and studiousness. Because these average response latencies tended to be positively skewed, we subjected them to logarithmic transformations. We then submitted these log-transformed response latencies to a 2 (judged target on traits: yes or no) X 2 (traits judged: athletics-mathematics or punctuality-studiousness) X 2 (subsequently described behavior of self or acquaintance) mixed model ANOVA, with the first variable serving as a within-subjects variable. The log-transformed response latencies associated with this analysis are presented in Table 4, as well as participants’ raw response latencies. The analysis revealed two effects of interest. First, participants generally provided behavioral reports more quickly after judging a target than they did after providing grammar assessments, F(1, 81) = 7.89, p < .01. However, and as predicted, this tendency interacted with whose behavior they were reporting on, F(1, 81) = 4.56, p < .04. No other significant main or interaction effects were found.

The interaction revealed that social judgment facilitated participants’ responses only when they were judging their own behavior. In that case, participants were roughly 1,588 ms faster (.24 in log units) after judging another person than they were after assessing the grammar of a sentence, t(42) = −4.16, p < .0001.12 However, for descriptions of an acquaintance’s behav-

12 Comparisons between individual means in self-report conditions largely supported our predictions. Within-subjects analyses revealed that participants who judged the target on athletics and mathematics reported their behavior significantly faster in these two domains than they did their behavior in the domains of punctuality and studiousness (mean difference = 1,418 ms, .25 in log units), t(20) = −3.12, p < .05. Participants who judged the target on punctuality and studiousness showed the opposite pattern in reports of self-behavior (mean difference = 1,756 ms, .24 in log units), t(21) = 2.74, p < .05. Between-subjects analyses gave supportive, albeit nonsignificant, results. Participants who judged the target on athletics and mathematics were nonsignificantly faster to report their behavior in these two domains than were participants who did not, (mean difference = 1,537 ms, .25 in log units), t(42) = −1.63, n.s. Participants who judged the target on punctuality and studiousness reported their own behavior in these two domains nonsignificantly faster than did participants who did not (mean difference = 1,637 ms, .24 in log units), t(42) = −1.68, n.s.
ior, no evidence of a facilitation effect was found. Participants were roughly 246 ms (.03 in log units) faster in describing the behavior of an acquaintance after making social judgments, but this difference was far from achieving statistical significance, \(t(41) = -0.27, \text{ns} \). Between-subjects comparisons also suggested that social judgment facilitated descriptions only of one’s own behavior. After judging the target, participants describing their own behavior responded more quickly than did participants reporting on the behavior of an acquaintance, \(t(83) = -2.51, p < .02 \). However, after assessing grammar, participants describing self-behavior were not speedier than those describing an acquaintance’s behavior, \(t(83) = -0.42, \text{ns} \).

Summary

In sum, Study 3 replicated the facilitation effect of Study 2 for descriptions of self-behavior but demonstrated no comparable facilitation effect for descriptions of an acquaintance’s behavior. Therefore, the increased speed with which participants described their own behavior after judging another person likely reflected activation of self-information during the act of social judgment and not a general effect of priming.

General Discussion

How is the self related to judgments of others? In particular, why are people’s judgments of another individual’s behavior often related to their own behavior? Hovland and Sherif (1952) suggested that one’s own behavior serves as an anchor or a reference point against which to judge the behavior of others. In the domain of attitudes, several researchers found evidence consistent with that view (see Helson, 1964; Upshaw, 1969). More recent work extended these findings to judgments of traits and abilities (Dunning & Cohen, 1992). However, researchers never directly tested whether people activated information about their own behavior when providing judgments of others. The guiding assumption of the social judgment tradition and of related work remained untested and unverified.

In three studies, we found evidence that people activated information about their own behaviors and achievements, without instruction or prompting by any external agent, when judging those of other people. As in previous work, we found that judgments of another person’s behavior depended on the behavior of the person doing the judging. For example, people who spent much time in athletics rated a target’s behavior as less athletic than did people who rarely engaged in sports and fitness pursuits. In addition, when we asked participants in Study 1 who or what they had thought of when evaluating such actions of another person, we found that a majority mentioned considering their own behavior. In two other studies, we found that making social judgments prompted participants to more quickly answer questions about their own behaviors, providing unobtrusive evidence that people had thought of themselves as they evaluated others. Other data ruled out priming as an alternative explanation for this effect, in that making social judgments did not lead participants to describe the behavior of an acquaintance more quickly.

