22. Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell.
Jung, S.; Kortlever, R.; Jones, R. J.; Lichterman, M. F.; Agapie, T.; McCrory, C. C. L.; Peters, J. C. 2017, Anal. Chem., 89, 581-585.

21. Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co3-xCrxO4 Spinel
Lin, C-C.; McCrory, C. C. L. ACS Catal., 20167, 443-451.

20. Polymer Coordination Promotes Selective CO2 Reduction by Cobalt Phthalocyanine
Kramer, W. W.; McCrory, C. C. L. Chem. Sci., 2016, 7, 2506-2515.
**Cover Article (Inside Front Cover)

19. Benchmarking Nanoparticulate Metal Oxide Electrocatalysts for the Alkaline Water Oxidation Reaction.
Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. ; J. Mater. Chem. A, 2016, 4, 3068-3076
**Invited article: themed collection on Water Splitting and Photocatalysis.

18. Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide.
McCrory, C. C. L.; Szymczak, N. K; Peters, J. C.; Electrocatalysis, 2016, 7, 87-96.

17. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices.
McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F.; J. Am. Chem. Soc¸ 2015, 137, 4347-4357.

16. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.
Suseno, S.; McCrory, C. C. L.; Tran, D.; Gul, S.; Yano, J.; Agapie, T. Chem. Eur. J.2015, 21, 13420-13430.

15. The Selective Electrochemical Conversion of Preactivated CO2 to Methane.
Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A.; J. Electrochem. Soc., 2015, 162, H473-H476.

14. Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser-Chemical Route.
Ni, K.-Y.; Lin, F.; Jung, S.; Fang, L.; Nordlund, D.; McCrory, C. C. L.; Weng, T-C.; Ercius, P.; Doeff, M. M.; Zheng, H.; Nano Lett., 2015, 15, 2498-2503.

13. Electrochemical Surface Science Twenty Years Later. Expeditions into the Electrocatalysis of Reactions at the Core of Artificial Photosynthesis.
Soriaga, M. P.; Baricuatro, J. H.; Cummins, K. D.; Kim, Y.-G.; Saadi, F. H.; Sun, G.; McCrory, C. C. L.; McKone, J. R.; Velazquez, J. M.; Ferrer, I. M.; Carim, A. I.; Javier, A.; Chmielowiec, B.; Lacy, D. C.; Gregoire, J. M.; Sanabria-Chinchilla, J.; Amashukeli, X.; Royea, W. T.; Brunschwig, B. S.; Hemminger, J. C.; Lewis, N. S.; Stickney, J. L.; Surf. Sci., 2015, 641, 285-294.

12. A 106-fold Enhancement in N2-binding Affinity of an Fe2(µ-H)2 Core upon Reduction to a Mixed-Valence FeIIIFeI State.
Rittle, J.; McCrory, C. C. L.; Peters, J. C. J. Am. Chem. Soc., 2014, 136, 13853-13862.

11. Operando Synthesis of Macroporous Molybdenum Diselenide Films for the Electrocatalysis of the Hydrogen Evolution Reaction.
Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; McCrory, C. C. L.; Soriaga, M. P.; Lewis, N. S. ACS Catal., 2014, 4, 2866-2873.

10. Electrocatalytic CO2 Reduction by a Cobalt Complex with a Redox-Active Tetraazamacrocyclic Ligand: Molecular and Electronic Structure Studies of Reduced Species.
Lacy, D. C.; McCrory, C. C. L.; Peters, J. C. Inorg. Chem., 2014, 53, 4980-4988.

9. Redox Active Iron Nitrosyl Units in Proton Reduction Electrocatalysis.
Hsieh, C.-H.; Erdem, O. F.; Ding, S.; Crouthers, D. J.; Liu, T.; McCrory, C. C. L.; Lubitz, W.; Popescu, C. V.; Reibenspies, J. H.; Hall, M. B.; Darensbourg, M. Y.; Nature Commun., 2014, 5, 3684.

8. Heterogenization of a Water-Insoluble Molecular Complex for Catalyst of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions.
Baricuatro, J. H.; Kim, Y.-G.; Saadi, F.; McCrory, C. C. L.; Sanabria-Chinchilla, J.; Crouthers, D.; Darensbourg, M. Y.; Soriage, M. P. Electrocatalysis, 2014, 5, 226-228.

7. Benchmarking Heterogeneous Electrocatalysts for the Oyxgen Evolution Reaction.
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F.; J. Am. Chem. Soc., 2013, 135, 16977-16987.
**Featured as Editor’s Choice article in Science Magazine.
**Highlighted in ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences.

6. Electrooxidation of Alcohols Catalyzed by Amino Alcohol Ligated Ruthenium Complexes.
Brownell, K.; McCrory, C. C. L.; Chidsey, C. E. D.; Perry, R. H.; Zare, R. N.; Waymouth, R. M.; J. Am. Chem. Soc., 2013, 135, 14299-14305.

5. Electrocatalytic Hydrogen Evolution in Acidic Water with Molecular Cobalt Tetraazamacrocycles.
McCrory, C. C. L.; Uyeda, C.; Peters, J. C.; J. Am. Chem. Soc., 2012, 134, 3164-3170.

4. Electrocatalytic O2 Reduction by Covalently Immobilized Copper(I) Complexes: Evidence for a Binuclear Cu2O2 Intermediate.
McCrory, C. C. L.; Devadoss, A.; Ottenwaelder, X.; Lowe, R. D.; Stack, T. D. P.; Chidsey, C. E. D.; J. Am. Chem. Soc., 2011, 133, 3696-3699.

3. Mechanistic and Kinetic Studies of the Electrocatalytic Reduction of O2 to H2O with Mononuclear Cu Complexes of Substituted 1,10-Phenathroline.
McCrory, C. C. L.; Ottenwaleder, X.; Stack. T. D. P.; Chidsey, C. E. D.; J. Phys.Chem. A, 2007, 111, 12641-12650.

2. Aerobic Alcohol Oxidation with a Cationic Palladium Complex: Insights into Catalyst Design and Decomposition.
Conley, N. R.; Pearson, D. M.; Labios, L. A.; McCrory, C. C. L.; Waymouth, R. M. Organometallics, 2007, 26, 5447-5453.

1. Nucleated Deliquescence of Salt.
Cantrell, W.; McCrory, C.; Ewing, G. E.; J. Chem. Phys., 2002, 116, 2116-2120.