Session 1 (June 26- July 8)

Catalysis, Solar Energy and Green Chemical Synthesis (FULL)–  Corinna Schindler and Corey Stephenson
“The chemist who designs and completes an original and esthetically pleasing multistep synthesis is like the composer, artist or poet who, with great individuality, fashions new forms of beauty from the interplay of mind and spirit.” -E.J. Corey, Nobel Laureate Prior to Friedrich Wöhler’s 1828 synthesis of urea, organic (carbon-containing) matter from living organisms was believed to contain a vital force that distinguished it from inorganic material. The discovery that organic molecules can be manipulated at the hands of scientists is considered by many the birth of organic chemistry: the study of the structure, properties, and reactions of carbon-containing matter. Organic matter is the foundation of life as we know it, and therefore a fundamental understanding of reactivity at a molecular level is essential to all life sciences. In this class we will survey monumental discoveries in this field over the past two centuries and the technological developments that have enabled them. Catalysis, Solar Energy, and Green Chemical Synthesis will provide a fun and intellectually stimulating hands-on experience that instills a historical appreciation for the giants whose trials and tribulations have enabled our modern understanding of chemistry and biology. Students will learn modern laboratory techniques including how to set up, monitor, and purify chemical reactions, and most importantly, how to determine what they made! Experiments include the synthesis of biomolecules using some of the most transformative reactions of the 20th century and exposure to modern synthetic techniques, such as the use of metal complexes that absorb visible light to catalyze chemical reactions, an important development in the Green Science movement. Finally, industrial applications of chemistry such as polymer synthesis and construction of photovoltaic devices will be performed. Daily experiments will be supplemented with exciting demonstrations by the graduate student instructors.

Dissecting Life: Human Anatomy and Physiology (FULL) –  Mary Orczykowski
Dissecting Life will lead students through the complexities and wonders of the human body. Lecture sessions will cover human anatomy in detail. Students will gain an understanding of physiology and histology and use these as a foundation to study human form and function. In the lab sessions, students will apply and reinforce concepts through comparative anatomy dissection, case discussions, self-experimentation, modeling, etc. In addition, students will have the opportunity to learn from osteological and dissected (plastinated and embalmed) human anatomical donors within the University of Michigan Medical School’s Gross Anatomy Laboratories.

Graph Theory (FULL) –  Doug Shaw
Ignore your previous knowledge of algebra, geometry, and even arithmetic! Start fresh with a simple concept: Take a collection of points, called vertices, and connect some of them with lines called edges. It doesn’t matter where you draw the vertices or how you draw the lines – all that matters is that two vertices are either related, or not. We call that a “graph” and you’ve taken the first step on the Graph Theory road! Graphs turn up in physics, biology, computer science, communications networks, linguistics, chemistry, sociology, mathematics- you name it! In this course we will discuss properties that graphs may or may not have, hunt for types of graphs that may or may not exist, learn about the silliest theorem in mathematics, and the most depressing theorem in mathematics, learn how to come up with good algorithms, model reality, and construct some mathematical proofs. We will go over fundamental results in the field, and also some results that were only proved in the last year or so! And, of course, we will present plenty of currently unsolved problems for you solve and publish!

Hex and the 4 Cs (FULL) –  Stephen DeBacker
(Session 1)

 After a very long night of homework, you finally finish your math assignment. While double-checking your work, you realize that you have done problems from page 221, not page 212 as your teacher requested. In disgust, you rip the paper out of your notebook, wad it up, and toss it back down on your notebook. Too frustrated to begin your assignment anew, your mind begins to wander. You wonder: Is there a point in the wadded up paper that lies exactly above the location from which it started? After you pour your parent’s morning cup of Joe, the coffee comes to rest while you sleepily (because of the whole homework thing) search in the fridge for the cream. After adding and stirring the cream into the cup, you watch the pretty patterns made by the swirling coffee and cream as the contents come to rest. You wonder: Is there a point in the coffee that lies at the same point both before and after the cream was stirred in? We shall use mathematics to model and answer the above questions. Initially, the above questions will motivate our study of four fundamental concepts in mathematics, all of which begin with the letter C: continuity (what sorts of wadding/stirring are allowed), completeness (what if our paper/coffee has “gaps”), compactness, and connectedness. Interestingly, these are also the concepts one needs in order to rigorously understand why Calculus works. Our modeling will lead us to the Brouwer fixed-point theorem; a very nice topological result. To show that the Brouwer fixed-point theorem is true, we shall also learn about the game of Hex. The game of Hex is an easy to describe board game for two players (Google “Hex game” to find a description). The game has many interesting features. For example: one of the two players must win, the first player to move should (theoretically) win, and nobody knows a strategy to guarantee that the first player wins. We will explore the mathematics required to understand why every game of Hex has a winner. Finally, we shall stitch all of the above together by showing that the fact that there are no ties in Hex implies that there is a point in your parent’s cup of Joe which lies at the same point both before and after the cream was stirred in.