Furthermore, this activation of self-information played a role in egocentric judgments of others. Activation of self-information moderated the relationship between self-behavior and social judgment in two studies. The strongest correlations between self-behavior and judgments of others were observed for participants demonstrating the strongest evidence of thinking about themselves. In Study 1, the correlations between self-behavior and judgments of the target were stronger for participants who claimed to have thought about themselves on a vague question about decision processes, as opposed to those who failed to mention the self on this question. In Study 2, the relation of self to social judgment was stronger for participants who described their own behavior quickly than for those who described it slowly.

In sum, the three studies in this series found convergent evidence, through a variety of methodologies and measures, for egocentric comparison in social judgment. When evaluating the performances of others, people considered their own habits and achievements. Their own actions were commonly included in a postcomputed norm brought to bear on the assessment of others. Importantly, the activation of self-information was not prompted by explicit instructions from us nor by any manipulation to make the self salient to participants. Rather, the very

We did not pursue a moderational analysis, like those conducted in Studies 1 and 2, focusing on whether self-activation was related to the correlations between self-behavior and social judgment. In this study, so few participants judged their own behavior that such an analysis would not be meaningful. Furthermore, the measure of trait judgments used in Study 3 suffered from a restricted-range problem (it was only a 3-point scale).
act of social judgment itself caused people to access information about their own behaviors and attainments. Once activated, these pieces of self-knowledge were related to egocentric judgments of others. In short, this work suggests that people activate self-information on their own accord and that such activation is a necessary cause of egocentrism in social judgment.

Although these three studies answer some questions about the role of the self in social judgment, they present many new ones. For example, at what level of awareness do people activate self-information? Are they aware that they are doing it (as seems to be the case in Study 1), or do they do it without awareness? How automatic versus deliberate is the activation of self-information? Is the self a special reference point, one that people consider the most meaningful and informative, or is it merely the most common and convenient one to bring to mind?

Generality

One important question centers on the notion of generality. Although the three studies provided evidence that the self is a common exemplar or reference point activated in social judgment, they also showed that it is not a universal one. In Study 1, not all participants reported thinking about themselves when judging the target. In Study 2, some participants were slow to describe their behavior after judging another individual, presumably because they had not thought about it. Furthermore, people who were slow to judge their own behavior showed no tendency to make egocentric judgments of others.

What distinguishes those people who activate self-information from those who do not? Our data, as of yet, provide no clues as to the factors that raise or lower the likelihood that people will access information about their own behaviors. We do not know, for example, whether the tendency to activate self-information is a stable individual trait. Perhaps it is related to the salience of the self-information to the individual. However, in the past we have examined individual differences that should be related to the frequency with which people report thinking about themselves, such as private self-consciousness (Fenigstein, Scheier, & Buss, 1975), and have found no evidence that these differences relate to any of the phenomena we examined here (Dunning & Cohen, 1991). One would also expect that the tendency to activate self-information would depend on the importance of the trait domain to the individual, but Dunning and Cohen (1992, Study 5) examined this factor and found it not to be related to the tendency to make egocentric judgments of others. As such, we find the question of generality to be an important one but one for which we have no ready answers.

Other research, however, has suggested some circumstances under which the tendency to use self-information in social judgment might be reduced. Park and Judd (1990) asked college students to describe the behavior of people in their in-group (i.e., people in their own major) and an out-group (i.e., students in another major). They found that participants referred to their own behavior more often in think-aloud protocols when they described in-group members as opposed to out-group members. This finding suggests indirectly that people may not refer to themselves to the same degree when judging out-group members as opposed to in-group members. People may fail to be egocentric when called on to judge people who are different in some way. They may instead fall back on some other norm.

This reasoning becomes intriguing when considering the fact that people generally apply different standards to men and women, and to different ethnic groups, in stereotype-linked domains (Biernat & Manis, 1994; Biernat, Manis, & Nelson, 1991). For example, when people label an individual as tall, heavy, knowledgeable about sports, or verbally skilled, they often have divergent behaviors and performances in mind for men than for women. That is, people have a different mapping from behavior to trait judgment for the two genders, with these maps being based on different norms for men and women.

