Black Holes: Illuminating the Abyss  –  Monica Valluri
(Session 3)

This course deals with astrophysical black holes, from stellar-mass objects arising from the death of massive stars, to super-massive black holes lurking at the center of galaxies. Far from being hypothetical constructs of theoretical physics, observations of the Universe over the entire electromagnetic spectrum from radio waves, through optical, UV, X-rays and gamma rays have revealed that black holes are fascinating objects, some of which are surrounded by extremely bright disks of matter from which astronomers have learned about their remarkable properties. These “accretion disks” and their associated jets have led to discoveries about the structure and evolution of the Universe and show that black holes have had a remarkable influence on the Universe itself. The course will include an introduction to the basic physics and astronomy necessary to understand the advances that astrophysicists have made in our understanding of these strange and fascinating objects.

Climbing the Distance Ladder to the Big Bang: How Astronomers Survey the Universe  –  Dragan Huterer
(Session 1)

The furthest objects that astronomers can observe are so distant that their light set out when the Universe was only 800 million years old, and has been traveling to us for about 13 billion years-most of the age of the Universe. Even the Sun’s neighborhood – the local part of our Galaxy, where astronomers have successfully searched for planets around other stars – extends to hundreds of light years. How do we measure the distance to such remote objects? Certainly not in a single step! Astronomers construct the so-called “Distance Ladder,” finding the distance to nearby objects, thus enabling those bodies to be understood and used as probes of yet more distant regions. This class will explore the steps in this ladder, using lectures, discussions, field trips, demonstrations, and computer laboratory exercises. Students will learn basic computer programming for a project to model the effects of gravity, and they will get hands-on experience of using a small radio telescope to map the the rotation speed of the Milky Way and measure the influence of its dark matter. We will cover concepts involving space, time, and matter that go far beyond the distance ladder, and involve some of the most fascinating mysteries in cosmology and astrophysics: What is it like inside a black hole? What is the Dark Matter? What is the Dark Energy that makes the Universe expand faster and faster? Is there other life in the Universe? The class is recommended for students with solid high-school mathematics background, including some exposure to vectors.