Mathematics and the Internet (FULL) –  Mark Conger
How can gigabytes of information move over unreliable airwaves using unreliable signaling, and arrive perfectly intact? How can I have secure communication with a website run by a person I’ve never met? How can a large image or sound file be transferred quickly? Why is Google so good at finding what I’m looking for? How do computers work, anyway? The answers to all these questions involve applications of abstract mathematics. In Mathematics and the Internet, we’ll develop the math on its own, but also show how it is essential to making the Internet operate as it does. Our journey will take us through logic, probability, group theory, finite fields, calculus, number theory, and any other areas of math that might come up. We’ll apply our results to coding theory, cryptography, search engines, and compression. We’ll also spend several days building primitive computers out of transistors, logic gates, and lots of wire. If all goes well, we’ll connect them to the Internet!

Mathematics and Music Theory (FULL) –  Lon Mitchell
Mathematicians can create complex and beautiful theorems from relatively basic assumptions, while Music Theorists often try to identify basic patterns and rules in complex and beautiful music. In this course, we will explore some of the recent attempts to meet in the middle, connecting mathematical patterns and structures to music from the ancient to the modern. In Mathematics, we will explore topics such as group theory, graph theory, geometry, and metric spaces, encountering some of the most important structures in the modern discipline. Fundamental results of these areas will be discussed, and students will construct and explore examples and related patterns. In Music Theory, we will take existing music by composers such as Bach and Beethoven and use mathematical structures to provide a possible explanation of what they were thinking as they composed. In addition, we will investigate the techniques of modern composers such as Arnold Schoenberg who advocated composition based on prescribed axioms. Students will be given the chance to write music using these different techniques. Although we will use the modern (Western) twelve-tone scale as a reference, our explorations will take us into discussions of tuning, temperament, and the physics of sound. We will investigate mathematical theories of what makes the best scale, how some of those scales occur in the music of other cultures, and how modern composers have engineered exotic scales to suit their aesthetics. Prospective students should have a good command of (high-school) algebra and experience with reading music in some form.

Polynomial Party Platter  (FULL) –  Ahmad Barhoumi
There was a time when mathematical challenges were common places! When Johann Bernoulli challenged Isaac Newton circa. 1697 to solve a certain physics problem, not only did Newton solve the problem given to him overnight, but he also responded with a little bit of shade, saying “I do not love to be dunned [pestered] and teased by foreigners about mathematical things…” What his cool attitude doesn’t tell you is that Newton actually stayed up all night to solve this problem! In fact, long before that point, challenges and contests involving solutions of polynomials were common! Almost 800 years ago, Frederick II, the Holy Roman Emperor circa. 1220, once asked Leonardo of Pisa (a.k.a Fibonacci) to solve the equation x^3 + 2x^2 + 10x = 20, which he did (up to 10 decimal places)!In this course, we will throw our hat in the ring, and compete with these mathematical giants! We will begin our discussion by trying to solve that same problem given to Fibonnaci. This will lead us to a foray into complex numbers and their properties. We will then discuss other algorithms for evaluating polynomials, properties of their solutions and approximating these solutions (or finding good candidates!). Our exploration will be primarily motivated by problems, and time spent lecturing will be kept to a minimum, with the possible exception being to discuss the drama this mathematics drummed up!

Sustainable Polymers (FULL)  –  Anne McNeil
From grocery bags and food packaging to contact lenses and therapeutics, there is no doubt that polymers have had a positive impact in our lives. Most of these polymers are made from petroleum-based feedstocks, which are dwindling in supply. And although some plastics are recycled, most of them end up contaminating our lands and oceans. Through hands-on lab work and interactive lessons, this class will introduce the future of polymer science – that is: polymers made from sustainable materials that ultimately biodegrade! Students will conduct research experiments to make, analyze, and degrade renewable plastics. We will also examine commercial biodegradable materials and plastics used for energy and environmental remediation, and practice science communication through a creative stop-motion animation project.

The Physics of Magic and the Magic of Physics (FULL) –  Georg Raithel
Rabbits that vanish; objects that float in air defying gravity; a tiger that disappears and then reappears elsewhere; mind reading, telepathy and x-ray vision; objects that penetrate solid glass; steel rings that pass through each other: these are some of the amazing tricks of magic and magicians. Yet even more amazing phenomena are found in nature and the world of physics and physicists: matter than can vanish and reappear as energy and vice-versa; subatomic particles that can penetrate steel; realistic 3-D holographic illusions; objects that change their dimensions and clocks that speed up or slow down as they move (relativity); collapsed stars that trap their own light (black holes); x-rays and lasers; fluids that flow uphill (liquid helium); materials without electrical resistance (superconductors.) In this class students will first study the underlying physics of some classical magic tricks and learn to perform several of these (and create new ones.) The “magic” of corresponding (and real) physical phenomena will then be introduced and studied with hands-on, minds-on experiments. Finally, we will visit a number of research laboratories where students can meet some of the “magicians” of physics – physics students and faculty – and observe experiments at the forefront of physics research.