One could wonder how these gender-based norms (as well as ethnically based ones) interact with the egocentrically based norms described here and elsewhere (Dunning & Cohen, 1992; Sherif & Hovland, 1961; Upshaw, 1969). In stereotype-linked domains, people may make egocentric comparisons only for their own gender. To date, we have no data on this issue, but it is worthy of further study. To be sure, we looked for gender effects in these three studies and in previous research and found none, but the trait domains we studied appear not to be gender-linked in the eyes of our participant population.

Other Norms

The question of generality brings to mind a more fundamental theoretical question. If the self is not the standard of judgment, then what or who is? What exemplars and what specific individuals are people likely to bring to mind when making judgments of others?

There are many candidates to consider. Indeed, participants in Study 1 mentioned many other comparison points when accounting for their judgments. After the self, the most commonly mentioned norm involved considering the actions of friends and acquaintances. Such a finding should not be surprising, because past research has shown that people possess rich, highly available information about other people, such as their best friends (Prentice, 1990), which would allow them to activate information about their behaviors. Past work has also provided evidence that people activate information about familiar, significant others when forming impressions of target individuals (Andersen & Cole, 1990; Andersen, Glassman, Chen, & Cole, 1995). Other participants in Study 1 also described using some notion of a population norm when evaluating others (such as what most college students do or what the typical student does). As such, the norms people construct in their judgments of others need not be self-based.

However, if one looks at those alternative exemplars cited by participants in Study 1, one quickly sees that these reference points would produce the same contrast effects observed here and elsewhere. People tended to cite others whose behavior would resemble their own behavior. One's acquaintances tend to be similar in behaviors and attitudes to one's self (Kandel, 1978; Newcomb, 1956). One's assessments of the typical individual's attitudes, beliefs, and behavioral propensities tend to look similar to the self (Marks & Miller, 1987; Ross et al., 1977). As a consequence, using such norms would also produce contrast effects between self-behavior and social judgment.
Reconciling Our Findings With Past Work on Evaluative Reactions

Future work could also focus on reconciling contradictions between our findings and those of past work on self and social judgment. We found that the self played a direct role in social judgment, one not mediated by evaluative or affective reactions toward the target. Past work has found the opposite—that evaluative reactions mediate the relationship between self and social judgment and, as such, the self plays only an indirect role in judgments of others. In particular stand the results of Lambert and Wedell (1991) and Judd and Harackiewicz (1980).

How do we explain these contradictions? Take each piece of research in turn. Lambert and Wedell (1991) investigated the impact of self on evaluations of behaviors involving, for example, the trait of sociability (e.g., “X tries to go to at least one party every week”). They found that evaluations of unambiguous behaviors (ones that were clearly sociable or unsociable) depended on the self. Participants who described themselves as sociable rated the behaviors more extremely than did those who did not describe themselves as sociable. This extremity effect, however, was eliminated when participants’ general evaluative reactions toward the behaviors were controlled for.

We may have found different results from Lambert and Wedell (1991) for two separate reasons. First, the targets we used in our studies tended to display moderate behaviors. They did not, for example, display clearly athletic or unathletic behaviors. As such, these targets may have evoked muted, rather than strong, evaluative reactions. Because participants’ evaluative responses presumably were weak, those responses might have had little influence on their social judgments.

Second, the differences in our findings and those of others may have arisen because we focused on whether people activated specific behavioral information about themselves when judging other people. In contrast, Lambert and Wedell (1991) focused on people’s trait-like views of themselves, for example, whether they considered themselves to be sociable in general. This difference may be why we found a direct effect and they largely did not. Perhaps the part of the self that has a direct impact on social judgments is information about behavior, not traits. When judging others, people may ask themselves the extent to which they engage in the behavior that is being described (e.g., “Do I go to at least one party per week?”). These behavioral self-views may be directly related to judgments of others, as well as other reactions, including evaluative ones. Other more abstract self-views (“I am sociable”) are more weakly correlated with judgments of others. Because of this, the correlation between trait views of self and social judgments may be mediated by people’s evaluative reactions.

Buttressing this notion are the results of Judd and Harackiewicz (1980), who examined the relationship of self to judgments of other people’s attitudes. They found that the relation of self to social judgment was eliminated or reduced when they accounted for people’s tendency to have strong evaluative reactions toward the attitude issue. However, Judd and Harackiewicz’s assessments of self focused again on trait-like self-views, namely, whether the participants perceived themselves to be pro- or antiwomen’s rights. Perhaps by focusing on these trait-like views, they failed to examine the part of the self that has a direct effect on social judgment—the individual’s specific behavior. That is, the part of the self that people activate in judgments of attitude may be where they stand on the specific issue they are judging (“Are you for affirmative action for women?”). If Judd and Harackiewicz had assessed these more specific attitudinal stands, they might have discovered a more direct relation of self to social judgment.

In sum, a consideration of our research in the context of past work presents an issue for further study. What specifically about the self is activated when people judge others? Do people activate specific pieces of information, focusing on their behavior? Do they activate more general self-views (e.g., “I am sociable; I am a good person”? Do circumstances change what information people activate? Do different people activate different information? We have offered some possible ways to reconcile our findings with those of other researchers. However, these attempts at reconciliation are rather speculative and require empirical study before they can be confidently asserted.

Concluding Remarks

At the beginning of this article, we suggested that people think of themselves and their own behaviors when judging the behavior of others. More to the point, we suggested that people would think of their own behaviors even with no explicit instruction to do so or without any attempts by us to make their own behaviors and habits salient. The three studies in this article give support to this suggestion.

However, it is instructive to consider another way that we could portray our results. Over the past 20 years, many researchers have considered the impact that priming has on people’s judgments of others. That is, they have studied how making some material cognitively accessible to people influences their evaluations and assessments of other individuals (Higgins et al., 1977; Srull & Wyer, 1979; for a review, see Higgins, 1989). The present study can be portrayed as a study on priming, but with a twist. Instead of examining how primed material affects social judgment, we asked how social judgment affects what is primed. That is, we presented people with some behavioral information about another person, asked them to judge it, and examined what got primed as a consequence. All three studies suggest that behavioral information about the self was primed. For example, when a participant was told that another person studied for 15 hr a week, his or her own study habits were primed. Importantly, such priming occurred uniquely for self-behaviors. The behaviors of an acquaintance were not primed by social judgment. It was specific information about a specific cognitive representation—that of the self—that was made cognitively accessible when others were judged.

In a sense, this portrayal of our results is an added affirmation of our theoretical analysis of the role played by the self in social judgment. We suggest that people activate self-information when judging others because that information is highly accessible to them. People frequently think about themselves. Because of this, information about the self has a high level of excitation, making it prone to be used in social judgment. The results of our three studies suggest that thoughts about the self are, indeed, frequent. When asked to judge others, people thought about their own behaviors, increasing the excitation level of that
information and thus the probability that that information might be used in future social judgment. One can only wonder how accessible self-information would become if egocentric comparison were a day-to-day strategy in social judgment. If self-information were that frequently primed, how could it not help but influence people’s judgments of others?

References

Received July 8, 1994
Revision received January 6, 1996
Accepted February 25, 1996

Low Publication Prices for APA Members and Affiliates

Keeping you up-to-date. All APA Fellows, Members, Associates, and Student Affiliates receive—as part of their annual dues—subscriptions to the *American Psychologist* and *APA Monitor*. High School Teacher and International Affiliates receive subscriptions to the *APA Monitor*, and they may subscribe to the *American Psychologist* at a significantly reduced rate. In addition, all Members and Student Affiliates are eligible for savings of up to 60% (plus a journal credit) on all other APA journals, as well as significant discounts on subscriptions from cooperating societies and publishers (e.g., the American Association for Counseling and Development, Academic Press, and Human Sciences Press).

Essential resources. APA members and affiliates receive special rates for purchases of APA books, including the *Publication Manual of the American Psychological Association*, and on dozens of new topical books each year.

Other benefits of membership. Membership in APA also provides eligibility for competitive insurance plans, continuing education programs, reduced APA convention fees, and specialty divisions.

More information. Write to American Psychological Association, Membership Services, 750 First Street, NE, Washington, DC 20002-4242.